
Package ‘supraHex’
April 5, 2014

Type Package

Title A supra-hexagonal map for analysing tabular omics data

Version 1.0.0

Date 2013-09-19

Author Hai Fang and Julian Gough

Maintainer Hai Fang <hfang@cs.bris.ac.uk>

Depends R (>= 3.0.1), hexbin

Imports grid, MASS, Biobase

Description A supra-hexagonal map is a giant hexagon on a 2-dimensional grid seamlessly consist-
ing of smaller hexagons. It is supposed to train, analyse and visualise a high-
dimensional omics data. The supraHex is able to carray out gene/meta-gene clustering and sam-
ple correlation, plus intuitive visualisations to facilitate exploratory analy-
sis. Uniquely to this package, users can simultaneously understand their own omics data in a sam-
ple-specific fashion but without loss of information on large genes.

URL http://supfam.org/SUPERFAMILY/dcGO/supraHex.html

Collate sHexGrid.r sTopology.r sInitial.r sTrainology.r sTrainSeq.r
sTrainBatch.r sBMH.r sPipeline.r sNeighDirect.r sNeighAny.r
sHexDist.r sDistance.r sDmat.r sDmatMinima.r sDmatCluster.r
sCompReorder.r sWriteData.r visHexGrid.r visHexMapping.r
visHexComp.r visColormap.r visColorbar.r visVp.r
visHexMulComp.r visCompReorder.r visHexPattern.r visDmatCluster.r visKernels.r

License GPL-2

biocViews Bioinformatics, Clustering, Visualization, GeneExpression

1

http://supfam.org/SUPERFAMILY/dcGO/supraHex.html

2 Fang

R topics documented:
Fang . 2
Golub . 3
sBMH . 4
sCompReorder . 5
sDistance . 7
sDmat . 9
sDmatCluster . 10
sDmatMinima . 11
sHexDist . 12
sHexGrid . 13
sInitial . 15
sNeighAny . 16
sNeighDirect . 17
sPipeline . 18
sTopology . 20
sTrainBatch . 22
sTrainology . 24
sTrainSeq . 26
sWriteData . 28
visColorbar . 29
visColormap . 30
visCompReorder . 31
visDmatCluster . 33
visHexComp . 34
visHexGrid . 35
visHexMapping . 36
visHexMulComp . 38
visHexPattern . 39
visKernels . 41
visVp . 42
Xiang . 43

Index 44

Fang Human embryo gene expression dataset from Fang et al. (2010)

Description

Human embryo dataset contains gene expression levels (5441 genes and 18 embryo samples) from
Fang et al. (2010).

Usage

data(Fang)

Golub 3

Value

Fang a gene expression matrix of 5441 genes x 18 samples, involving six successive
stages, each with three replicates.

Fang.sampleinfo

a matrix containing the information of the 18 samples for the expression matrix
Fang. The three columns correspond to the sample Name, Stage, and Replicate,
respectively.

Fang.geneinfo a matrix containing the information of the 5441 genes for the expression ma-
trix Fang. The four columns correspond to the gene AffyID, EntrezGene, and
Symbol, respectively.

References

Fang et al. (2010). Transcriptome analysis of early organogenesis in human embryos. Develop-
mental Cell, 19(1):174-84.

Golub Leukemia gene expression dataset from Golub et al. (1999)

Description

Leukemia dataset (learning set) contains gene expression levels (3051 genes and 38 patient samples)
from Golub et al. (1999). This dataset has been pre-processed: capping into floor of 100 and ceiling
of 16000; filtering by exclusion of genes with max/min <= 5 or max − min <= 500, where
max and min refer respectively to the maximum and minimum intensities for a particular gene
across mRNA samples; 2-base logarithmic transformation.

Usage

data(Golub)

Value

Golub a gene expression matrix of 3051 genes x 38 samples. These samples include
11 acute myeloid leukemia (AML) and 27 acute lymphoblastic leukemia (ALL)
which can be further subtyped into 19 B-cell ALL and 8 T-cell ALL.

References

Golub et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring, Science, Vol. 286:531-537. http://www-genome.wi.mit.edu/MPR/

http://www-genome.wi.mit.edu/MPR/

4 sBMH

sBMH Function to identify the best-matching hexagons/rectangles for the in-
put data

Description

sBMH is supposed to identify the best-matching hexagons/rectangles (BMH) for the input data.

Usage

sBMH(sMap, data, which_bmh = c("best", "worst", "all"))

Arguments

sMap an object of class "sMap" or a codebook matrix

data a data frame or matrix of input data

which_bmh which BMH is requested. It can be a vector consisting of any integer values from
[1, nHex]. Alternatively, it can also be one of "best", "worst" and "all" choices.
Here, "best" is equivalent to 1, "worst" for nHex, and "all" for seq(1, nHex)

Value

a list with following components:

bmh the requested BMH matrix of dlen x length(which_bmh), where dlen is the total
number of rows of the input data

qerr the corresponding matrix of quantization errors (i.e., the distance between the
input data and their BMH), with the same dimensions as "bmh" above

mqe the mean quantization error for the "best" BMH

call the call that produced this result

Note

"which_bmh" upon request can be a vector consisting of any integer values from [1, nHex]

See Also

sPipeline

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

sCompReorder 5

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")

5) training at "rough" stage
sM_rough <- sTrainSeq(sMap=sI, data=data, sTrain=sT_rough)

6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")

7) training at "finetune" stage
sM_finetune <- sTrainSeq(sMap=sM_rough, data=data, sTrain=sT_rough)

8) find the best-matching hexagons/rectangles for the input data
response <- sBMH(sMap=sM_finetune, data=data, which_bmh="best")

sCompReorder Function to reorder component planes

Description

sCompReorder is supposed to reorder component planes for the input map/data. It returns an object
of class "sReorder". It is realized by using a new map grid (with sheep shape consisting of a
rectangular lattice) to train component plane vectors (either column-wise vectors of codebook/data
matrix or the covariance matrix thereof). As a result, similar component planes are placed closer to
each other.

Usage

sCompReorder(sMap, xdim = NULL, ydim = NULL,
amplifier = NULL,

metric = c("none", "pearson", "spearman", "kendall", "euclidean", "manhattan", "cos", "mi"),
init = c("uniform", "sample", "linear"),
algorithm = c("sequential", "batch"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"))

Arguments

sMap an object of class "sMap" or input data frame/matrix

xdim an integer specifying x-dimension of the grid

ydim an integer specifying y-dimension of the grid

amplifier an integer specifying the amplifier of the number of component planes. The
product of the component number and the amplifier constitutes the number of
rectangles in the sheet grid

6 sCompReorder

metric distance metric used to difine the similarity between component planes. It can be
"none", which means directly using column-wise vectors of codebook/data ma-
trix. Otherwise, first calculate the covariance matrix from the codebook/data
matrix. The distance metric used for calculating the covariance matrix be-
tween component planes can be: "pearson" for pearson correlation, "spearman"
for spearman rank correlation, "kendall" for kendall tau rank correlation, "eu-
clidean" for euclidean distance, "manhattan" for cityblock distance, "cos" for
consine similarity, "mi" for mutual information. See sDistance for details

init an initialisation method. It can be one of "uniform", "sample" and "linear" ini-
tialisation methods

algorithm the training algorithm. Currently, only "sequential" algorithm has been imple-
mented

alphaType the alpha type. It can be one of "invert", "linear" and "power" alpha types

neighKernel the training neighbor kernel. It can be one of "gaussian", "bubble", "cutgaus-
sian", "ep" and "gamma" kernels

Value

an object of class "sReorder", a list with following components:

nHex the total number of rectanges in the grid

xdim x-dimension of the grid

ydim y-dimension of the grid

uOrder the unique order/placement for each component plane that is reordered to the
"sheet"-shape grid with rectangular lattice

coord a matrix of nHex x 2, with each row corresponding to the coordinates of each
"uOrder" rectangle in the 2D map grid

call the call that produced this result

Note

To ensure the unique placement, each component plane mapped to the "sheet"-shape grid with rect-
angular lattice is determinied iteratively in an order from the best matched to the next compromised
one. If multiple compoments are hit in the same rectangular lattice, the worse one is always sacri-
ficed by moving to the next best one till all components are placed somewhere exclusively on their
own.

