Package 'bumphunter'

April 5, 2014

Version 1.2.0
Title Bump Hunter
Description Tools for finding bumps in genomic data
Author Rafael A. Irizarry, Martin Aryee, Hector Corrada Bravo, Kasper D. Hansen, Harris A. Jaffee
Maintainer Rafael A. Irizarry <rafa@jhu.edu></rafa@jhu.edu>
Depends R (>= 2.10), IRanges, GenomicRanges, foreach, iterators, methods, parallel, locfit
Suggests RUnit, BiocGenerics, doParallel, org.Hs.eg.db,TxDb.Hsapiens.UCSC.hg19.knownGene
Imports matrixStats, limma, itertools, doRNG
Collate AllGenerics.R annotateNearest.R dummyData.R limmaForPermutations.R regionFinder.R smooth.R bumphunter.R nearestgene.R fuzzy.match2.R matchGenes.R pointMatch.R known_transcripts.R dataframe_to.R utils.R
License Artistic-2.0
LazyData yes
biocViews DNAMethylation, Epigenetics, Infrastructure, MultipleComparisons
R topics documented:
annotateNearest
bumphunter
dummyData
getSegments
locfitByCluster
loessByCluster
pointMatch
regionFinder
runmedByCluster
smoother 17

2 annotateNearest

Index 20

earest		
--------	--	--

Description

Finds the nearest region in a table of target regions and annotates the relationship.

Usage

```
annotateNearest(x, subject, annotate=TRUE, ...)
matchGenes(x, build, ...)
```

Arguments

X	An IRanges	or GenomicRa	inges object,	or a data	.frame wit	h columns for

start, end, and, optionally, chr or seqnames.

subject For annotateNearest to operate in matchGenes mode, a single word indicating

the desired species/build; this is currently limited to hg19. Otherwise, an object

of the same class as x.

annotate Whether to annotate the result.

build For example, hg19.

.. For matchGenes or matchGenes mode, promoterDist (default 2500), verbose

(TRUE), all (FALSE), and mc.cores (1). mc.cores is crucial for parallelizing the annotation, assuming available hardware facilities. Note that the default is NOT getOption("mc.cores", 2L), yet, which leaves the explicit decision to the user. up and down limits on the nearest gene location are planned but not implemented yet. For annotateNearest other than in matchGenes mode,

options for nearest except select="all", which is currently rejected.

Details

The name matchGenes is provided for backward compatibility. The preferred call is to nearest with subject set to the build name. annotateNearest and matchGenes are basically wrappers for nearest(select="arbitrary") (or nearest(select="all") with matchGenes(all=TRUE)) with specialized annotation of the result.

Value

Normally, a data frame with columns c("dist", "matchIndex", "type", "amountOverlap", "insideDist", "size1", unless annotate is FALSE, in which case the first two columns, only, are returned as an integer matrix.

For matchGenes or matchGenes mode, with all unset or FALSE, a data frame with one row for each query and with columns c("name", "annotation", "description", "region", "distance", "subregion", "inside The first column is the _gene_ nearest the query, by virtue of it owning the transcript determined

annotateNearest 3

(or chosen by nearest) to be nearest the query. Note that this nearest transcript name, per se, does not exist in the result. The "distance" column is the distance from the query to the 5' end of the nearest transcript, so may be different from the distance computed by nearest to that transcript, as a range. When all is TRUE, each row of the previously described result is expanded into perhaps multiple rows, reflecting multiple (equally) nearest transcripts for a given query. In this case, two new columns at the beginning hold the query index and nearest transcript name. The nearest gene to a given query, in column 3, may not be unique (example below).

dist Signed distance to the nearest target. Queries downstream from (i.e. past) their

nearest target are given a negative distance.

matchIndex The index of the nearest target.

type one of c("inside", "cover", "disjoint", "overlap").

amountOverlap The width of the overlap region, if any.

insideDist When a query is contained in its nearest target, the signed minimum of the two

distances target-start-to-query-start and query-end-to-target-end. The former is taken positive, and the latter, which wins in ties, negative. dist will be 0 in this

case.

size1 equals width(x).

