
Package ‘ScISI’
April 5, 2014

Title In Silico Interactome

Version 1.34.0

Author Tony Chiang <tchiang@fhcrc.org>

Description Package to create In Silico Interactomes

Depends R (>= 2.10), GO.db, RpsiXML, annotate, apComplex

Imports AnnotationDbi, GO.db, RpsiXML, annotate, methods,org.Sc.sgd.db, utils

Suggests ppiData, xtable

Maintainer Tony Chiang <tchiang@fhcrc.org>

License LGPL

biocViews GraphsAndNetworks, Proteomics, NetworkInference

R topics documented:
arp23 . 3
arp23G . 3
arp23Orf . 4
arp23Y2HG . 4
calcGraphStats . 5
cfia . 6
cfiaOrf . 6
checkComplex . 7
checkSGN . 8
compareComplex . 8
compBijection . 9
createGODataFrame . 10
createGOMatrix . 11
createMipsDataFrame . 12
createMipsMatrix . 13
createYeastDataObj . 14

1

2 R topics documented:

dataS . 14
Desc . 15
eAt . 15
eAt2 . 16
edgeProp . 16
egEBI16112 . 17
expStats . 17
findSubComp . 18
gavin2mergeMG . 19
getAPMSData . 20
getGOInfo . 21
getLocOrfs . 23
getMipsInfo . 24
getURL . 26
graphSumStats . 26
ho2mergeMGG . 27
ID . 28
JaccardCoef . 28
krogan2mergeMGGH . 29
locScISI . 30
mapping2SysG . 30
mappingsG . 31
maximizeSimilarity . 31
meanDeg . 33
mergeBGMat . 33
mips2go . 34
nAt . 35
nAtMap . 35
nonGenes . 36
nucComp . 36
recCompSize . 37
redundantM . 38
rmByEvi . 38
runAlignment . 39
runCompareComplex . 40
ScISI . 41
ScISI2html . 42
subCompM . 44
sumStats . 44
unwanted . 45
unWantedComp . 46
xtraGO . 47
xtraGONodes . 47
yeastData-class . 48

Index 49

arp23 3

arp23 Constituent members of Protein Complex Arp 2/3

Description

A character vector of the constituent members of Arp 2/3 given by the common names.

Usage

data(arp23)

Format

The format is: chr "arp23"

Examples

data(arp23)

arp23G The graph of arg 2/3

Description

An instance of the class graph of the protein complex ARP 2/3

Usage

data(arp23G)

Format

The format is: chr "arp23G"

Examples

data(arp23G)

4 arp23Y2HG

arp23Orf Constituent members of Protein Complex Arp 2/3

Description

A character vector of the constituent members of Arp 2/3 given by the systematic gene names

Usage

data(arp23Orf)

Format

The format is: chr "arp23Orf"

Examples

data(arp23Orf)

arp23Y2HG A graph of ARP 2/3 containing only Y2H verified interactions

Description

An instance of the class graph for the protein complex Arp 2/3’s Y2H verified edges.

Usage

data(arp23Y2HG)

Format

The format is: chr "arp23Y2HG"

Examples

data(arp23Y2HG)

calcGraphStats 5

calcGraphStats A function to calculate the various summary statistics for Y2H induced
graphs

Description

This function takes a putative protein complex (given by comp) and a list of bait to prey associations,
and from these two data-sets computes various summary statistics on the induced Y2H graph which
include: edge proportion of sampled nodes (baits to prey); estimated population mean nodal degree;
proportion of sampled baits with hits to baits with no hits; the average out degree of baits; the
proteins (bait and prey) which are not isolated; the number of connected components to the y2h
graph, etc.

Usage

calcGraphStats(comp, bait2PreyL)

Arguments

comp The comp argument is a character vector containing the constituent proteins of
some putative protein complex

bait2PreyL A named list of lists. Each name represents a particular Y2H experiment; within
each experimental entry, there is two more lists: 1. bpList and 2. expList. bpList
is a named list of character vectors; each name corresponds to a bait protein of
that particular experiment, and the enry is a chracater vecotor of the hit proteins
found as prey. the expList is a named list concerning experimental data: ActD
gives the activation domain; GW is a logical denoting if the prey list is genome
wide; and numBaits details the number of baits used in the experiment.

Details

For the bait2PreyL; use the the intactInfo.rda data-set of the package y2hStat.