See Also

sTopology, sPipeline, sBMH, sDistance, visCompReorder

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep(S,10), seq(1:10), sep="")

sDistance 7

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) reorder component planes in different ways
3a) directly using column-wise vectors of codebook matrix
sReorder <- sCompReorder(sMap=data, amplifier=2, metric="none")
3b) according to covariance matrix of pearson correlation thereof
sReorder <- sCompReorder(sMap=data, amplifier=2, metric="pearson")

4) visualise multiple component planes reorded within a sheet-shape rectangle grid
visCompReorder(sMap=sMap, sReorder=sReorder, margin=rep(0.1,4), height=7,
title.rotate=0, title.xy=c(0.45, 1), colormap="gbr", ncolors=10, zlim=c(-1,1),
border.color="transparent")

sDistance Function to compute the pairwise distance for a given data matrix

Description

sDistance is supposed to compute and return the distance matrix between the rows of a data matrix
using a specified distance metric

Usage

sDistance(data,
metric = c("pearson", "spearman", "kendall", "euclidean", "manhattan", "cos", "mi"))

Arguments

data a data frame or matrix of input data

metric distance metric used to distance metric. See ’Note’ below for options available

Value

dist a symmetric distance matrix of nRow x nRow, where nRow is the number of
rows of input data matrix

Note

The distance metrics are supported:

• "pearson": Pearson correlation. Note that two curves that have identical shape, but different
magnitude will still have a correlation of 1

• "spearman": Spearman rank correlation. As a nonparametric version of the pearson correla-
tion, it calculates the correlation between the ranks of the data values in the two vectors (more
robust against outliers)

8 sDistance

• "kendall": Kendall tau rank correlation. Compared to spearman rank correlation, it goes a
step further by using only the relative ordering to calculate the correlation. For all pairs of
data points (xi, yi) and (xj , yj), it calls a pair of points either as concordant (Nc in total) if
(xi − xj) ∗ (yi − yj) > 0, or as discordant (Nd in total) if (xi − xj) ∗ (yi − yj) < 0. Finally,
it calculates gamma coefficient (Nc−Nd)/(Nc+Nd) as a measure of association which is
highly resistant to tied data

• "euclidean": Euclidean distance. Unlike the correlation-based distance measures, it takes the
magnitude into account (input data should be suitably normalized

• "manhattan": Cityblock distance. The distance between two vectors is the sum of absolute
value of their differences along any coordinate dimension

• "cos": Cosine similarity. As an uncentered version of pearson correlation, it is a measure of
similarity between two vectors of an inner product space, i.e., measuring the cosine of the
angle between them (using a dot product and magnitude)

• "mi": Mutual information (MI). MI provides a general measure of dependencies between
variables, in particular, positive, negative and nonlinear correlations. The caclulation of MI
is implemented via applying adaptive partitioning method for deriving equal-probability bins
(i.e., each bin contains approximately the same number of data points). The number of bins is
heuristically determined (the lower bound): 1 + log2(n), where n is the length of the vector.
BecauseMI increases with entropy, we normalize it to allow comparison of different pairwise
clone similarities: 2 ∗MI/[H(x) + H(y)], where H(x) and H(y) stand for the entropy for
the vector x and y, respectively

See Also

sDmatCluster

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) calculate distance matrix using different metric
sMap <- sPipeline(data=data)
2a) using "pearson" metric
dist <- sDistance(data=data, metric="pearson")
2b) using "cos" metric
dist <- sDistance(data=data, metric="cos")
2c) using "spearman" metric
dist <- sDistance(data=data, metric="spearman")
2d) using "kendall" metric
dist <- sDistance(data=data, metric="kendall")
2e) using "euclidean" metric
dist <- sDistance(data=data, metric="euclidean")
2f) using "manhattan" metric
dist <- sDistance(data=data, metric="manhattan")
2g) using "mi" metric
dist <- sDistance(data=data, metric="mi")

sDmat 9

sDmat Function to calculate distance matrix in high-dimensional input space
but according to neighborhood relationships in 2D output space

Description

sDmat is supposed to calculate distance (measured in high-dimensional input space) to neighbors
(defined by based on 2D output space) for each of hexagons/rectangles

Usage

sDmat(sMap, which_neigh = 1,
distMeasure = c("median", "mean", "min", "max"))

Arguments

sMap an object of class "sMap"
which_neigh which neighbors in 2D output space are used for the calculation. By default, it

sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more
than 2, and so on

distMeasure distance measure used to calculate distances in high-dimensional input space

Value

dMat a vector with the length of nHex. It stores the distance a hexaon/rectangle is
awawy from its output-space-defined neighbors in high-dimensional input space

Note

"which_neigh" is defined in output 2D space, but "distMeasure" is defined in high-dimensional
input space

See Also

sNeighAny

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) calculate "median" distances in INPUT space to different neighbors in 2D OUTPUT space
3a) using direct neighbors in 2D OUTPUT space
dMat <- sDmat(sMap=sMap, which_neigh=1, distMeasure="median")
3b) using no more than 2-topological neighbors in 2D OUTPUT space
dMat <- sDmat(sMap=sMap, which_neigh=2, distMeasure="median")

10 sDmatCluster

sDmatCluster Function to partition a grid map into clusters

Description

sDmatCluster is supposed to obtain clusters from a grid map. It returns an object of class "sBase".