size2 equals width(subject).

name nearest gene annotation RefSeq ID

description a factor with levels c("upstream", "promoter", "overlaps 5", "inside intron", "inside exon",

region a factor with levels c("upstream", "promoter", "overlaps 5", "inside", "overlaps 3", "close t

distance distance before 5' end of gene

subregion a factor with levels c("inside intron", "inside exon", "covers exon(s)", "overlaps exon upstr

insidedistance distance past 5' end of gene

exonnumber which exon

nexons number of exons

UTR a factor with levels c("inside transcription region", "5 UTR", "overlaps 5 UTR", "3UTR", "ove

strand "+" or "-"

geneL the gene length codingL the coding length

Author(s)

Harris Jaffee, Peter Murakami and Rafael A. Irizarry

See Also

nearest and distanceToNearest

4 bumphunter

Examples

```
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
nearest(query, subject)
distanceToNearest(query, subject)
#
## showing cover and disjoint, and amountOverlap
annotateNearest(query, subject)
#
## showing inside and insideDist, and amountOverlap
annotateNearest(subject, query)
annotateNearest(IRanges(3,3), IRanges(2,5))
annotateNearest(IRanges(3,4), IRanges(2,5))
annotateNearest(IRanges(4,4), IRanges(2,5))
#
## matchGenes
x <- data.frame(start=324008, end=324427, chr="chr1")
matchGenes(x)
matchGenes(x, all=TRUE)</pre>
```

bumphunter

Bumphunter

Description

Estimate regions for which a genomic profile deviates from its baseline value. Originally implemented to detect differentially methylated genomic regions between two populations.

Usage

Arguments

object An object of class matrix.

x An object of class bumps.

bumphunter 5

mat	A matrix with rows representing genomic locations and columns representing samples.
design	Design matrix with rows representing samples and columns representing covariates. Regression is applied to each row of mat.
chr	A character vector with the chromosomes of each location.
pos	A numeric vector representing the chromosomal position.
cluster	The clusters of locations that are to be analyzed together. In the case of microarrays, the clusters are many times supplied by the manufacturer. If not available the function clusterMaker can be used to cluster nearby locations.
coef	An integer denoting the column of the design matrix containing the covariate of interest. The hunt for bumps will be only be done for the estimate of this coefficient.
cutoff	A numeric value. Values of the estimate of the genomic profile above the cutoff or below the negative of the cutoff will be used as candidate regions. It is possible to give two separate values (upper and lower bounds). If one value is given, the lower bound is minus the value.
pickCutoff	Should bumphunter attempt to pick a cutoff using the permutation distribution?
pickCutoffQ	The quantile used for picking the cutoff using the permutation distribution.
maxGap	If cluster is not provided this maximum location gap will be used to define cluster via the clusterMaker function.
smooth	A logical value. If TRUE the estimated profile will be smoothed with the smoother defined by smoothFunction
smoothFunction	A function to be used for smoothing the estimate of the genomic profile. Two functions are provided by the package: loessByCluster and runmedByCluster.
useWeights	A logical value. If TRUE then the standard errors of the point-wise estimates of the profile function will be used as weights in the loess smoother loessByCluster. If the runmedByCluster smoother is used this argument is ignored.
В	An integer denoting the number of resamples to use when computing null distributions: 1000 is recommended but can be quite slow if this process is not parallelized.
verbose	logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.
•••	further arguments to be passed to the smoother functions.

Details

This function performs the bumphunting approach described by Jaffe et al. International Journal of Epidemiology (2012). The main output is a table of candidate regions with permutation-based family-wide error rates (FWER) and p-values assigned.

The general idea is that for each genomic location we have a value for several individuals. We also have covariates for each individual and perform regression. This gives us one estimate of the coefficient of interest (a common example is case versus control). These estimates are then (optionally) smoothed. The smoothing occurs in clusters of locations that are 'close enough'. This gives us an estimate of a genomic profile that is 0 when uninteresting. We then take values above

6 bumphunter

(in absolute value) cutoff as candidate regions. Permutations are then performed to create null distributions for the candidate regions.

