IPPD package vignette

Martin Slawski ${ }^{1}$ ms@cs.uni-saarland.de
Rene Hussong ${ }^{2}$ rene.hussong@uni.lu
Matthias Hein ${ }^{1}$ hein@cs.uni-saarland.de
${ }^{1}$ Saarland University, Department of Computer Science, Machine Learning Group,
${ }^{2}$ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxemburg Saarbrücken, Germany

Abstract

This is the vignette of the Bioconductor add-on package IPPD which implements automatic isotopic pattern extraction from a raw protein mass spectrum. Basically, the user only has to provide mass/charge channels and corresponding intensities, which are automatically decomposed into a list of monoisotopic peaks. IPPD can handle several charge states as well as overlaps of peak patterns.

1 Aims and scope of IPPD

A crucial challenge in the analysis of protein mass spectrometry data is to automatically process the raw spectrum to a list of peptide masses. IPPD is tailored to spectra where peptides emerge in the form of isotope patterns, i.e. one observes several peaks for each peptide mass at a given charge state due to the natural abundance of heavy isotopes. Datasets with a size of up to 100,000 mass/charge channels and the presence of isotope patterns at multiple charge states frequently exhibiting overlap make the manual annotation of a raw spectrum a tedious task. IPPD provides functionality to perform this task in a fully automatic, transparent and user-customizable way. Basically, one feeds the raw spectrum into one single function to obtain a list of monoisotopic peaks described by a mass/charge channel, a charge and an intensity. What makes our approach particularly user-friendly is its dependence on only a small set of easily interpretable parameters. We also offer a method to display the decomposition of the spectrum graphically, thereby facilitating a manual validation of the output.

2 Methodology

2.1 Template model

In the context of this package, a protein mass spectrum is understood as a sequence of pairs $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$, where $x_{i}=m_{i} / z_{i}$ is a mass (m_{i}) per charge $\left(z_{i}\right)$ value (measured in Thomson) and y_{i} is the intensity, i.e. the abundance of a particular mass (modulo charge state), observed at $x_{i}, i=1, \ldots, n$, which are assumed to be in an increasing order. The y_{i} are modeled as a linear combination of template functions representing prior knowledge about

Figure 1: Illustration of the template construction as described in the text. The left panel depicts different templates of different charge states (1 to 4). The right panel zooms at the charge two template φ_{2}.
peak shapes and the composition of isotopic patterns. If our model were exact, we could write

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{\beta}^{*}, \quad \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{\Phi}$ is a matrix template functions and $\boldsymbol{\beta}^{*}$ a vector of weights for each template. Only a small fraction of all templates are needed to fit the signal, i.e. $\boldsymbol{\beta}^{*}$ is highly sparse. Since $y \geq 0$, where ' \geq ' is understood componentwise, all template functions are nonnegative and accordingly $\boldsymbol{\beta}^{*} \geq 0$. Model (1) can equivalently be written as

$$
\boldsymbol{y}=\left[\begin{array}{lll}
\boldsymbol{\Phi}_{1} & \ldots & \boldsymbol{\Phi}_{C}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\beta}_{1}^{*} \tag{2}\\
\vdots \\
\boldsymbol{\beta}_{C}^{*}
\end{array}\right]=\sum_{c=1}^{C} \boldsymbol{\Phi}_{c} \boldsymbol{\beta}_{c}^{*},
$$

where $\boldsymbol{\Phi}_{c}, \boldsymbol{\beta}_{c}^{*}$ denote the matrix of template functions and weight vector to fit isotopic patterns of a particular charge state $c, c=1, \ldots, C$. Each submatrix $\boldsymbol{\Phi}_{c}$ can in turn be divided into columns $\varphi_{c, 1}, \ldots, \boldsymbol{\varphi}_{c, p_{c}}$, where the entries of each column vector store the evaluations of a template $\varphi_{c_{j}}, j=1, \ldots, p_{c}$, at the $x_{i}, i=1, \ldots, n$. Each template $\varphi_{c, j}$ depends on parameter $m_{c, j}$ describing the m / z position at which $\varphi_{c, j}$ is placed. A template $\varphi_{c, j}$ is used to fit an isotopic pattern of peaks composed of several single peaks, which is modeled as

$$
\begin{equation*}
\varphi_{c, j}=\sum_{k \in Z_{c, j}} a_{c, j, k} \psi_{c, j, k, k, \boldsymbol{\theta}_{c, j}}, \quad Z_{c, j} \subset \mathbb{Z} \tag{3}
\end{equation*}
$$