Usage

sDmatCluster(sMap, which_neigh = 1,
distMeasure = c("median", "mean", "min", "max"),
clusterLinkage = c("average", "complete", "single", "bmh"))

Arguments

sMap an object of class "sMap"

which_neigh which neighbors in 2D output space are used for the calculation. By default, it
sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more
than 2, and so on

distMeasure distance measure used to calculate distances in high-dimensional input space. It
can be one of "median", "mean", "min" and "max" measures

clusterLinkage cluster linkage used to derive clusters. It can be "bmh", which accumulates a
cluster just based on best-matching hexagons/rectanges but can not ensure each
cluster is continuous. Instead, each cluster is continuous when using region-
growing algorithm with one of "average", "complete" and "single" linkages

Value

an object of class "sBase", a list with following components:

seeds the vector to store cluster seeds, i.e., a list of local minima (in 2D output space)
of distance matrix (in input space). They are represented by the indexes of
hexagons/rectangles

bases the vector with the length of nHex to store the cluster memberships/bases, where
nHex is the total number of hexagons/rectanges in the grid

call the call that produced this result

Note

The first item in the return "seeds" is the first cluster, whose memberships are those in the return
"bases" that equals 1. The same relationship is held for the second item, and so on

See Also

sPipeline, sDmatMinima, sBMH, sNeighDirect, sDistance, visDmatCluster

sDmatMinima 11

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) partition the grid map into clusters based on different criteria
3a) based on "bmh" criterion
sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median", clusterLinkage="bmh")
3b) using region-growing algorithm with linkage "average"
sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median", clusterLinkage="average")

4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap,sBase)

sDmatMinima Function to identify local minima (in 2D output space) of distance
matrix (in high-dimensional input space)

Description

sDmatMinima is supposed to identify local minima of distance matrix (resulting from sDmat). The
criterion of being local minima is that the distance associated with a hexagon/rectangle is always
smaller than its direct neighbors (i.e., 1-neighborhood)

Usage

sDmatMinima(sMap, which_neigh = 1,
distMeasure = c("median", "mean", "min", "max"))

Arguments

sMap an object of class "sMap"

which_neigh which neighbors in 2D output space are used for the calculation. By default, it
sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more
than 2, and so on

distMeasure distance measure used to calculate distances in high-dimensional input space. It
can be one of "median", "mean", "min" and "max" measures

Value

minima a vector to store a list of local minima (represented by the indexes of hexo-
gans/rectangles

12 sHexDist

Note

Do not get confused by "which_neigh" and the criteria of being local minima. Both of them deal
with 2D output space. However, "which_neigh" is used to assist in the calculation of distance
matrix (so can be 1-neighborhood or more); instead, the criterion of being local minima is only
1-neighborhood in the strictest sense

See Also

sDmat, sNeighAny

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) identify local minima of distance matrix based on "median" distances and direct neighbors
minima <- sDmatMinima(sMap=sMap, which_neigh=1, distMeasure="median")

sHexDist Function to calculate distances between hexagons/rectangles in a 2D
grid

Description

sHexDist is supposed to calculate euclidian distances between each pair of hexagons/rectangles in
a 2D grid of input "sTopol" or "sMap" object. It returns a symmetric matrix containing pairwise
distances.

Usage

sHexDist(sObj)

Arguments

sObj an object of class "sTopol" or "sMap"

Value

dist a symmetric matrix of nHex x nHex, containing pairwise distances, where nHex
is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows/columns ordered in the same order as the "coord" matrix of the input
object does.

sHexGrid 13

See Also

sTopology, sInitial

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) calculate distances between hexagons/rectangles in a 2D grid based on different objects
4a) based on an object of class "sTopol"
dist <- sHexDist(sObj=sTopol)
4b) based on an object of class "sMap"
dist <- sHexDist(sObj=sI)

sHexGrid Function to define a supra-hexagonal grid

Description

sHexGrid is supposed to define a supra-hexagonal map grid. A supra-hexagon is a giant hexagon,
which seamlessly consists of smaller hexagons. Due to the symmetric nature, it can be uniquely
determined by specifying the radius away from the grid centroid. This function takes input the
grid radius (or the number of hexagons in the grid, but will be adjusted to meet the definition of
supra-hexagon), and returns a list (see ’Value’ below) containing: the grid radius, the total number
of hexagons in the grid, the 2D coordinates of the grid centroid, the step for each hexogan away
from the grid centroid, and the 2D coordinates of all hexagons in the grid.

Usage

sHexGrid(r = NULL, nHex = NULL)

Arguments

r an integer specifying the radius in a supra-hexagonal grid

nHex the number of input hexagons in the grid

14 sHexGrid

Value

a list with following components:

r the grid radius

nHex the total number of hexagons in the grid. It may differ from the input value;
actually it is always no less than the input one to ensure a supra-hexagonal grid
exactly formed

centroid the 2D coordinates of the grid centroid

stepCentroid a vector with the length of nHex. It stores how many steps a hexagon is awawy
from the grid centroid (’1’ for the centroid itself). Starting with the centroid, it
orders outward. Also, for those hexagons of the same step, it orders from the
rightmost in an anti-clock wise

coord a matrix of nHex x 2 with each row specifying the 2D coordinates of a hexagon
in the grid. The order of rows is the same as ’centroid’ above

call the call that produced this result

Note

The relationships among return values:

• nHex = 1 + 6 ∗ r ∗ (r − 1)/2

• centroid = coord[1,]

• stepCentroid[1] = 1

• stepCentroid[2 : nHex] = unlist(sapply(2 : r, function(x)(c((1 + 6 ∗ x ∗ (x − 1)/2 −
6 ∗ (x− 1) + 1) : (1 + 6 ∗ x ∗ (x− 1)/2)) >= 1) ∗ x))

Author(s)

Hai Fang <hfang@cs.bris.ac.uk>

References

http://supfam.org/SUPERFAMILY/dcGO/supraHex.html

See Also

sTopology

Examples

The supra-hexagonal grid is exactly determined by specifying the radius.
res <- sHexGrid(r=2)

The grid is determined according to the number of input hexagons (after being adjusted).
The return res$nHex is always no less than the input one.
It ensures a supra-hexagonal grid is exactly formed.
res <- sHexGrid(nHex=12)

http://supfam.org/SUPERFAMILY/dcGO/supraHex.html

sInitial 15

Ignore input nHex if r is also given
res <- sHexGrid(r=3, nHex=100)

By default, r=3 if no parameters are specified
res <- sHexGrid()

sInitial Function to initialise a sMap object given a topology and input data

Description

sInitial is supposed to initialise an object of class "sMap" given a topology and input data. As a
matter of fact, it initialises the codebook matrix (in input high-dimensional space). The return object
inherits the topology information (i.e., a "sTopol" object from sTopology), along with initialised
codebook matrix and method used.

Usage

sInitial(data, sTopol,
init = c("uniform", "sample", "linear"))

Arguments

data a data frame or matrix of input data

sTopol an object of class "sTopol" (see sTopology)

init an initialisation method. It can be one of "uniform", "sample" and "linear" ini-
tialisation methods

Value

an object of class "sMap", a list with following components:

nHex the total number of hexagons/rectanges in the grid

xdim x-dimension of the grid

ydim y-dimension of the grid

lattice the grid lattice

shape the grid shape

coord a matrix of nHex x 2, with each row corresponding to the coordinates of a
hexagon/rectangle in the 2D map grid

init an initialisation method

codebook a codebook matrix of nHex x ncol(data), with each row corresponding to a pro-
totype vector in input high-dimensional space

call the call that produced this result

16 sNeighAny

Note

The initialisation methods include:

• "uniform": the codebook matrix is uniformly initialised via randomly taking any values within
the interval [min, max] of each column of input data

• "sample": the codebook matrix is initialised via randomly sampling/selecting input data

• "linear": the codebook matrix is linearly initialised along the first two greatest eigenvectors of
input data

See Also

sTopology

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using different mehtods
3a) using "uniform" method
sI_uniform <- sInitial(data=data, sTopol=sTopol, init="uniform")
3b) using "sample" method
sI_sample <- sInitial(data=data, sTopol=sTopol, init="sample")
3c) using "linear" method
sI_linear <- sInitial(data=data, sTopol=sTopol, init="linear")

sNeighAny Function to calculate any neighbors for each hexagon/rectangle in a
grid

Description

sNeighAny is supposed to calculate any neighbors for each hexagon/rectangle in a regular 2D grid.
It returns a matrix with rows for the self, and columns for its any neighbors.