Uncertainty is assessed via permutations. Each of the B permutations will produce an estimated 'null profile' from which we can define 'null candidate regions'. For each observed candidate region we determine how many null regions are 'more extreme' (longer and higher average value). The 'p.value' is the percent of candidate regions obtained from the permutations that as extreme as the observed region. These p-values should be interpreted with care as the theoretical proporties are not well understood. The 'fwer' is the proportion of permutations that had at least on regio as extreme as the observed region. We compute p.values and FWER for the area of the regions (as opposed to length and value as a pair) as well.

Parallelization is implemented through the foreach package.

Value

An object of class bumps with the following components:

tab The table with candidate regions and annotation for these.

coef The single loci coefficients.

fitted The estimated genomic profile used to determine the regions.

pvaluesMarginal

marginal p-value for each genomic location.

null The null distribution.
algorithm details on the algorithm.

Author(s)

Rafael A. Irizarry, Martin J. Aryee and Kasper D. Hansen

References

Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, Irizarry RA (2012) Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. International Journal of Epidemiology 41(1):200-9.

Examples

clusterMaker 7

clusterMaker	Make clusters of genomic locations based on distance
--------------	--

Description

Genomic locations are grouped into clusters based on distance: locations that are close to each other are assigned to the same cluster. The operation is performed on each chromosome independently.

Usage

Arguments

chr A vector representing chromosomes. This is usually a character vector, but may

be a factor or an integer.

pos A numeric vector with genomic locations.

assumeSorted This is a statement that the function may assume that the vector pos is sorted

(within each chr). Allowing the function to make this assumption may increase

the speed of the function slightly.

maxGap An integer. Genomic locations within maxGap from each other are placed into

the same cluster.

maxClusterWidth

An integer. A cluster large than this width is broken into subclusters.

Details

The main purpose of the function is to genomic location into clusters that are close enough to perform operations such as smoothing. A genomic location is a combination of a chromosome (chr) and an integer position (pos). Specifically, genomic intervals are not handled by this function.

Each chromosome is clustered independently from each other. Within each chromosome, clusters are formed in such a way that two positions belong to the same cluster if they are within maxGap of each other.

Value

A vector of integers to be interpreted as IDs for the clusters, such that two genomic positions with the same cluster ID is in the same cluster. Each genomic position receives one integer ID.

Author(s)

Rafael A. Irizarry, Hector Corrada Bravo

8 dummyData

Examples

```
N <- 1000
chr <- sample(1:5, N, replace=TRUE)
pos <- round(runif(N, 1, 10^5))
o <- order(chr, pos)
chr <- chr[o]
pos <- pos[o]
regionID <- clusterMaker(chr, pos)
regionID2 <- boundedClusterMaker(chr, pos)</pre>
```

dummyData

Generate dummy data for use with bumphunter functions

Description

This function generates a small dummy dataset representing samples from two different groups (cases and controls) that is used in bumphunter examples.

Usage

Arguments

n1	Number of samples in group 1 (controls)
n2	Number of samples in group 2 (cases)
sd	Within group standard deviation to be used when simulating data
1	The number of genomic locations for which to simulate data
spacing	The average spacing between locations. The actual locations have a random component so the actual spacing will be non-uniform
clusterSpacing	The spacing between clusters. (Specifically, the spacing between the first location in each cluster.)
numClusters	Divide the genomic locations into this number of clusters, each of which will contain locations spaced spacing bp apart.

Value

A list containing data that can be used with various bumphunter functions.

mat	A simulated data matrix with rows representing genomic locations and columns representing samples.
design	Design matrix with rows representing samples and columns representing covariates.
chr	A character vector with the chromosomes of each location.

getSegments 9

pos	A numeric vector representing the chromosomal p	osition.

cluster A vector representing the cluster of each locations

n1 Number of samples in cluster 1n2 Number of samples in cluster 2

Author(s)

Martin J. Aryee

Examples

```
dat <- dummyData()
names(dat)
head(dat$pos)</pre>
```

getSegments

Segment a vector into positive, zero, and negative regions

Description

Given two cutoffs, L and U, this function divides a numerical vector into contiguous parts that are above U, between L and U, and below L.