where the $\psi_{c, j, k}$ are functions representing a peak of a single isotope within an isotopic pattern. They depend on $m_{c, j}$ and a parameter vector $\boldsymbol{\theta}_{c, j}$. The nonnegative weights $a_{c, j, k}$ reflect the relative abundance of the isotope indexed by k. The $a_{c, j, k}$ are computed according to the averagine model (Senko et al. [1995]) and hence are fixed in advance. Each $\psi_{c, j, k}$ is linked to a location $m_{c, j, k}$ at which it attains its maximum. The $m_{c, j, k}$ are calculated
from $m_{c, j}$ as $m_{c, j, k}=m_{c, j}+\kappa \frac{k}{c}$, where κ equals 1 Dalton (≈ 1.003). The rationale behind Eq. (3) and the definitions that follow is the fact that the location of the most intense isotope is taken as characteristic location of the template, i.e. we set $m_{c, j, 0}=m_{c, j}$ so that the remaining $m_{c, j, k}, k \neq 0$, are computed by shifting $m_{c, j}$ in both directions on the m / z axis. By 'most intense isotope', we mean that $a_{c, j, 0}=\max _{k} a_{c, j, k}=1$. The set $Z_{c, j}$ is a subset of the integers which depends on the averagine model and a pre-specified tolerance, i.e. we truncate summation in Eq. (3) if the weights drop below that tolerance. Figure 1 illustrates the construction scheme and visualizes our notation.

2.2 Peak shape

In an idealized setting, the $\psi_{c, j, k}$ are delta functions at specific locations. In practice, however, the shape of a peak equals that of a bump which may exhibit some skewness. In the case of no to moderate skewness, we model peaks by Gaussian functions:

$$
\begin{equation*}
\psi_{c, j, k}(x)=\exp \left(-\frac{\left(x-m_{c, j, k}\right)^{2}}{\sigma_{c, j}}\right) . \tag{4}
\end{equation*}
$$

The parameter to be determined is $\boldsymbol{\theta}_{c, j}=\sigma_{c, j}>0$. In the case of considerable skewness, peaks are modeled by exponentially modified Gaussian (EMG) functions, see for instance Grushka [1972], Marco and Bombi [2001], and Schulz-Trieglaff et al. [2007] in the context of protein mass spectrometry:
$\psi_{c, j, k}(x)=\frac{1}{\alpha_{c, j}} \exp \left(\frac{\sigma_{c, j}^{2}}{2 \alpha_{c, j}^{2}}+\frac{\mu_{c, j}-\left(x-m_{c, j, k}\right)}{\alpha_{c, j}}\right)\left(1-F\left(\frac{\sigma_{c, j}}{\alpha_{c, j}}+\frac{\mu_{c, j}-\left(x-m_{c, j, k}\right)}{\sigma_{c, j}}\right)\right)$, $F(t)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u$.

The EMG function involves a vector of three parameters $\boldsymbol{\theta}_{c, j}=\left(\alpha_{c, j}, \sigma_{c, j}, \mu_{c, j}\right)^{\top} \in \mathbb{R}^{+} \times$ $\mathbb{R}^{+} \times \mathbb{R}$. The parameter $\alpha_{c, j}$ controls the additional length of the right tail as compared to a Gaussian. For $\alpha_{c, j} \downarrow 0$, the EMG function becomes a Gaussian. For our fitting approach as outlined in Section 2.3, it is crucial to estimate the $\boldsymbol{\theta}_{c, j}$, which are usually unknown, from the data as good as possible. To this end, we model each component θ_{l} of $\boldsymbol{\theta}$ as a linear combination of known functions $g_{l, m}$ of $x=m / z$ and an error component ε_{l}, i.e.

$$
\begin{equation*}
\theta_{l}(x)=\sum_{m=1}^{M_{l}} \nu_{l, m} g_{l, m}(x)+\varepsilon_{l}(x) . \tag{6}
\end{equation*}
$$

In the case of no prior knowledge about the $g_{l, m}$, we model θ_{l} as a constant independent of x. In most cases, it is sensible to assume a linear trend, i.e. $\theta_{l}(x)=\nu_{l, 1}+\nu_{l, 2} x$. In order to fit a model of the form (6), we have to collect information from the data $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$. To be precise, we proceed according to the following steps.

1. We apply a simple peak detection algorithm to the spectrum to identify disjoint regions $\mathcal{R}_{r} \subset\{1, \ldots, n\}, r=1, \ldots, R$, of well-resolved peaks.
2. For each region r, we fit the chosen peak shape to the data $\left\{x_{i}, y_{i}\right\}_{i \in \mathcal{R}_{r}}$ using nonlinear least squares:

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} \sum_{i \in \mathcal{R}_{r}}\left(y_{i}-\psi_{\boldsymbol{\theta}}\left(x_{i}\right)\right)^{2}, \tag{7}
\end{equation*}
$$

yielding an estimate $\widehat{\boldsymbol{\theta}}_{r}\left(\widehat{x}_{r}\right)$, where \widehat{x}_{r} denotes an estimation for the mode of the peak in region \mathcal{R}_{r}.
3. The sequence $\left\{\widehat{x}_{r}, \widehat{\boldsymbol{\theta}}_{r}\right\}_{r=1}^{R}$ is then used as input for the estimation of the parameters $\nu_{l, m}$ in model (6).