Usage

sNeighAny(sObj)

Arguments

sObj an object of class "sTopol" or "sMap"

sNeighDirect 17

Value

aNeigh a matrix of nHex x nHex, containing distance info in terms of any neighbors,
where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its neighbors. The non-zeros mean the
distance away from its neighbors, and the zeros for the self-self. It has rows/columns ordered in the
same order as the "coord" matrix of the input object does.

See Also

sNeighDirect

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) calculate any neighbors based on different objects
4a) based on an object of class "sTopol"
aNeigh <- sNeighAny(sObj=sTopol)
4b) based on an object of class "sMap"
aNeigh <- sNeighAny(sObj=sI)

sNeighDirect Function to calculate direct neighbors for each hexagon/rectangle in
a grid

Description

sNeighDirect is supposed to calculate direct neighbors for each hexagon/rectangle in a regular 2D
grid. It returns a matrix with rows for the self, and columns for its direct neighbors.

Usage

sNeighDirect(sObj)

Arguments

sObj an object of class "sTopol" or "sMap"

18 sPipeline

Value

dNeigh a matrix of nHex x nHex, containing presence/absence info in terms of direct
neighbors, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its direct neighbors. The "1" means the
presence of direct neighbors, "0" for the absence. It has rows/columns ordered in the same order as
the "coord" matrix of the input object does.

See Also

sHexDist

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) calculate direct neighbors based on different objects
4a) based on an object of class "sTopol"
dNeigh <- sNeighDirect(sObj=sTopol)
4b) based on an object of class "sMap"
dNeigh <- sNeighDirect(sObj=sI)

sPipeline Function to setup the pipeline for completing ab initio training given
the input data

Description

sPipeline is supposed to finish ab inito training for the input data. It returns an object of class
"sMap".

Usage

sPipeline(data = NULL, xdim = NULL, ydim = NULL,
nHex = NULL, lattice = c("hexa", "rect"),
shape = c("suprahex", "sheet"),
init = c("uniform", "sample", "linear"),
algorithm = c("batch", "sequential"),

sPipeline 19

alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"),
finetuneSustain = F, verbose = T)

Arguments

data a data frame or matrix of input data
xdim an integer specifying x-dimension of the grid
ydim an integer specifying y-dimension of the grid
nHex the number of hexagons/rectangles in the grid
lattice the grid lattice, either "hexa" for a hexagon or "rect" for a rectangle
shape the grid shape, either "suprahex" for a supra-hexagonal grid or "sheet" for a

hexagonal/rectangle sheet
init an initialisation method. It can be one of "uniform", "sample" and "linear" ini-

tialisation methods
algorithm the training algorithm. Currently, only "sequential" algorithm has been imple-

mented
alphaType the alpha type. It can be one of "invert", "linear" and "power" alpha types
neighKernel the training neighborhood kernel. It can be one of "gaussian", "bubble", "cut-

gaussian", "ep" and "gamma" kernels
finetuneSustain

logical to indicate whether sustain the "finetune" training. If true, it will repeat
the "finetune" stage until the mean quantization error does get worse. By default,
it sets to true

verbose logical to indicate whether the messages will be displayed in the screen. By
default, it sets to false for no display

Value

an object of class "sMap", a list with following components:

nHex the total number of hexagons/rectanges in the grid
xdim x-dimension of the grid
ydim y-dimension of the grid
lattice the grid lattice
shape the grid shape
coord a matrix of nHex x 2, with rows corresponding to the coordinates of all hexagons/rectangles

in the 2D map grid
init an initialisation method
codebook a codebook matrix of nHex x ncol(data), with rows corresponding to prototype

vectors in input high-dimensional space
hits a vector of nHex, each element meaning that a hexagon/rectangle contains the

number of input data vectors being hit wherein
mqe the mean quantization error for the "best" BMH
call the call that produced this result

20 sTopology

Note

The pipeline sequentially consists of:

• i) sTopology used to define the topology of a grid (with "suprahex" shape by default) accord-
ing to the input data;

• ii) sInitial used to initialise the codebook matrix given the pre-defined topology and the
input data (by default using "uniform" initialisation method);

• iii) sTrainology and sTrainSeq used to get the grid map trained at both "rough" and "fine-
tune" stages. If instructed, sustain the "finetune" training until the mean quantization error
does get worse;

• iv) sBMH used to identify the best-matching hexagons/rectangles (BMH) for the input data, and
these response data are appended to the resulting object of "sMap" class.

See Also

sTopology, sInitial, sTrainology, sTrainSeq, sTrainBatch, sBMH, visHexMulComp

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep(S,10), seq(1:10), sep="")

2) get trained using by default setup but with different neighborhood kernels
2a) with "gaussian" kernel
sMap <- sPipeline(data=data, neighKernel="gaussian")
2b) with "bubble" kernel
sMap <- sPipeline(data=data, neighKernel="bubble")
2c) with "cutgaussian" kernel
sMap <- sPipeline(data=data, neighKernel="cutgaussian")
2d) with "ep" kernel
sMap <- sPipeline(data=data, neighKernel="ep")
2e) with "gamma" kernel
sMap <- sPipeline(data=data, neighKernel="gamma")

3) visualise multiple component planes of a supra-hexagonal grid
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1), gp=grid::gpar(cex=0.8))

sTopology Function to define the topology of a map grid

Description

sTopology is supposed to define the topology of a 2D map grid. The topological shape can be either
a supra-hexagonal grid or a hexagonal/rectangle sheet. It returns an object of "sTopol" class, con-
taining: the total number of hexagons/rectangles in the grid, the grid xy-dimensions, the grid lattice,
the grid shape, and the 2D coordinates of all hexagons/rectangles in the grid. The 2D coordinates
can be directly used to measure distances between any pair of lattice hexagons/rectangles.

sTopology 21

Usage

sTopology(data = NULL, xdim = NULL, ydim = NULL,
nHex = NULL, lattice = c("hexa", "rect"),
shape = c("suprahex", "sheet"))

Arguments

data a data frame or matrix of input data

xdim an integer specifying x-dimension of the grid

ydim an integer specifying y-dimension of the grid

nHex the number of hexagons/rectangles in the grid

lattice the grid lattice, either "hexa" for a hexagon or "rect" for a rectangle

shape the grid shape, either "suprahex" for a supra-hexagonal grid or "sheet" for a
hexagonal/rectangle sheet

Value

an object of class "sTopol", a list with following components:

nHex the total number of hexagons/rectanges in the grid. It is not always the same as
the input nHex (if any); see "Note" below for the explaination

xdim x-dimension of the grid

ydim y-dimension of the grid

lattice the grid lattice

shape the grid shape

coord a matrix of nHex x 2, with each row corresponding to the coordinates of a
hexagon/rectangle in the 2D map grid

call the call that produced this result

Note

The output of nHex depends on the input arguments and grid shape:

• How the input parameters are used to determine nHex is taken priority in the following order:
"xdim & ydim" > "nHex" > "data"