Usage

Arguments

X	A numeric vector.
f	A factor used to pre-divide x into pieces. Each piece is then segmented based on the cutoff. Setting this to NULL says that there is no pre-division. Often, clusterMaker is used to define this factor.
cutoff	a numeric vector of length either 1 or 2. If length is 1, U (see details) will be cutoff and L will be -cutoff. Otherwise it specifies L and U . The function will furthermore always use the minimum of cutoff for L and the maximum for U .
assumeSorted	This is a statement that the function may assume that the vector f is sorted. Allowing the function to make this assumption may increase the speed of the function slightly.
verbose	Should the function be verbose?

10 getSegments

Details

This function is used to find the indexes of the 'bumps' in functions such as bumphunter.

x is a numeric vector, which is converted into three levels depending on whether x>=U ('up'), L<x<U ('zero') or x<=L ('down'), with L and U coming from cutoff. We assume that adjacent entries in x are next to each other in some sense. Segments, consisting of consecutive indices into x (ie. values between 1 and length(x)), are formed such that all indices in the same segment belong to the same level of f and have the same discretized value of x.

In other words, we can use getSegments to find runs of x belonging to the same level of f and with all of the values of x either above U, between L and U, or below L.

Value

A list with three components, each a list of indices. Each component of these lists represents a segment and this segment is represented by a vector of indices into the original vectors x and f.

upIndex: a list with each entry an index of contiguous values in the same segment. These

segments have values of x above U.

dnIndex: a list with each entry an index of contiguous values in the same segment. These

segments have values of x below L.

zeroIndex: a list with each entry an index of contiguous values in the same segment. These

segments have values of x between L and U.

Author(s)

Rafael A Irizarry and Kasper Daniel Hansen

See Also

clusterMaker

Examples

```
x <- 1:100
y <- sin(8*pi*x/100)
chr <- rep(1, length(x))
indexes <- getSegments(y, chr, cutoff=0.8)
plot(x, y, type="n")
for(i in 1:3){
   ind <- indexes[[i]]
   for(j in seq(along=ind)) {
      k <- ind[[j]]
      text(x[k], y[k], j, col=i)
   }
}
abline(h=c(-0.8,0.8))</pre>
```

locfitByCluster 11

locfitByCluster Apply local regression smoothing to values within defined cluster.	n each spatially-
--	-------------------

Description

Local regression smoothing with a gaussian kernal, is applied independently to each cluster of genomic locations. Locations within the same cluster are close together to warrant smoothing across neighbouring locations.

Usage

Arguments

_	
У	A vector or matrix of values to be smoothed. If a matrix, each column represents a sample.
X	The genomic location of the values in y
cluster	A vector indicating clusters of locations. A cluster is typically defined as a region that is small enough that it makes sense to smooth across neighbouring locations. Smoothing will only be applied within a cluster, not across locations from different clusters.
weights	weights used by the locfit smoother
minNum	Clusters with fewer than minNum locations will not be smoothed
bpSpan	The span used when locfit smoothing. (Expressed in base pairs.)
minInSpan	Only smooth the region if there are at least this many locations in the span.
verbose	Boolean. Should progress be reported?

Details

This function is typically called by smoother, which is in turn called by bumphunter.

Value

fitted	The smoothed data values
smoothed	A boolean vector indicating whether a given position was smoothed
smoother	always set to 'locfit'.

Author(s)

Rafael A. Irizarry and Kasper D. Hansen

12 loessByCluster

See Also

```
smoother, {\tt runmedByCluster}, {\tt loessByCluster}
```

Examples

loessByCluster

Apply loess smoothing to values within each spatially-defined cluster.

Description

Loess smoothing is applied independently to each cluster of genomic locations. Locations within the same cluster are close together to warrant smoothing across neighbouring locations.