Step 2. is easily solved by the general purpose nonnegative least squares routine nls in R: : : stats for a Gaussian peak shape. For the EMG, we have to perform a grid search over all three parameters to find a suitable starting value, which is then passed to the general purpose optimization routine optim in R:: :stats with the option method = "BFGS" and a specification of a closed form expression of the gradient via the argument gr. For step 3., we use least absolute deviation regression because of the presence of outliers arising from less well-resolved, wiggly or overlapping peaks. The whole procedure is performed by the function fitModelParameters as demonstrated below. After loading the package, we access the real world dataset myo500 and extract m / z channels (x) and the corresponding intensities (y). For computational convenience and since they contain very few relevant information, we discard all channels above 2500 .

```
R> library(IPPD)
R> data(myo500)
R> x <- myo500[,"mz"]
R> y <- myo500[,"intensities"]
R> y <- y[x <= 2500]
R> x <- x[x <= 2500]
```

To have a look at the data, we plot the first $1000(\mathrm{x}, \mathrm{y})$ pairs:

```
R> layout(matrix(c(1,2), 1, 2))
R> plot(x[1:1000], y[1:1000], xlab = expression(x[1] ~~ldots ~~x[1000]),
    cex.lab = 1.5, cex.axis = 1.25, ylab = expression(y))
R> plot(x[x >= 804 & x <= 807], y[x >= 804 & x <= 807],
    xlab = "x: 804 <= x <= 807",
    cex.lab = 1.5, cex.axis = 1.25, ylab = expression(y), type = "b")
R> layout(matrix(1))
R>
```


In the plot, one identifies a prominent peak pattern beginning at about 804, which is zoomed at in the right panel.
We now apply fitModelParameters to fit model (6) for the width parameter σ of a Gaussian function (4). For simplicity, we take $g_{1}(x)=1, g_{2}(x)=x$. The model is specified by using an R formula interface.
$R>$ fitGauss <- fitModelParameters($m z=x$, intensities $=y$, model = "Gaussian", fitting = "model", formula.sigma = formula($\left.{ }^{\sim} m z\right)$, control = list(window = 6, threshold = 200))

An analogous command for the EMG (5) with the model formulae $\alpha(x)=\nu_{1,1}+\nu_{1,2} x$, $\sigma(x)=\nu_{2,1}+\nu_{2,2} x, \mu(x)=\nu_{3,1}$ is given by
$R>$ fitEMG <- fitModelParameters($m z=x$, intensities $=y$,
model = "EMG", fitting = "model",
formula.alpha $=$ formula(${ }^{\sim} m z$),
formula.sigma $=$ formula($(\sim m z)$,
formula.mu = formula(~1),
control = list(window = 6, threshold = 200))
Inspecting the results, we find that $R=55$ peak regions are used to fit an EMG parameter model. Moreover, it turns out that the EMG model is a more appropriate peak model for the data when visually comparing the list of mean residual sums of squares of the EMG fits and the Gauss fits extracted from slot(fitEMG, "peakfitresults") and
slot(fitGauss, "peakfitresults"), respectively. The figure shows an example where the EMG shape comes relatively close to the observed data. A long right tail indicates that a Gaussian would yield a rather poor fit here.

```
R> show(fitEMG)
Peak model 'EMG' fitted as fuction of m/z
number of peaks used: 55
R> mse.EMG <- data.frame(mse = slot(fitEMG,"peakfitresults")[,"rss"]
    / slot(fitEMG,"peakfitresults")[,"datapoints"],
    peakshape = rep("EMG", nrow( slot(fitEMG,"peakfitresults"))))
R> mse.Gauss <- data.frame(mse = slot(fitGauss,"peakfitresults")[,"rss"]
    / slot(fitGauss,"peakfitresults")[,"datapoints"],
    peakshape = rep("Gaussian", nrow( slot(fitGauss,"peakfitresults"))))
R> mses <- rbind(mse.EMG, mse.Gauss)
R> with(mses, boxplot(mse ~ peakshape, cex.axis = 1.5, cex.lab = 1.5, ylab = "MSE"))
R>
```


R> visualize(fitEMG, type = "peak", cex.lab = 1.5, cex.axis = 1.25)

To assess the fit of the two linear models for the EMG parameters α and σ, we use again the function visualize as follows:

```
R> visualize(fitEMG, type = "model", modelfit = TRUE,
    parameters = c("sigma", "alpha"),
    cex.lab = 1.5, cex.axis = 1.25)
```

R>

While the fit for σ seems to be reasonable except for some extreme outliers, the fit for α is not fully convincing. Nevertheless, in the absence of further knowledge, the fit produces good results in the template matching step detailed in the next section.