Value

complex A character vector of the constituent members of the proteinn complex of inter-
est

complexBait A character vector of those protein members which were also tested as baits in
the y2h experiments

b2CompP A character vector of all proteins which were tested as baits in the y2h experi-
ments and also found a prey in the complex of interest

notBait A character vector of those protein members which were not tested as baits

avgDegOut The average out-degree of the bait proteins of the complex of interest

notIsolated A character vector of proteins that showed experimental binary affiliation for
some other complex member

6 cfiaOrf

y2hGraph An instance of the class graph; a graphNEL induceds Y2H graph on the protein
complex

popMeanDegree The population mean degree derived from the bait proteins
edgeProp The estimated edge proportions derived between undirected Y2H edges
degBait A named list; each name corresponds to each member of the protein complex

with the entry the number of proteins to which it is adjacent

Author(s)

T Chiang

cfia Constituent members of Protein Complex Cleavage Factor IA (CFIA)

Description

A character vector of the constituent members of Cleavage Factor IA given by the common names.

Usage

data(cfia)

Format

The format is: chr "cfia"

Examples

data(cfia)

cfiaOrf Constituent members of Protein Complex Cleavage Factor IA (CFIA)

Description

A character vector of the constituent members of Cleavage Factor IA given by the systematic gene
names

Usage

data(cfiaOrf)

Format

The format is: chr "cfiaOrf"

Examples

data(cfiaOrf)

checkComplex 7

checkComplex Function to check a list of protein complexes wrt ScISI

Description

This function takes a named list of protein complexes (where each protein complex name indexes
an item of the list and each list entry is the protein composition of the complex) and an interactome
(in the bi-partite matrix representation) and checks to see if each complex of the list is either in the
interactome, a sub-complex of some complex(es) of the interactome, or a super-complex of some
complex(es) of the interactome.

Usage

checkComplex(comps, interactome)

Arguments

comps A named list of protein complexes. The names corresponds the protein com-
plexes and the entries correspond to the complex composition

interactome A bi-partite graph representation of some interactome

Details

This is another QC function to check the participation of certain protein complexes. The out-put
will describe how the various protein complexes in question relate to the protein complexes of the
interactome in question.

Value

A named list:

equal A named character vector - the name equals the entry

subset A named char vector - the name is a subset of the entry

superset A named char vector - the name is a superset of the entry

sameNameNotEqual

A named char vector - the name is equal to the name of the entry but the com-
position is not equal

Author(s)

T Chiang

8 compareComplex

checkSGN A function to check that the protein names are all systematic gene
names.

Description

This function takes the in silico interactome and checks the rownames against the names of the
meta-data set org.Sc.sgdALIAS from the meta-data package org.Sc.sgd

Usage

checkSGN(ISI)

Arguments

ISI The in silico interactome as a bipartite graph

Value

A character vector of potential gene names not found to be a systematic gene name

Author(s)

T. Chiang

compareComplex A function to compare two bipartite graph matrices

Description

The compareComplex function takes two bipartite graph matrix representations and calculates three
statistics between all pairs of complexes, C-i and K-j: (1) the intersection between C-i and K-j, (2)
the proteins in C-i and not in K-j, (3) the proteins in K-j and not in C-i. These stats are later used to
calculate Jaccard and Dice-Sorenson Coefficients as well as probability distributions of a protein p
in a complex C.

Usage

compareComplex(BGMat1, BGMat2)

Arguments

BGMat1 The first bipartite graph matrix

BGMat2 The second bipartite graph matrix

compBijection 9

Details

The main point to remember is that we don’t compare complexes within the same matrix. We only
compare pairs of complexes from the BGMat1 and BGMat2. The runCompareComplex function
must be called first since all the labelled vertices present in BGMat1 must be present in the BGMat2
and vice versa so a true comparison can be made.

Value

A list with the following entries:

intersect A matrix of pairwise intersections of the complexes of BGMat1 and BGMat2

cminusk A matrix of the setdiff of the complexes of BGMat1 and those of BGMat2

kminusc A matric of the setdiff of the complexes of BGMat2 and those of BGMat1

Author(s)

Tony Chiang

compBijection A recursive function that greedily handles the alignment issue

Description

This function takes a matrix of similarity measures (e.g. Jaccard Index) between the TSNMat and
the estMat and finds the maximal value of this matrix and records its position (i,j). Then it matches
C-i to K-j and then deletes row i and colunm j creating a matrix with one less row and one less
colunm. The function calls itself recursively using this smaller matrix as the new argument. It stops
when there are either no rows left or no columns left or the matrix of similarity measures is reduced
to a 0-matrix and breaks from the recursive loop.