Usage

Arguments

У	A vector or matrix of values to be smoothed. If a matrix, each column represents a sample.
X	The genomic location of the values in y
cluster	A vector indicating clusters of locations. A cluster is typically defined as a region that is small enough that it makes sense to smooth across neighbouring locations. Smoothing will only be applied within a cluster, not across locations from different clusters.
weights	weights used by the loess smoother
bpSpan	The span used when loess smoothing. (Expressed in base pairs.)
minNum	Clusters with fewer than minNum locations will not be smoothed
minInSpan	Only smooth the region if there are at least this many locations in the span.
maxSpan	The maximum span. Spans greater than this value will be capped.
verbose	Boolean. Should progress be reported?

Details

This function is typically called by smoother, which is in turn called by bumphunter.

pointMatch 13

Value

fitted The smoothed data values

smoothed A boolean vector indicating whether a given position was smoothed

smoother always set to 'loess'.

Author(s)

Rafael A. Irizarry

See Also

```
smoother, runmedByCluster, locfitByCluster
```

Examples

pointMatch Fuzz	y Matching of Genomic Locations
-----------------	---------------------------------

Description

Finds the nearest locations in a given table of genomic targets

Usage

```
pointMatch(object1, object2, col1=2, col2=2, verbose)
```

Arguments

object1	A data.frame holding the query positions in column col1, on the chromosomes given in the ${\it chr}$ column.
object2	As object1, but holding the target positions in the col2 and chr columns.
col1	The column in object1 holding the query positions.
col2	The column in object2 holding the target positions.
verbose	For backward compatibility; ignored.

Details

Similar to annotateNearest, but for points instead of ranges.

14 regionFinder

Value

An integer matrix with columns c("dist", "matchIndex"). dist is the signed distance from a query to its nearest target, which is given by its index matchIndex in object2. The distance is negative for queries past their nearest target. A row of NA is returned for queries on chromosomes not in object2.

Author(s)

Harris Jaffee, Peter Murakami and Rafael A. Irizarry

See Also

annotateNearest, nearest, and distanceToNearest

Examples

```
object1 <- data.frame(3, chr="chr1")
object2 <- data.frame(c(1,4), chr="chr1")
pointMatch(object1, object2, col1=1, col2=1)
object2 <- data.frame(c(2,4), chr="chr1")
pointMatch(object1, object2, col1=1, col2=1)</pre>
```

regionFinder

Find non-zero regions in vector

Description

Find regions for which a numeric vector is above (or below) predefined thresholds.

Usage

Arguments

x	A numeric vector.
chr	A character vector with the chromosomes of each location.
pos	A numeric vector representing the genomic location.
cluster	The clusters of locations that are to be analyzed together. In the case of microarrays, the cluster is many times supplied by the manufacturer. If not available the function clusterMaker can be used.
У	A numeric vector with same length as x containing values to be averaged for the region summary. See details for more.

regionFinder 15

summary	The function to be used to construct a summary of the y values for each region.
ind	an optional vector specifying a subset of observations to be used when finding regions.
order	if TRUE then the resulting tables are ordered based on area of each region. Area is defined as the absolute value of the summarized y times the number of features in the regions.
oneTable	if TRUE only one results table is returned. Otherwise, two tables are returned: one for the regions with positive values and one for the negative values.
maxGap	If cluster is not provided this number will be used to define clusters via the clusterMaker function.
cutoff	This argument is passed to ${\tt getSegments}$. It represents the upper (and optionally the lower) cutoff for x.
assumeSorted	This argument is passed to getSegments and clusterMaker.
verbose	Should the function be verbose?

Details

This function is used in the final steps of bumphunter. While bumphunter does many things, such as regression and permutation, regionFinder simply finds regions that are above a certain threshold (using getSegments) and summarizes them. The regions are found based on x and the summarized values are based on y (which by default equals x). The summary is used for the ranking so one might, for example, use t-tests to find regions but summarize using effect sizes.

Value

If oneTable is FALSE it returns two tables otherwise it returns one table. The rows of the table are regions. Information on the regions is included in the columns.

Author(s)

Rafael A Irizarry

See Also

bumphunter for the main usage of this function, clusterMaker for the typical input to the cluster argument and getSegments for a function used within regionFinder.