• If both of xdim and ydim are given, nHex = xdim ∗ ydim for the "sheet" shape, r =
(min(xdim, ydim) + 1)/2 for the "suprahex" shape

• If only data is input, nHex = 5 ∗ sqrt(dlen), where dlen is the number of rows of the input
data

• With nHex in hand, it depends on the grid shape:

– For "sheet" shape, xy-dimensions of sheet grid is determined according to the square root
of the two biggest eigenvalues of the input data

– For "suprahex" shape, see sHexGrid for calculating the grid radius r. The xdim (and
ydim) is related to r via xdim = 2 ∗ r − 1

22 sTrainBatch

See Also

sHexGrid, visHexMapping

Examples

For "suprahex" shape
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="suprahex")

Error: "The suprahex shape grid only allows for hexagonal lattice"
sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="suprahex")

For "sheet" shape with hexagonal lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="sheet")

For "sheet" shape with rectangle lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="sheet")

By default, nHex=19 (i.e., r=3; xdim=ydim=5) for "suprahex" shape
sTopol <- sTopology(shape="suprahex")

By default, xdim=ydim=5 (i.e., nHex=25) for "sheet" shape
sTopol <- sTopology(shape="sheet")

Determine the topolopy of a supra-hexagonal grid based on input data
1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

visualise a supre-hexagonal grid
visHexMapping(sTopol,mappingType="indexes")

sTrainBatch Function to implement training via batch algorithm

Description

sTrainBatch is supposed to perform batch training algorithm. It requires three inputs: a "sMap"
object, input data, and a "sTrain" object specifying training environment. The training is imple-
mented iteratively, but instead of choosing a single input vector, the whole input matrix is used.
In each training cycle, the whole input matrix first land in the map through identifying the corre-
sponding winner hexagon/rectangle (BMH), and then the codebook matrix is updated via updating
formula (see "Note" below for details). It returns an object of class "sMap".

Usage

sTrainBatch(sMap, data, sTrain)

sTrainBatch 23

Arguments

sMap an object of class "sMap"

data a data frame or matrix of input data

sTrain an object of class "sTrain"

Value

an object of class "sMap", a list with following components:

nHex the total number of hexagons/rectanges in the grid

xdim x-dimension of the grid

ydim y-dimension of the grid

lattice the grid lattice

shape the grid shape

coord a matrix of nHex x 2, with each row corresponding to the coordinates of a
hexagon/rectangle in the 2D map grid

init an initialisation method

codebook a codebook matrix of nHex x ncol(data), with each row corresponding to a pro-
totype vector in input high-dimensional space

call the call that produced this result

Note

Updating formula is: mi(t+ 1) =

∑dlen

j=1
hwi(t)xj∑dlen

j=1
hwi(t)

, where

• t denotes the training time/step

• xj is an input vector j from the input data matrix (with dlen rows in total)

• i and w stand for the hexagon/rectangle i and the winner BMH w, respectively

• mi(t+ 1) is the prototype vector of the hexagon i at time t+ 1

• hwi(t) is the neighborhood kernel, a non-increasing function of i) the distance dwi between
the hexagon/rectangle i and the winner BMH w, and ii) the radius δt at time t. There are five
kernels available:

– For "gaussian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t)

– For "cutguassian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t) ∗ (dwi ≤ δt)

– For "bubble" kernel, hwi(t) = (dwi ≤ δt)

– For "ep" kernel, hwi(t) = (1 − d2wi/δ
2
t) ∗ (dwi ≤ δt)

– For "gamma" kernel, hwi(t) = 1/Γ(d2wi/(4 ∗ δ2t) + 2)

See Also

sTrainology, visKernels

24 sTrainology

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")

5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)

6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")

7) training at "finetune" stage
sM_finetune <- sTrainBatch(sMap=sM_rough, data=data, sTrain=sT_rough)

sTrainology Function to define trainology (training environment)

Description

sTrainology is supposed to define the train-ology (i.e., the training environment/parameters). The
trainology here refers to the training algorithm, the training stage, the stage-specific parameters
(alpha type, initial alpha, initial radius, final radius and train length), and the training neighbor
kernel used. It returns an object of class "sTrain".

Usage

sTrainology(sMap, data,
algorithm = c("batch", "sequential"),
stage = c("rough", "finetune", "complete"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"))

Arguments

sMap an object of class "sMap"

data a data frame or matrix of input data

algorithm the training algorithm. Currently, only "sequential" algorithm has been imple-
mented

sTrainology 25

stage the training stage. The training can be achieved using two stages (i.e., "rough"
and "finetune") or one stage only (i.e., "complete")

alphaType the alpha type. It can be one of "invert", "linear" and "power" alpha types

neighKernel the training neighbor kernel. It can be one of "gaussian", "bubble", "cutgaus-
sian", "ep" and "gamma" kernels

Value

an object of class "sTrain", a list with following components:

algorithm the training algorithm

stage the training stage

alphaType the alpha type

alphaInitial the initial alpha

radiusInitial the initial radius

radiusFinal the final radius

neighKernel the neighbor kernel

call the call that produced this result

Note

Training stage-specific parameters:

• "radiusInitial": it depends on the grid shape and training stage

– For "sheet" shape: it equalsmax(1, ceiling(max(xdim, ydim)/8)) at "rough" or "com-
plete" stage, and max(1, ceiling(max(xdim, ydim)/32)) at "finetune" stage

– For "suprahex" shape: it equals max(1, ceiling(r/2)) at "rough" or "complete" stage,
and max(1, ceiling(r/8)) at "finetune" stage

• "radiusFinal": it depends on the training stage

– At "rough" stage, it equals radiusInitial/4
– At "finetune" or "complete" stage, it equals 1

• "trainLength": how many times the whole input data are set for training. It depends on the
training stage and training algorithm

– At "rough" stage, it equals max(1, 10 ∗ trainDepth)

– At "finetune" stage, it equals max(1, 40 ∗ trainDepth)

– At "complete" stage, it equals max(1, 50 ∗ trainDepth)

– When using "batch" algorithm and the trainLength equals 1 according to the above equa-
tion, the trainLength is forced to be 2 unless radiusInitial equals radiusF inal

– Where trainDepth is the training depth, defined as nHex/dlen, i.e., how many hexagons/rectanges
are used per the input data length (here dlen refers to the number of rows)

See Also

sInitial

26 sTrainSeq

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) define trainology at different stages
4a) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
4b) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
4c) define trainology using "complete" stage
sT_complete <- sTrainology(sMap=sI, data=data, stage="complete")

sTrainSeq Function to implement training via sequential algorithm

Description

sTrainSeq is supposed to perform sequential training algorithm. It requires three inputs: a "sMap"
object, input data, and a "sTrain" object specifying training environment. The training is imple-
mented iteratively, each training cycle consisting of: i) randomly choose one input vector; ii) deter-
mine the winner hexagon/rectangle (BMH) according to minimum distance of codebook matrix to
the input vector; ii) update the codebook matrix of the BMH and its neighbors via updating formula
(see "Note" below for details). It also returns an object of class "sMap".