2.3 Template fitting

Once all necessary parameters have been determined, the positions at which the templates are placed have to be fixed. In general, one has to choose positions from the interval $\left[x_{1}, x_{n}\right]$. We instead restrict us to a suitable subset of the finite set $\left\{x_{i}\right\}_{i=1}^{n}$. The deviations from the true positions is then at least in the order of the sampling rate, but this can be improved by means of a postprocessing step described in 2.4. Using the whole set $\left\{x_{i}\right\}_{i=1}^{n}$ may be computationally infeasible if n is large. Such an approach would be at least computationally wasteful, since 'genuine' peaks patterns occur very sparsely in the spectrum. Therefore, we apply a pre-selection step on the basis of what we term 'local noise level' (LNL). The LNL is defined as a quantile (typically the median) of the intensities y_{i} falling into a sliding window of fixed width around a specific position. Given the LNL, we place templates on an x_{i} (one for each charge state) if and only if the corresponding y_{i} exceeds the LNL at x_{i} by a factor factor. place, which typically equals three or four and has to be specified by the user. Given the positions of the templates, we compute the matrix $\boldsymbol{\Phi}$ according to Eqs. (1) and (3). It then remains to estimate the coefficient vector $\boldsymbol{\beta}^{*}$ on the basis of two structural assumptions, sparsity and nonnegativity of all quantities involved. Related approaches in the literature (Du and Angeletti [2006], Renard et al. [2008]) account for sparsity of $\boldsymbol{\beta}^{*}$ by using ℓ_{1}-regularized regression (Tibshirani [1996]). We here argue empirically that ℓ_{1} regularization is not the best to do, since it entails the
selection of a tuning parameter which is difficult to choose in our setting, and secondly the structural constraints concerning nonnegativity turn out to be so strong that sparsity is more conveniently achieved by fitting followed by hard thresholding. We first determine

$$
\begin{align*}
& \widehat{\boldsymbol{\beta}} \in \underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\boldsymbol{y}-\boldsymbol{\Phi} \boldsymbol{\beta}\|_{q}^{q}, \quad q=1 \text { or } q=2, \tag{8}\\
& \text { subject to } \boldsymbol{\beta} \geq 0
\end{align*}
$$

The optimization problem (8) is a quadratic $(q=2)$ or linear $(q=1)$ program and is solved using standard techniques (Boyd and Vandenberghe [2004]); we omit further details here. We remark that in the presence of high noise, it is helpful to subtract the LNL from \boldsymbol{y}. Concerning the choice of q, we point out that $q=1$ can cope better with deviations from model assumptions, i.e. deviations from the averagine model or from the peak model and thus may lead to a reduction of the number of false positives.

2.4 Postprocessing

Given an estimate $\widehat{\boldsymbol{\beta}}$, we define $\mathcal{M}_{c}=\left\{m_{c, j}: \widehat{\beta}_{c, j}>0\right\} \subset\left\{x_{i}\right\}_{i=1}^{n}, c=1, \ldots, C$, as the set of all template locations where the corresponding coefficient exceeds 0 , separately for each charge. Due to a limited sampling rate, different sources of noise and model misfit, the locations in the sets $\left\{\mathcal{M}_{c}\right\}_{c=1}^{C}$ may still deviate considerably from the set of true peak pattern locations. Specifically, the sets $\left\{\mathcal{M}_{c}\right\}_{c=1}^{C}$ tend to be too large, mainly caused by what we term 'peak splitting': for the reasons just mentioned, it frequently occurs that several templates are used to fit the same peak. This can at least partially be corrected by means of the following merging procedure.

1. Separately for each c, divide the sets \mathcal{M}_{c} into groups $\mathcal{G}_{c, 1}, \ldots, \mathcal{G}_{c, G_{c}}$ of 'adjacent' positions. Positions are said to be adjacent if their distance on the m / z scale is below a certain tolerance as specified via a parts per million (ppm) value.
2. For each $c=1, \ldots, C$ and each group $g_{c}=1, \ldots, G_{c}$, we solve the following optimization problem.

$$
\begin{equation*}
\left(\widetilde{m}_{c, g}, \widetilde{\beta}_{c, g}\right)=\min _{m_{c, g}, \beta_{c, g}}\left\|\sum_{m_{c, j} \in \mathcal{G}_{c, g}} \widehat{\beta}_{c, j} \psi_{m_{c, j}}-\beta_{c, g} \psi_{m_{c, g}}\right\|_{L^{2}}^{2} \tag{9}
\end{equation*}
$$

In plain words, we take the fitted function resulting from the functions $\left\{\psi_{m_{c, j}}\right\}$ representing the most intense peak of each peak pattern in the same group and then determine a function $\psi_{\widetilde{m}_{c, g}}$ placed at location $\widetilde{m}_{c, g}$ and weighted by $\widetilde{\beta}_{c, g}$ such that $\widetilde{\beta}_{c, g} \psi_{\tilde{m}_{c, g}}$ approximates the fit of multiple functions $\left\{\psi_{m_{c, j}}\right\}$ best (in a least squares sense).
3. One ends up with sets $\widetilde{\mathcal{M}}_{c}=\left\{\widetilde{m}_{c, g}\right\}_{g=1}^{G_{c}}$ and coefficients $\left\{\widetilde{\beta}_{c, g}\right\}_{g=1}^{G_{c}}, c=1, \ldots, C$.

The additional benefit of step 2. as compared to the selection of the function with the largest coefficient as proposed in Renard et al. [2008] is that, in the optimal case, we are able to determine the peak pattern location even more accurate as predetermined by a limited sampling rate. The integral in (9) can be solved analytically for a Gaussian function, and we resort to numeric approximations for the EMG function.
The sets $\left\{\mathcal{M}_{c}\right\}$ tend to be too large in the sense that they still contain noise peak patterns.