Examples

```
x <- seq(1:1000)
y <- sin(8*pi*x/1000) + rnorm(1000, 0, 0.2)
chr <- rep(c(1,2), each=length(x)/2)
tab <- regionFinder(y, chr, x, cutoff=0.8)
print(tab[tab$L>10,])
```

16 runmedByCluster

runmedByCluster	Apply running median smoothing to values within each spatially-defined cluster

Description

Running median smoothing is applied independently to each cluster of genomic locations. Locations within the same cluster are close together to warrant smoothing across neighbouring locations.

Usage

Arguments

у	A vector or matrix of values to be smoothed. If a matrix, each column represents

a sample.

x The genomic location of the values in y.

cluster A vector indicating clusters of locations. A cluster is typically defined as a

region that is small enough that it makes sense to smooth across neighbouring locations. Smoothing will only be applied within a cluster, not across locations

from different clusters.

weights weights used by the smoother.

k integer width of median window; must be odd. See runmed

endrule character string indicating how the values at the beginning and the end (of the

data) should be treated. See runmed.

verbose Boolean. Should progress be reported?

Details

This function is typically called by smoother, which is in turn called by bumphunter.

Value

fitted	The smoothed data values
--------	--------------------------

smoothed A boolean vector indicating whether a given position was smoothed

spans The span used by the loess smoother. One per cluster.

clusterL The number of locations in each cluster.

smoother always set to 'runmed'.

Author(s)

Rafael A. Irizarry

smoother 17

See Also

```
smoother, loessByCluster. Also see runmed.
```

Examples

smoother

Smooth genomic profiles

Description

Apply smoothing to values typically representing the difference between two populations across genomic regions.

Usage

Arguments

У	A vector or matrix of values to be smoothed. If a matrix, each column represents a sample.
x	The genomic location of the values in y
cluster	A vector indicating clusters of locations. A cluster is typically defined as a region that is small enough that it makes sense to smooth across neighbouring locations. Smoothing will only be applied within a cluster, not across locations from different clusters
weights	weights used by the smoother.
smoothFunction	A function to be used for smoothing the estimate of the genomic profile. Two functions are provided by the package: loessByCluster and runmedByCluster.
verbose	Boolean. Should progress be reported?
	Further arguments to be passed to smoothFunction

Details

This function is typically called by bumphunter prior to identifying candidate bump regions. Smoothing is carried out within regions defined by the cluster argument.

18 TT

Value

fitted The smoothed data values

smoothed A boolean vector indicating whether a given position was smoothed

spans The span used by the loess smoother. One per cluster.

clusterL The number of locations in each cluster.

smoother The name of the smoother used

Author(s)

Rafael A. Irizarry and Martin J. Aryee

See Also

loessByCluster, runmedByCluster

Examples

TT

HG19 Transcripts

Description

Database of transcripts associated with "known" hg19 genes, namely those with Entrez ID gene identifiers associated.

Usage

```
data(TT)
```

Format

A GRanges object with 8 metadata columns, "CSS" (coding start), "CSE" (coding end), "Tx" (transcript name), "Entrez" (Entrez ID), "Gene" (gene name), "Refseq" (Refseq number), "Nexons" (number of exons), and "Exons" (the exons themselves, as IRanges objects). Note that CSS is always less than CSE, even on minus strands where their "start" and "end" meanings are reversed. Similarly with the exons.

Source

the result of bumphunter:::known_transcripts()

Index

```
*Topic hg19, known transcripts
    TT, 18
annotateNearest, 2
boundedClusterMaker (clusterMaker), 7
bumphunter, 4, 10–12, 15, 16
bumphunter, matrix-method (bumphunter), 4
bumphunter-methods (bumphunter), 4
bumphunterEngine (bumphunter), 4
clusterMaker, 5, 7, 9, 10, 14, 15
dummyData, 8
getSegments, 9, 15
GRanges, 19
locfitByCluster, 11, 13
loessByCluster, 12, 12, 17, 18
matchGenes (annotateNearest), 2
pointMatch, 13
print.bumps (bumphunter), 4
\textit{regionFinder}, 14
regionMatch (annotateNearest), 2
runmed, 16, 17
runmedByCluster, 12, 13, 16, 18
smoother, 11-13, 16, 17, 17
TT, 18
```