Usage

sTrainSeq(sMap, data, sTrain)

Arguments

sMap an object of class "sMap"

data a data frame or matrix of input data

sTrain an object of class "sTrain"

Value

an object of class "sMap", a list with following components:

nHex the total number of hexagons/rectanges in the grid

xdim x-dimension of the grid

sTrainSeq 27

ydim y-dimension of the grid

lattice the grid lattice

shape the grid shape

coord a matrix of nHex x 2, with each row corresponding to the coordinates of a
hexagon/rectangle in the 2D map grid

init an initialisation method

codebook a codebook matrix of nHex x ncol(data), with each row corresponding to a pro-
totype vector in input high-dimensional space

call the call that produced this result

Note

Updating formula is: mi(t+ 1) = mi(t) + α(t) ∗ hwi(t) ∗ [x(t) −mi(t)], where

• t denotes the training time/step

• i and w stand for the hexagon/rectangle i and the winner BMH w, respectively

• x(t) is an input vector randomly choosen (from the input data) at time t

• mi(t) and mi(t+ 1) are respectively the prototype vectors of the hexagon i at time t and t+ 1

• α(t) is the learning rate at time t. There are three types of learning rate functions:

– For "linear" function, α(t) = α0 ∗ (1 − t/T)

– For "power" function, α(t) = α0 ∗ (0.005/α0)t/T

– For "invert" function, α(t) = α0/(1 + 100 ∗ t/T)

– Where α0 is the initial learing rate (typically, α0 = 0.5 at "rough" stage, α0 = 0.05 at
"finetune" stage), T is the length of training time/step (often being set to input data length,
i.e., the total number of rows)

• hwi(t) is the neighborhood kernel, a non-increasing function of i) the distance dwi between
the hexagon/rectangle i and the winner BMH w, and ii) the radius δt at time t. There are five
kernels available:

– For "gaussian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t)

– For "cutguassian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t) ∗ (dwi ≤ δt)

– For "bubble" kernel, hwi(t) = (dwi ≤ δt)

– For "ep" kernel, hwi(t) = (1 − d2wi/δ
2
t) ∗ (dwi ≤ δt)

– For "gamma" kernel, hwi(t) = 1/Γ(d2wi/(4 ∗ δ2t) + 2)

See Also

sTrainology, visKernels

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid

28 sWriteData

sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")

5) training at "rough" stage
sM_rough <- sTrainSeq(sMap=sI, data=data, sTrain=sT_rough)

6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")

7) training at "finetune" stage
sM_finetune <- sTrainSeq(sMap=sM_rough, data=data, sTrain=sT_rough)

sWriteData Function to write out the best-matching hexagons and/or cluster bases
in terms of data

Description

sWriteData is supposed to write out the best-matching hexagons and/or cluster bases in terms of
data.

Usage

sWriteData(sMap, data, sBase = NULL, filename = NULL,
keep.data = F)

Arguments

sMap an object of class "sMap" or a codebook matrix

data a data frame or matrix of input data

sBase an object of class "sBase"

filename a character string naming a filename

keep.data logical to indicate whether or not to also write out the input data. By default, it
sets to false for not keeping it. It is highly expensive to keep the large data sets

Value

a data frame with following components:

ID ID for data. It inherits the rownames of data (if exists). Otherwise, it is sequen-
tial integer values starting with 1 and ending with dlen, the total number of rows
of the input data

visColorbar 29

Hexagon_index the index for best-matching hexagons

Cluster_base optional, it is only appended when sBase is given. It stores the cluster member-
ships/bases

data optional, it is only appended when keep.data is true

Note

If "filename" is not NULL, a tab-delimited text file will be also written out. If "sBase" is not NULL
and comes from the "sMap" partition, then cluster bases are also appended. if "keep.data" is true,
the data will be part of output.

See Also

sBMH

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) write datas BMH hitting the trained map
output <- sWriteData(sMap=sMap, data=data, filename="sData_output.txt")

4) partition the grid map into cluster bases
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")

5) write datas BMH and cluster bases
output <- sWriteData(sMap=sMap, data=data, sBase=sBase, filename="sData_base_output.txt")

visColorbar Function to define a colorbar

Description

visColorbar is supposed to define a colorbar

Usage

visColorbar(colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"),
ncolors = 40, zlim = c(0, 1), gp = grid::gpar())

30 visColormap

Arguments

colormap short name for the colormap

ncolors the number of colors specified

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

gp an object of class gpar, typically the output from a call to the function gpar (i.e.,
a list of graphical parameter settings)

Value

invisibly

Note

none

See Also

visColormap, visHexMulComp, visCompReorder

Examples

draw "blue-white-red" colorbar
visColorbar(colormap="bwr")

visColormap Function to define a colormap

Description

visColormap is supposed to define a colormap. It returns a function, which will take an integer
argument specifying how many colors interpolate the given colormap.

Usage

visColormap(colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"))

Arguments

colormap short name for the colormap

Value

palette.name a function that takes an integer argument for generating that number of colors
interpolating the given sequence

visCompReorder 31

Note

The input colormap includes:

• "jet": jet colormap

• "bwr": blue-white-red

• "gbr": green-black-red

• "wyr": white-yellow-red

• "br": black-red

• "yr": yellow-red

• "rainbow": rainbow colormap, that is, red-yellow-green-cyan-blue-magenta

See Also

visHexComp

Examples

1) define "blue-white-red" colormap
palette.name <- visColormap(colormap="bwr")

2) use the return function "palette.name" to generate 10 colors spanning "bwr"
palette.name(10)

visCompReorder Function to visualise multiple component planes reorded within a
sheet-shape rectangle grid

Description

visCompReorder is supposed to visualise multiple component planes reorded within a sheet-shape
rectangle grid

Usage

visCompReorder(sMap, sReorder, margin = rep(0.1, 4),
height = 7, title.rotate = 0, title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"),
ncolors = 40, zlim = NULL,
border.color = "transparent", gp = grid::gpar())

32 visCompReorder

Arguments

sMap an object of class "sMap"

sReorder an object of class "sReorder"

margin margins as units of length 4 or 1

height a numeric value specifying the height of device

title.rotate the rotation of the title

title.xy the coordinates of the title

colormap short name for the colormap

ncolors the number of colors specified

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

border.color the border color for each hexagon

gp an object of class "gpar". It is the output from a call to the function "gpar" (i.e.,
a list of graphical parameter settings)

Value

invisible

Note

none

See Also

visVp, visHexComp, visColorbar, sCompReorder

Examples

1) generate data with three different distributions, each with an iid normal random matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")

2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

3) reorder component planes
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")

4) visualise multiple component planes reorded within a sheet-shape rectangle grid
visCompReorder(sMap=sMap, sReorder=sReorder, margin=rep(0.1,4), height=7,
title.rotate=0, title.xy=c(0.45, 1), colormap="gbr", ncolors=10, zlim=c(-1,1),
border.color="transparent")

visDmatCluster 33

visDmatCluster Function to visualise clusters/bases partitioned from a supra-
hexagonal grid

Description

visDmatCluster is supposed to visualise clusters/bases partitioned from a supra-hexagonal grid

Usage

visDmatCluster(sMap, sBase, height = 7,
margin = rep(0.1, 4), area.size = 1,
gp = grid::gpar(cex = 0.8, font = 2, col.label = "black"),
border.color = "transparent",
colormap = c("rainbow", "jet", "bwr", "gbr", "wyr", "br", "yr"),
clip = c("on", "inherit", "off"), newpage = T)