Therefore, we apply hard thresholding to the $\left\{\widetilde{\beta}_{c, g}\right\}_{g=1}^{G_{c}}, c=1, \ldots, C$, discarding all positions where the corresponding coefficients is less than a significance level times the LNL, where the signficance level has to be specified by the user.

3 Case study

We continue the data analysis starting in Section 2.2. The methodology of the Sections 2.3 and 2.4 is implemented in the function getPeaklist. For the computation of the template functions, we recycle the object fitEMG obtained in Section 2.2.

```
R> EMGlist <- getPeaklist(mz = x, intensities = y, model = "EMG",
    model.parameters = fitEMG,
    loss = "L2", trace = FALSE,
    control.localnoise = list(factor.place = 2),
    control.basis = list(charges = c(1, 2)),
    control.postprocessing = list(ppm = 200))
R> show(EMGlist)
An object of class 'peaklist'(with postprocessing)
Loss function used: L2
Peak model used: EMG
number of peaks: 1222
charge states used: 1,2
```

R>

The argument list can be summarized as follows: we compute EMG templates for charges 1 and 2 ; templates are placed on all m / z-positions in the spectrum where the intensity is at least two times the LNL; the fit is least squares (loss = L2); postprocessing is performed by merging peaks within a tolerance of 200 ppm . Subsequently, only the patterns with signal-to-noise ratio bigger than three are maintained. The result is of the following form.
$R>$ threshold(EMGlist, threshold $=3$, refit $=T R U E$, trace $=$ FALSE)

	loc_init loc_most_intense	charge	quant	amplitude	localnoise	ratio	
$[1]$,	800.4642	800.4642	1	79.44171	50.27412	9.411770	5.341622
$[2]$,	808.2414	808.2414	1	80.36531	50.66381	10.196100	4.968940
$[3]$,	829.2292	829.2292	1	93.77411	58.50957	9.411770	6.216638
$[4]$,	842.4935	842.4935	1	65.95699	40.88386	8.366010	4.886901
$[5]$,	864.4065	864.4065	1	142.82412	87.56382	13.333300	6.567303
$[6]$,	877.0373	877.0373	1	115.96763	70.64737	8.888890	7.947828
$[7]$,	908.4247	908.4247	1	77.95284	46.74333	8.104580	5.767521
$[8]$,	908.9339	908.9339	1	57.31053	34.35736	9.411770	3.650467
$[9]$,	923.4380	923.4380	1	71.87828	42.78496	7.581700	5.643188
$[10]$,	924.4543	924.4543	1	72.75010	43.28165	8.366010	5.173511
$[11]$,	927.4746	927.4746	1	109.40242	64.99113	8.888890	7.311501
$[12]$,	927.9689	927.9689	1	60.24687	35.78139	9.934640	3.601680
$[13]$,	941.4672	941.4672	1	6891.22617	4065.63758	12.549000	323.981001

[14,]	941.6761	941.6761	1	135.99121
[15,]	942.4249	942.4249	1	271.89433
[16,]	949.4364	949.4364	1	71.81278
[17,]	952.5318	952.5318	1	76.11906
[18,]	954.4820	954.4820	1	106.27461
[19,]	963.4553	963.4553	1	148.93819
[20,]	967.4826	967.4826	1	145.35818
[21,]	969.4694	969.4694	1	262.52701
[22,]	985.4424	985.4424	1	125.56473
[23,]	991.5025	991.5025	1	143.70718
[24,]	992.0244	992.0244	1	126.06477
[25,]	999.4665	999.4665	1	153.63639
[26,]	1023.4509	1023.4509	1	72.97907
[27,]	1057.4478	1057.4478	1	61.59667
[28,]	1086.5573	1086.5573	1	163.01496
[29,]	1125.5187	1125.5187	1	82.19554
[30,]	1151.4789	1151.4789	1	97.86695
[31,]	1168.6235	1168.6235	1	88.00301
[32,]	1192.7011	1192.7011	1	73.30105
[33,]	1271.6609	1271.6609	1	3373.48516
[34,]	1297.6800	1297.6800	1	143.23353
[35,]	1360.7611	1360.7611	1	3816.68284
[36,]	1361.7379	1361.7379	1	1393.29903
[37,]	1378.8379	1378.8379	1	2998.22323
[38,]	1394.8413	1394.8413	1	133.38789
[39,]	1474.6387	1474.6387	1	154.35942
[40,]	1484.6606	1484.6606	1	554.63354
[41,]	1500.6588	1500.6588	1	186.99609
[42,]	1501.6659	1501.6659	1	237.89801
[43,]	1502.6668	1502.6668	1	6512.21157
[44,]	1506.9383	1506.9383	1	1362.31089
[45,]	1518.6637	1518.6637	1	3192.22390
[46,]	1519.6113	1519.6113	1	167.63469
[47,]	1524.6527	1524.6527	1	142.44848
[48,]	1534.6603	1534.6603	1	271.30995
[49,]	1546.6550	1546.6550	1	180.74009
[50,]	1588.8538	1588.8538	1	206.83112
[51,]	1589.8317	1589.8317	1	205.68088
[52,]	1606.8601	1606.8601	1	47656.96135
[53,]	1622.8482	1622.8482	1	282.47915
[54,]	1628.8462	1628.8462	1	197.47224
[55,]	1632.8754	1632.8754	1	231.61121
[56,]	1643.8448	1643.8448	1	295.35582
[57,]	1650.8348	1650.8348	1	219.29940
[58,]	1660.8520	1660.8520	1	346.30864
[59,]	1661.8523	1661.8523	1	7081.63368
[60,]	1675.8106	1675.8106	1	140.11470
[61,]	1683.8293	1683.8293	1	115.18095
[62,]	1687.8674	1687.8674	1	138.47207
[63,]	1712.6676	1712.6676	1	116.17826

