
Introduction to EBImage,

an image processing and analysis toolkit for R

Gregoire Pau, Oleg Sklyar, Wolfgang Huber
gpau@ebi.ac.uk

October 14, 2013

Contents

1 Reading/displaying/writing images 1

2 Image objects and matrices 3

3 Spatial transformations 4

4 Color management 5

5 Image filtering 6

6 Morphological operations 7

7 Segmentation 8

8 Object manipulation 10

9 Cell segmentation example 11

1 Reading/displaying/writing images

The package EBImage is loaded by the following command.

> library("EBImage")

The function readImage is able to read images from files or URLs. Current supported image formats are JPEG,
PNG and TIFF.

> f = system.file("images", "lena.png", package="EBImage")

> lena = readImage(f)

Images can be displayed using the function display. Pixel intensities should range from 0 (black) to 1 (white).

> display(lena)

1

mailto:gpau@ebi.ac.uk
http://bioconductor.org/packages/release/bioc/html/EBImage.html

Introduction to EBImage 2

Figure 1: lena, lenac

Color images or images with multiple frames can also be read with readImage.

> lenac = readImage(system.file("images", "lena-color.png", package="EBImage"))

> display(lenac)

> nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage'))

> display(nuc)

Figure 2: nuc

Images can be written with writeImage. The file format is deduced from the file name extension. This is useful
to convert image formats, here from PNG format to JPEG format.

> writeImage(lena, 'lena.jpeg', quality=85)

> writeImage(lenac, 'lenac.jpeg', quality=85)

Introduction to EBImage 3

2 Image objects and matrices

The package EBImage uses the class Image to store and process images. Images are stored as multi-dimensional
arrays containing the pixel intensities. All EBImage functions are also able to work with matrices and arrays.

> print(lena)

Image

colormode: Grayscale

storage.mode: double

dim: 512 512

nb.total.frames: 1

nb.render.frames: 1

imageData(object)[1:5,1:6]:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.5372549 0.5372549 0.5372549 0.5372549 0.5372549 0.5490196

[2,] 0.5372549 0.5372549 0.5372549 0.5372549 0.5372549 0.5490196

[3,] 0.5372549 0.5372549 0.5372549 0.5372549 0.5372549 0.5137255

[4,] 0.5333333 0.5333333 0.5333333 0.5333333 0.5333333 0.5098039

[5,] 0.5411765 0.5411765 0.5411765 0.5411765 0.5411765 0.5333333

As matrices, images can be manipulated with all R mathematical operators. This includes + to control the
brightness of an image, * to control the contrast of an image or ^ to control the gamma correction parameter.

> lena1 = lena+0.5

> lena2 = 3*lena

> lena3 = (0.2+lena)^3

Figure 3: lena, lena1, lena2, lena3

Others operators include [to crop images, < to threshold images or t to transpose images.

> lena4 = lena[299:376, 224:301]

> lena5 = lena>0.5

> lena6 = t(lena)

> print(median(lena))

[1] 0.3803922

Images with multiple frames are created using combine which merges images.

> lenacomb = combine(lena, lena*2, lena*3, lena*4)

> display(lenacomb)

Introduction to EBImage 4

Figure 4: lena, lena4, lena5, lena6

Figure 5: lenacomb

3 Spatial transformations

Specific spatial image transformations are done with the functions resize, rotate, translate and the functions
flip and flop to reflect images.

> lena7 = rotate(lena, 30)

> lena8 = translate(lena, c(40, 70))

> lena9 = flip(lena)

Figure 6: lena, lena7, lena8, lena9

Introduction to EBImage 5

4 Color management

The class Image extends the base class array and uses the colormode slot to store how the color information of
the multi-dimensional data should be handled.

As an example, the color image lenac is a 512x512x3 array, with a colormode slot equals to Color. The object
is understood as a color image by EBImage functions.

> print(lenac)

Image

colormode: Color

storage.mode: double

dim: 512 512 3

nb.total.frames: 3

nb.render.frames: 1

imageData(object)[1:5,1:6,1]:

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.8862745 0.8862745 0.8862745 0.8862745 0.8862745 0.8901961

[2,] 0.8862745 0.8862745 0.8862745 0.8862745 0.8862745 0.8901961

[3,] 0.8745098 0.8745098 0.8745098 0.8745098 0.8745098 0.8901961

[4,] 0.8745098 0.8745098 0.8745098 0.8745098 0.8745098 0.8705882

[5,] 0.8862745 0.8862745 0.8862745 0.8862745 0.8862745 0.8862745

The function colorMode can access and change the value of the slot colormode, modifying the rendering mode
of an image. In the next example, the Color image lenac with one frame is changed into a Grayscale image with
3 frames, corresponding to the red, green and blue channels. The function colorMode does not change the content
of the image but changes only the way the image is rendered by EBImage.

> colorMode(lenac) = Grayscale

> display(lenac)

Figure 7: lenac, rendered as a Color image and as a Grayscale image with 3 frames (red channel, green channel,
blue channel)

The color mode of image lenac is reverted back to Color.

> colorMode(lenac) = Color

The function channel performs colorspace conversion and can convert Grayscale images into Color ones both
ways and can extract color channels from Color images. Unlike colorMode, channel changes the pixel intensity
values of the image. The function rgbImage is able to combine 3 Grayscale images into a Color one.