Arguments

sMap an object of class "sMap"

sBase an object of class "sBase"

height a numeric value specifying the height of device

margin margins as units of length 4 or 1

area.size an inteter or a vector specifying the area size of each hexagon

gp an object of class "gpar". It is the output from a call to the function "gpar" (i.e.,
a list of graphical parameter settings)

border.color the border color for each hexagon

colormap short name for the colormap

clip either "on" for clipping to the extent of this viewport, "inherit" for inheriting the
clipping region from the parent viewport, or "off" to turn clipping off altogether

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

Value

invisible

Note

none

See Also

sDmatCluster, visColormap, visHexGrid

34 visHexComp

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

2) get trained using by default setup
sMap <- sPipeline(data=data)

3) partition the grid map into clusters using region-growing algorithm
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")

4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap,sBase)

visHexComp Function to visualise a component plane of a supra-hexagonal grid

Description

visHexComp is supposed to visualise a supra-hexagonal grid in the context of viewport

Usage

visHexComp(sMap, comp, margin = rep(0.6, 4),
area.size = 1,
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"),
ncolors = 40, zlim = c(0, 1),
border.color = "transparent", newpage = T)

Arguments

sMap an object of class "sMap"

comp a component/column of codebook matrix from an object "sMap"

margin margins as units of length 4 or 1

area.size an inteter or a vector specifying the area size of each hexagon

colormap short name for the colormap

ncolors the number of colors specified

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

border.color the border color for each hexagon

newpage a logical to indicate whether or not to open a new page

visHexGrid 35

Value

invisible

Note

none

See Also

visColormap, visHexGrid

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep(S,10), seq(1:10), sep="")

2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

3) visualise the first component plane with a supra-hexagonal grid
visHexComp(sMap, comp=sMap$codebook[,1], colormap="jet", ncolors=100, zlim=c(-1,1))

visHexGrid Function to visualise a supra-hexagonal grid

Description

visHexGrid is supposed to visualise a supra-hexagonal grid

Usage

visHexGrid(hbin, area.size = 1, border.color = NULL,
fill.color = NULL)

Arguments

hbin an object of class "hexbin"

area.size an inteter or a vector specifying the area size of each hexagon

border.color the border color for each hexagon

fill.color the filled color for each hexagon

Value

invisible

36 visHexMapping

Note

none

See Also

visHexComp

Examples

1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep(S,10), seq(1:10), sep="")

2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

3) create an object of "hexbin" class from sMap
dat <- data.frame(sMap$coord)
xdim <- sMap$xdim
ydim <- sMap$ydim
hbin <- hexbin::hexbin(datx, daty, xbins=xdim-1, shape=sqrt(0.75)*ydim/xdim)

4) visualise hbin object
vp <- hexbin::hexViewport(hbin)
visHexGrid(hbin)

visHexMapping Function to visualise various mapping items within a supra-hexagonal
grid

Description

visHexMapping is supposed to visualise various mapping items within a supra-hexagonal grid

Usage

visHexMapping(sObj,
mappingType = c("indexes", "hits", "dist", "antidist", "bases", "customized"),
labels = NULL, height = 7, margin = rep(0.1, 4),
area.size = 1,
gp = grid::gpar(cex = 0.7, font = 1, col.label = "black"),
border.color = "black", fill.color = "transparent",
clip = c("on", "inherit", "off"), newpage = T)

visHexMapping 37

Arguments

sObj an object of class "sMap" or "sTopol"

mappingType the mapping type, can be "indexes", "hits", "dist", "antidist", "bases", and "cus-
tomized"

labels NULL or a vector with the length of nHex

height a numeric value specifying the height of device

margin margins as units of length 4 or 1

area.size an inteter or a vector specifying the area size of each hexagon

gp an object of class "gpar". It is the output from a call to the function "gpar" (i.e.,
a list of graphical parameter settings)

border.color the border color for each hexagon

fill.color the filled color for each hexagon

clip either "on" for clipping to the extent of this viewport, "inherit" for inheriting the
clipping region from the parent viewport, or "off" to turn clipping off altogether

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

Value

invisible

Note

The mappingType includes:

• "indexes": the index of hexagons in a supra-hexagonal grid

• "hits": the number of input data vectors hitting the hexagons

• "dist": distance (in high-dimensional input space) to neighbors (defined in 2D output space)

• "antidist": the oppose version of "dist"

• "bases": clusters partitioned from the sMap

• "customized": displaying input "labels"

See Also

sDmat, sDmatCluster, visHexGrid

Examples

1) generate data with three different distributions, each with an iid normal random matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")

2) sMap resulted from using by default setup

38 visHexMulComp

sMap <- sPipeline(data=data)

3) visualise supported mapping items within a supra-hexagonal grid
3a) for indexes of hexagons
visHexMapping(sMap,mappingType="indexes")
3b) for the number of input data vectors hitting the hexagons
visHexMapping(sMap,mappingType="hits")
3c) for distance (in high-dimensional input space) to neighbors (defined in 2D output space)
visHexMapping(sMap,mappingType="dist")
3d) for anti-distance (in high-dimensional input space) to neighbors (defined in 2D output space)
visHexMapping(sMap,mappingType="antidist")
3e) for clusters/bases partitioned from the sMap
visHexMapping(sMap,mappingType="bases")

visHexMulComp Function to visualise multiple component planes of a supra-hexagonal
grid

Description

visHexMulComp is supposed to visualise multiple component planes of a supra-hexagonal grid

Usage

visHexMulComp(sMap, margin = rep(0.1, 4), height = 7,
title.rotate = 0, title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"),
ncolors = 40, zlim = NULL,
border.color = "transparent", gp = grid::gpar())

Arguments

sMap an object of class "sMap"

margin margins as units of length 4 or 1

height a numeric value specifying the height of device

title.rotate the rotation of the title

title.xy the coordinates of the title

colormap short name for the colormap

ncolors the number of colors specified

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted

border.color the border color for each hexagon

gp an object of class gpar, typically the output from a call to the function gpar (i.e.,
a list of graphical parameter settings)

visHexPattern 39

Value

invisible

Note

none

See Also

visVp, visHexComp, visColorbar

Examples

1) generate data with three different distributions, each with an iid normal random matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")

2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

3) visualise multiple component planes of a supra-hexagonal grid
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1), gp=grid::gpar(cex=0.8))

visHexPattern Function to visualise codebook matrix or input patterns within a
supra-hexagonal grid

Description

visHexPattern is supposed to codebook matrix or input patterns within a supra-hexagonal grid.