80.21991	13.594800	5.900779
160.32337	16.732000	9.581841
42.19824	7.320260	5.764582
44.65963	7.843140	5.694100
62.29085	8.104580	7.685882
86.90358	6.535950	13.296243
84.64446	8.104580	10.444028
152.71772	10.457500	14.603655
72.45638	7.320260	9.898061
82.66916	9.411770	8.783593
72.50155	10.196100	7.110714
88.02239	7.320260	12.024490
41.20077	6.535950	6.303715
34.04018	7.320260	4.650132
88.42496	6.013070	14.705459
43.60907	6.797390	6.415561
51.21042	5.751630	8.903636
45.62521	6.274510	7.271517
37.50774	6.535950	5.738682
1646.58238	10.457500	157.454686
68.79630	7.581700	9.073995
1720.04542	13.071900	131.583428
627.25628	20.653600	30.370312
1325.43023	15.686300	84.496040
57.95847	9.150330	6.334030
63.76082	9.934640	6.418030
227.67786	11.764700	19.352628
76.00861	14.902000	5.100564
96.64897	20.130700	4.801074
2644.08690	27.973900	94.519781
551.93861	18.039200	30.596623
1285.24470	14.902000	86.246457
67.46108	15.424800	4.373546
57.17450	9.411770	6.074788
108.31999	12.287600	8.815390
71.69906	10.196100	7.032009
80.19724	12.287600	6.526681
79.70520	14.379100	5.543128
8288.56949	27.451000	666.225984
107.33853	8.104580	13.244181
74.75741	7.843140	9.531567
87.46080	9.673200	9.041558
110.76929	10.980400	10.087910
81.88313	9.411770	8.700078
128.49305	15.424800	8.330289
2625.53788	20.392200	128.752066
51.49230	7.058820	7.294746
42.11132	6.535950	6.443029
50.49463	7.581700	6.660068
41.77164	6.274510	6.657354

[64,] 1717.8060
$[65]$,
$[66]$,
[67,] 1777.8665
[68,] 1798.8819
[69,] 1815.9052
[70,] 1831.9004
[71,] 1837.8935
[72,] 1847.8954
[73,] 1852.9575
[74,] 1853.9657
[75,] 1869.9595
[76,] 1885.0257
[77,] 1885.9545
[78,] 1897.9419
[79,] 1901.0127
[80,] 1919.0078
[81,] 1937.0230
[82,] 1953.0164
[83,] 1958.9972
[84,] 1963.0361
[85,] 1969.9485
[86,] 1981.0615
[87,] 1982.0622
[88,] 1994.0448
[89,] 1995.0238
[90,] 1998.0483
[91,] 2004.0431
[92,] 2008.0804
[93,] 2039.0826
[94,] 2052.9999
[95,] 2092. 1287
[96,] 2098.0541
[97,] 2105.0082
[98,] 2109.1722
[99,] 2110.1592
[100,] 2126.1453 [101,] 2132.1398 [102,] 2136.1764 [103,] 2154.1284 [104,] 2157.9980 [105,] 2166.1065 [106,] 2172.1089 [107,] 2188.0666 [108,] 2211.1144 [109,] 2226.1425 [110,] 2233.0991 [111,] 2257.0072 [112,] 2283.2155 [113,] 2284.1744
1717.8060 1718.8742 1753.7102 1777.8665 1798.8819 1815.9052 1831.9004 1837.8935 1848.9034 1853.9655 1854.9737 1870.9675 1886.0337 1886.9625 1898.9499 1902.0207 1920.0158 1938.0310 1954.0244 1960.0052 1964.0441 1970.9565 1982.0695 1983.0702 1995.0528 1996.0318 1999.0563 2005.0511 2009.0884 2040.0906 2054.0079 2093.1367 2099.0621 2106.0162 2110.1802 2111.1672 2127.1533 2133.1478 2137.1844 2155.1364 2159.0060 2167.1145 2173.1169 2189.0746 2212.1224 2227.1505 2234.1071 2258.0152 2284.2235 2285.1824