> lenak = channel(lena, 'rgb')

> lenak[236:276, 106:146, 1] = 1

> lenak[236:276, 156:196, 2] = 1

> lenak[236:276, 206:246, 3] = 1

> lenab = rgbImage(red=lena, green=flip(lena), blue=flop(lena))

Introduction to EBImage 6

Figure 8: lenak, lenab

5 Image filtering

Images can be linearly filtered using filter2. filter2 convolves the image with a matrix filter. Linear filtering
is useful to perform low-pass filtering (to blur images, remove noise, ...) and high-pass filtering (to detect edges,
sharpen images, ...). Various filter shapes can be generated using makeBrush.

> flo = makeBrush(21, shape='disc', step=FALSE)^2

> flo = flo/sum(flo)

> lenaflo = filter2(lenac, flo)

> fhi = matrix(1, nc=3, nr=3)

> fhi[2,2] = -8

> lenafhi = filter2(lenac, fhi)

Introduction to EBImage 7

Figure 9: Low-pass filtered lenaflo and high-pass filtered lenafhi

6 Morphological operations

Binary images are images where the pixels of value 0 constitute the background and the other ones constitute the
foreground. These images are subject to several non-linear mathematical operators called morphological operators,
able to erode and dilate an image.

> ei = readImage(system.file('images', 'shapes.png', package='EBImage'))

> ei = ei[110:512,1:130]

> display(ei)

> kern = makeBrush(5, shape='diamond')

> eierode = erode(ei, kern)

> eidilat = dilate(ei, kern)

Introduction to EBImage 8

Figure 10: ei ; eierode ; eidilat

7 Segmentation

Segmentation consists in extracting objects from an image. The function bwlabel is a simple function able to extract
every connected sets of pixels from an image and relabel these sets with a unique increasing integer. bwlabel can
be used on binary images and is useful after thresholding.

> eilabel = bwlabel(ei)

> cat('Number of objects=', max(eilabel),'\n')

Number of objects= 7

> nuct = nuc[,,1]>0.2

> nuclabel = bwlabel(nuct)

> cat('Number of nuclei=', max(nuclabel),'\n')

Number of nuclei= 74

Figure 11: ei, eilabel/max(eilabel)

Since the images eilabel and nuclabel range from 0 to the number of object they contain (given by max(eilabel)
and max(nucabel)), they have to be divided by these number before displaying, in order to fit the [0,1] range needed
by display.

The grayscale top-bottom gradient observable in eilabel and nuclabel is due to the way bwlabel labels the
connected sets, from top-left to bottom-right.

Adaptive thresholding consists in comparing the intensity of pixels with their neighbors, where the neighborhood
is specified by a filter matrix. The function thresh performs a fast adaptive thresholding of an image with a

Introduction to EBImage 9

Figure 12: nuc[, ,1], nuclabel/max(nuclabel)

rectangular window while the combination of filter2 and < allows a finer control. Adaptive thresholding allows a
better segmentation when objects are close together.

> nuct2 = thresh(nuc[,,1], w=10, h=10, offset=0.05)

> kern = makeBrush(5, shape='disc')

> nuct2 = dilate(erode(nuct2, kern), kern)

> nuclabel2 = bwlabel(nuct2)

> cat('Number of nuclei=', max(nuclabel2),'\n')

Number of nuclei= 76

Figure 13: nuc[, ,1], nuclabel2/max(nuclabel)

Introduction to EBImage 10

8 Object manipulation

Objects, defined as sets of pixels with the same unique integer value can be outlined and painted using paintObjects.
Some holes are present in objects of nuclabel2 which can be filled using fillHull.

> nucgray = channel(nuc[,,1], 'rgb')

> nuch1 = paintObjects(nuclabel2, nucgray, col='#ff00ff')

> nuclabel3 = fillHull(nuclabel2)

> nuch2 = paintObjects(nuclabel3, nucgray, col='#ff00ff')

Figure 14: nuch1, nuch2

A broad variety of objects features (basic, image moments, shape, Haralick features) can be computed using
computeFeatures. In particular, object coordinates are computed with the function computeFeatures.moment.

> xy = computeFeatures.moment(nuclabel3)[, c("m.cx", "m.cy")]

> xy[1:4,]

m.cx m.cy

1 121.74667 2.466667

2 210.19231 4.611888

3 497.44550 5.165877

4 15.99688 22.140187

Introduction to EBImage 11

9 Cell segmentation example

This is a complete example of segmentation of cells (nucleus + cell bodies) using the functions described before and
the function propagate, able to perform Voronoi-based region segmentation.

Images of nuclei and cell bodies are first loaded:

> nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage'))

> cel = readImage(system.file('images', 'cells.tif', package='EBImage'))

> img = rgbImage(green=1.5*cel, blue=nuc)

Figure 15: nuc

Figure 16: cel

Figure 17: img

Nuclei are first segmented using thresh, fillHull, bwlabel and opening, which is an erosion followed by a
dilatation.

> nmask = thresh(nuc, w=10, h=10, offset=0.05)

> nmask = opening(nmask, makeBrush(5, shape='disc'))

> nmask = fillHull(nmask)

> nmask = bwlabel(nmask)

Introduction to EBImage 12

Figure 18: nmask/max(nmask)

Cell bodies are segmented using propagate.

> ctmask = opening(cel>0.1, makeBrush(5, shape='disc'))

> cmask = propagate(cel, seeds=nmask, mask=ctmask)

Figure 19: cmask/max(cmask)

Cells are outlined using paintObjects.

> res = paintObjects(cmask, img, col='#ff00ff')

> res = paintObjects(nmask, res, col='#ffff00')

Introduction to EBImage 13

Figure 20: Final segmentation res

	1 Reading/displaying/writing images
	2 Image objects and matrices
	3 Spatial transformations
	4 Color management
	5 Image filtering
	6 Morphological operations
	7 Segmentation
	8 Object manipulation
	9 Cell segmentation example