Usage

visHexPattern(sObj,
plotType = c("lines", "bars", "radars"),
pattern = NULL, height = 7, margin = rep(0.1, 4),
colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow"),
customized.color = "red", zeropattern.color = "gray",
legend.cex = 0.8, newpage = T)

Arguments

sObj an object of class "sMap" or "sTopol"

plotType the plot type, can be "lines" for line/point graph, "bars" for bar graph, "radars"
for radar graph

40 visHexPattern

pattern By default, it sets to "NULL" for the codebook matrix. It is intended for the
user-input patterns, i.e., a matrix with the dimension of nHex x nPattern, where
nHex is the number of hexagons and nPattern is the number of elements for each
pattern

height a numeric value specifying the height of device

margin margins as units of length 4 or 1

colormap short name for the predifined colormap, and "customized" for custom input (see
the next ’customized.color’)

customized.color

the customized color for pattern visualisation
zeropattern.color

the color for zero horizental line

legend.cex a numerical value giving the amount by which legend text should be magnified
relative to the default (i.e., 1)

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

Value

invisible

Note

The "plotType" includes:

• "lines": line plot. If multple colors are given, the points are also plotted. When the pattern
involves both positive and negative values, zero horizental line is also shown

• "bars": bar plot. When the pattern involves both positive and negative values, the zero horizen-
tal line is in the middle of the hexagon; otherwise at the top of the hexagon for all negative
values, and at the bottom for all positive values

• "radars": radar plot. Each radar diagram represents one pattern, wherein each element value
is proportional to the distance from the center. Note, it starts on the right and wind counter-
clockwise around the circle

See Also

sPipeline, visColormap

Examples

1) generate data with three different distributions, each with an iid normal random matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")

2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)

visKernels 41

3) plot codebook patterns using different types
3a) line plot
visHexPattern(sMap, plotType="lines", customized.color="red", zeropattern.color="gray")
visHexPattern(sMap, plotType="lines", customized.color=rep(c("red","green","blue"),each=3))
3b) bar plot
visHexPattern(sMap, plotType="bars")
visHexPattern(sMap, plotType="bars", colormap="jet", legend.cex=0.8)
visHexPattern(sMap, plotType="bars", customized.color=rep(c("red","green","blue"),each=3))
3c) radar plot
visHexPattern(sMap, plotType="radars")
visHexPattern(sMap, plotType="radars", colormap="jet", legend.cex=0.8)
visHexPattern(sMap, plotType="radars", customized.color=rep(c("red","green","blue"),each=3))

4) plot user-input patterns using different types
4a) generate pattern data with two different groups "S" and "T"
nHex <- sMap$nHex
pattern <- cbind(matrix(runif(nHex*3,min=0,max=1), nrow=nHex, ncol=3),
matrix(runif(nHex*3,min=1,max=2), nrow=nHex, ncol=3))
colnames(pattern) <- c("S1","S2","S3","T1","T2","T3")
4b) for line plot
visHexPattern(sMap, plotType="lines", pattern=pattern, customized.color="red", zeropattern.color="gray")
visHexPattern(sMap, plotType="lines", pattern=pattern, customized.color=rep(c("red","green"),each=3))
4c) for bar plot
visHexPattern(sMap, plotType="bars", pattern=pattern, customized.color=rep(c("red","green"),each=3))
4d) for radar plot
visHexPattern(sMap, plotType="radars", pattern=pattern, customized.color=rep(c("red","green"),each=3))

visKernels Function to visualize neighborhood kernels

Description

visKernels is supposed to visualize a series of neighborhood kernels, each of which is a non-
increasing functions of: i) the distance dwi between the hexagon/rectangle i and the winner w, and
ii) the radius δt at time t.

Usage

visKernels(newpage = T)

Arguments

newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

Value

invisible

42 visVp

Note

There are five kernels that are currently supported:

• For "gaussian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t)

• For "cutguassian" kernel, hwi(t) = e−d
2
wi/(2∗δ

2
t) ∗ (dwi ≤ δt)

• For "bubble" kernel, hwi(t) = (dwi ≤ δt)

• For "ep" kernel, hwi(t) = (1 − d2wi/δ
2
t) ∗ (dwi ≤ δt)

• For "gamma" kernel, hwi(t) = 1/Γ(d2wi/(4 ∗ δ2t) + 2)

These kernels above are displayed within a plot for each fixed radius. Three different radii (i.e., 1
and 2) are illustrated.

See Also

sTrainSeq, sTrainBatch

Examples

visualise currently supported five kernels
visKernels()

visVp Function to create viewports for multiple supra-hexagonal grids

Description

visVp is supposed to create viewports, which describe rectangular regions on a graphics device and
define a number of coordinate systems for each of supra-hexagonal grids.

Usage

visVp(height = 7, xdim = 1, ydim = 1, colNum = 1,
rowNum = 1, gp = grid::gpar())

Arguments

height a numeric value specifying the height of device

xdim an integer specifying x-dimension of the grid

ydim an integer specifying y-dimension of the grid

colNum an integer specifying the number of columns

rowNum an integer specifying the number of rows

gp an object of class gpar, typically the output from a call to the function gpar (i.e.,
a list of graphical parameter settings)

Xiang 43

Value

vpnames an R object of "viewport" class

Note

none

See Also

visHexMulComp, visCompReorder

Examples

1) create 5x5 viewports
vpnames <- visVp(colNum=5, rowNum=5)

2) look at names of these viewports
vpnames

Xiang Arabidopsis embryo gene expression dataset from Xiang et al. (2011)

Description

Arabidopsis embryo dataset contains gene expression levels (3625 genes and 7 embryo samples)
from Xiang et al. (2011). This dataset has been pre-processed: capping into floor of intensity
777.6; 2-base logarithmic transformation; row/gene centering; and keeping genes with at least 2-
fold changes (in any stage) as compared to the average over embryo stages.

Usage

data(Xiang)

Value

Xiang a gene expression matrix of 3625 genes x 7 stage samples. These embryo stages
are: zygote, quadrant, globular, heart, torpedo, bent, and mature.

References

Xiang et al. (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics
during embryo development in Arabidopsis. Plant Physiol, 156(1):346-356.

Index

∗Topic datasets
Fang, 2
Golub, 3
Xiang, 43

Fang, 2

Golub, 3

sBMH, 4, 6, 10, 20, 29
sCompReorder, 5, 32
sDistance, 6, 7, 10
sDmat, 9, 11, 12, 37
sDmatCluster, 8, 10, 33, 37
sDmatMinima, 10, 11
sHexDist, 12, 18
sHexGrid, 13, 21, 22
sInitial, 13, 15, 20, 25
sNeighAny, 9, 12, 16
sNeighDirect, 10, 17, 17
sPipeline, 4, 6, 10, 18, 40
sTopology, 6, 13, 14, 16, 20, 20
sTrainBatch, 20, 22, 42
sTrainology, 20, 23, 24, 27
sTrainSeq, 20, 26, 42
sWriteData, 28

visColorbar, 29, 32, 39
visColormap, 30, 30, 33, 35, 40
visCompReorder, 6, 30, 31, 43
visDmatCluster, 10, 33
visHexComp, 31, 32, 34, 36, 39
visHexGrid, 33, 35, 35, 37
visHexMapping, 22, 36
visHexMulComp, 20, 30, 38, 43
visHexPattern, 39
visKernels, 23, 27, 41
visVp, 32, 39, 42

Xiang, 43

44

	Fang
	Golub
	sBMH
	sCompReorder
	sDistance
	sDmat
	sDmatCluster
	sDmatMinima
	sHexDist
	sHexGrid
	sInitial
	sNeighAny
	sNeighDirect
	sPipeline
	sTopology
	sTrainBatch
	sTrainology
	sTrainSeq
	sWriteData
	visColorbar
	visColormap
	visCompReorder
	visDmatCluster
	visHexComp
	visHexGrid
	visHexMapping
	visHexMulComp
	visHexPattern
	visKernels
	visVp
	Xiang
	Index