100.79873	36.15212	6.274510	5.761744
78.34266	28.08336	6.535950	4.296753
89.35127	31.47933	5.490200	5.733731
106.10240	36.93067	6.013070	6.141733
175.36139	60.38655	7.581700	7.964777
9222.12485	3149.05349	24.052300	130.925254
327.93021	111.10564	5.751630	19.317245
368.32473	124.41966	6.274510	19.829382
373.93788	125.76833	6.274510	20.044327
162.82744	54.75911	10.980400	4.986987
2843.31788	956.19380	12.549000	76.196812
428.17365	143.94914	6.013070	23.939376
2133.58694	717.09062	9.150330	78.367734
157.60503	52.96946	9.673200	5.475898
73.78262	24.7919	4.444440	5.578199
88.40222	29.69960	4.705880	6.311168
146.81349	49.26205	6.013070	8.192496
10570.05550	3542.22513	27.712400	127.820944
116.41570	38.97032	3.660130	10.647250
146.46996	49.01071	3.921570	12.497727
219.18797	73.32246	6.013070	12.193847
300.77511	100.56653	4.444440	22.627492
244.81955	81.79314	13.594800	6.016502
5026.45614	1679.19922	15.686300	107.048776
131.82469	44.00292	3.921570	11.220742
80.08516	26.73049	3.660130	7.303152
86.94324	29.01351	3.398690	8.536674
76.49468	25.5161	3.660130	6.971365
135.36520	45.14050	3.660130	12.333031
56.21756	18.70644	2.875820	6.504732
68.79126	22.86797	2.352940	9.718894
81.25862	26.93851	3.660130	7.359988
76.68580	25.4119	3.137260	8.100039
172.44615	57.10590	3.398690	16.802326
245.67670	81.32109	11.764700	6.912296
5284.76079	1749.11770	14.117600	123.896250
79.79164	26.36669	2.352940	11.205849
59.99230	19.81205	2.352940	8.420124
73.48747	24.25883	2.614380	9.279000
41.38812	13.63760	2.091500	6.520490
41.70484	13.73652	1.830070	7.506008
73.99907	24.35330	2.352940	10.350156
33.40577	10.98727	1.830070	6.003744
36.97282	12.14056	1.633987	7.430022
68.46270	22.42148	2.091500	10.720286
102.27076	33.43036	1.633987	20.459370
33.83560	11.05055	1.633987	6.762931
73.28647	23.86274	1.633987	14.603995
182.54482	59.24115	2.091500	28.324720
24.07015	7.81053	2.091500	3.734416

R>

The results can be examined in detail graphically. We finally present some selected regions to demonstrate that our method performs well. The pre-defined method visualize can be used display the template fitting at several stages for regions within selected m / z intervals as specified by the arguments lower and upper.

R> visualize(EMGlist, x, y, lower= 963, upper $=973$, fit = FALSE, fittedfunction = TRUE, fittedfunction.cut = TRUE, localnoise $=$ TRUE, quantile $=0.5$, cutoff.functions = 3)
R>

signal

R> visualize(EMGlist, x, y, lower= 1502, upper $=1510$, fit $=$ FALSE, fittedfunction $=$ TRUE, fittedfunction.cut $=$ TRUE, localnoise $=$ TRUE, quantile $=0.5$, cutoff.functions = 2)
R>
R>
signal

In the m / z range $[963,973]$ a charge- 1 peak overlaps with a more intense charge two peak. A further overlap occurs in the interval [1502, 1510], and it is correctly resolved.
An even more challenging problem, in which it is already difficult to unravel the overlap by visual inspection, is displayed in the following plot.

```
R> visualize(EMGlist, x, y, lower= 1360, upper = 1364,
    fit = FALSE, fittedfunction = TRUE, fittedfunction.cut = TRUE,
    localnoise = TRUE, quantile = 0.5,
    cutoff.functions = 2)
```

R>
signal

4 Extension to process LC-MS runs

In the preceding sections, it has been demonstrated how IPPD can be used to process single spectrums. For LC-MS, multiple spectra, one for a sequence of retention times $\left\{t_{l}\right\}_{l=1}^{L}$, have to be processed. In this context, a single spectrum is referred to as scan. The resulting data can be displayed as in Figure 2 by plotting intensities over the plane defined by retention times and m / z-values. IPPD offers basic functionality to process this kind of data. Support for mzXML format as well as an implementation of the sweep line scheme as suggested in Schulz-Trieglaff et al. [2008] is provided, which is briefly demonstrated in the sequel.

```
R> directory <- system.file("data", package = "IPPD")
R> download.file("http://www.ml.uni-saarland.de/code/IPPD/CytoC_1860-2200_500-600.mzXML",
    destfile = paste(directory, "/samplefile", sep = ""),
    quiet = TRUE)
R> data <- read.mzXML(paste(directory, "/samplefile", sep = ""))
R>
```

The sweep line scheme aggregates the peaklists of multiple scans by looking for blocks of consecutive retention times at which there is signal at nearby m / z-positions. The output is a quadruple consisting of a retention time interval, a m / z-position, a charge state and

Figure 2: Graphical display of the sample mzXML file used in the code.
a quantification of the intensity. The intervals are found by sequentially processing the results of getPeaklist, where the results of each peaklist will lead to extensions of existing interval of preceding lists or to the creation of new intervals; intervals are closed once they have not been extended after processing more than gap additional peaklists, where gap is a parameter to be specified by the user. For more details, we refer to Schulz-Trieglaff et al. [2008]. The function analyzeLCMS runs getPeaklist for each scan and then calls the function sweepline, which can as well be run independently from analyzeLCMS to aggregate the results. While there is a default setting, parameters can be changed by passing appropriate arguments.

```
R> processLCMS <- analyzeLCMS(data,
    arglist.getPeaklist = list(control.basis = list(charges = c(1,2,3))),
    arglist.threshold = list(threshold = 10),
    arglist.sweepline = list(minboxlength = 20))
R> boxes <- processLCMS$boxes
```

The output can be displayed as follows. The retention time intervals are given by the two columns rt_begin and rt_end, the corresponding m / z-positions are given by the column loc. Quantitive information is contained in the column quant. The output is visualized by means of a contour plot, where the contour lines depict intensities over the plane defined by m / z-positions and retention times. The intervals of the output are drawn as red lines.
$R>$ print (boxes)

	loc charge		quant	rt_begin	rt_end	npeaks	gapcount
$[1]$,	503.3474	1	4804929	2093.26	2113.46	26	6
$[2]$,	505.8353	2	58628590	2067.62	2097.79	34	13
$[3]$,	520.3157	1	4060317	2097.79	2118.62	22	11
$[4]$,	521.6749	3	174362565	1929.97	1971.22	57	6

```
\begin{tabular}{rrrrrrrr}
{\([5]\),} & 534.3278 & 2 & 82024006 & 2068.95 & 2099.10 & 35 & 12 \\
{\([6]\),} & 535.3383 & 1 & 242848614 & 2099.10 & 2150.15 & 70 & 9 \\
{\([7]\),} & 546.8268 & 2 & 43092586 & 2112.83 & 2137.57 & 37 & 2 \\
{\([8]\),} & 549.3673 & 1 & 10241899 & 1882.23 & 1925.06 & 56 & 8 \\
{\([9]\),} & 584.8515 & 2 & 358822314 & 2090.02 & 2155.51 & 91 & 10 \\
{\([10]\),} & 585.3650 & 2 & 17016750 & 2132.31 & 2155.51 & 31 & 5 \\
{\([11]\),} & 585.3691 & 2 & 13830263 & 2175.63 & 2193.95 & 25 & 3 \\
{\([12]\),} & 597.3784 & 2 & 10873799 & 1882.96 & 1906.53 & 35 & 1
\end{tabular}
R> rtlist <- lapply(data$scan, function(x)
                as.numeric(sub("([^0-9]*)([0-9|.]+)([^0-9]*)", "\\2", x$scanAttr)))
R> rt <- unlist(rtlist)
R> nscans <- length(rt)
R> npoints <- length(data$scan[[1]]$mass)
R> Y <- matrix(unlist(lapply(data$scan, function(x) x$peaks)),
                    nrow = nscans,
                    ncol = npoints,
                    byrow = TRUE)
R> contour(rt, data$scan[[1]]$mass, Y, xlab = "t", ylab = "mz",
            levels = 10^(seq(from = 5, to = 6.75, by = 0.25)),
            drawlabels = FALSE)
R> for(i in 1:nrow(boxes))
    lines(c(boxes[i,"rt_begin"], boxes[i,"rt_end"]), rep(boxes[i,"loc"], 2), col = "red")
R>
R>
```


t

References

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
P. Du and R. Angeletti. Automatic Deconvolution of Isotope Resolved Mass Spectra Using Variable Selection and Quantized Peptide Mass Distribution. Analytical Chemistry, 78: 3385-3392, 2006.
E. Grushka. Characterization of Exponentially Modified Gaussian Peaks in Chromatography. Analytical Chemistry, 44:1733-1738, 1972.
V. Marco and G. Bombi. Mathematical functions for the representation of chromatographic peaks. Journal of Chromatography A, 931:1-30, 2001.
B. Renard, M. Kirchner, H. Steen, J. Steen, and F. Hamprecht. NITPICK: peak identification for mass spectrometry data. BMC Bioinformatics, 9:355, 2008.
O. Schulz-Trieglaff, R. Hussong, C. Gröpl, A. Hildebrandt, and K. Reinert. A Fast and Accurate Algorithm for the Quantification of Peptides from Mass Spectrometry Data. In Proceedings of the Eleventh Annual International Conference on Research in Computational Molecular Biology (RECOMB 2007), pages 437-487, 2007.
O. Schulz-Trieglaff, R. Hussong, C. Gröpl, A. Leinenbach, A. Hildebrandt, C. Huber, and K. Reinert. Computational quantification of peptides from LC-MS data. Journal of Computational Biology, 15:685-704, 2008.
M. Senko, S. Beu, and F. McLafferty. Determination of Monoisotopic Masses and Ion Populations for Large Biomolecules from Resolved Isotopic Distributions. Journal of the American Society for Mass Spectrometry, 6:229-233, 1995.
R. Tibshirani. Regression shrinkage and variable selection via the lasso. Journal of the Royal Statistical Society Series B, 58:671-686, 1996.