Usage

compBijection(TSNMat, estMat, c2kMatrix, bijMat, counter = 1)

Arguments

TSNMat The first bipartite graph matrix

estMat The second bipartite graph matrix

c2kMatrix A matrix of similarity measure

bijMat A recording matrix to keep the alignment

counter A place keeping index

10 createGODataFrame

Details

The function creates a greedy matching between two bipartite graphs (where complexes C-i of the
first bipartite graph matrix, bg1, is matched to complexes K-j of the second bipartite graph matrix,
bg2). The particular greedy algorithm is as follows:

1. When the function is called, the parameter c2kMatrix is parsed and the maximal element, m,
is found. If m is not unique in the matrix, the function looks to every position where m occurs:
(i,j)...(m,n). To chose a particular position, the size of the complexes are taken into consideration,
i.e. the function compares the cardinalities of (C-i + K-j) ... (C-n + K-n). And the pair, wlog (i,j), of
complexes with the largest cardinality is selected (if there is again a tie amongst cardinalities, then
a random choice is made).

2. The function matches C-i to K-j and records this alignment into bijMat. Row i and colunm j is
deleted from c2kMatrix, creating a new matrix called c2kM.

3. If the dimension of this matrix is nonzero or if the matrix itself has some nonzero element, the
function recursively calls itself with the new argument, c2kM.

4. Because the dimension is always decreased with every call, this function must terminate in some
finite number of steps.

5. bijMat will have recorded the greedily matched complexes between bg1 and bg2.

Value

A matrix with the rows recording the alignment: the first colunm records complexes of TSNMat; the
second column records complexes of estMat; and the third column records the similarity measure.
The rows will also denote the ordering of the matchings, i.e. row 1 will denote the first match, etc.

Author(s)

Tony Chiang

createGODataFrame A function to create a Dataframe from the GO protein complexes

Description

This function takes a named list (the names are the GO ID’s representing some protein complex and
the list elements are character vectors consisting of the members of each particular complex) and
an Bipartite Graph Incidence Matrix and creates a dataframe with three columns: complex name,
GO ID, and complex description.

Usage

createGODataFrame(cMembers, goMat)

createGOMatrix 11

Arguments

cMembers Named list with GO ID’s as names and character vector consisting of proteins
of the respective complex

goMat Bipartite Graph Incidence Matrix

Details

This function takes the output parameters of createGOMatrix and getGOInfo and creates the bi-
partite graph incidence matrix.

Value

Dataframe:

names The names of the GO Complexes

ID The GO IDs’ of the complexes

description The description give by GO

Author(s)

Tony Chiang

References

www.geneontology.org

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#goM = createGOMatrix(go)
#createGODF(go, goM)

createGOMatrix A function to create the bipartite graph (BG) incidence matrix from
the protein complexes parsed from the GO Database

Description

This function takes the output from the getGOInfo function and creates the bipartite graph (BG)
incidence matrix from the output.

Usage

createGOMatrix(cMembers)

12 createMipsDataFrame

Arguments

cMembers A named list consisting of vectors. Each list item is named by a protein complex
GO ID and points to a character vector where each character vector consists of
the proteins composing of that protein complex.

Value

A bipartite graph matrix of the corresponding GO protein complexes where the rows are indexed
by the protein names and the colunms by GO ID’s.

Author(s)

Tony Chiang

Examples

#cMembers = getGOInfo(wantAllComplexes = FALSE)
#createGOMatrix(cMembers)

createMipsDataFrame A function that creates a data frame from the MIPS Data

Description

This function takes two parameters: (1) a named vector that has a description of the MIPS protein
complexes (this vector is one of the two outputs from getMipsInfo referenced by DESC); (2) the
matrix representation of the bipartite graph. The output of the function is a dataframe with three
columns: the names of the complexes in the matrix; the ID of the corresponding complex; the
description of the corresponding complex.

Usage

createMipsDataFrame(desc, mips)

Arguments

desc A named character vector (where the name is the MIPS ID for each protein
complex obtained by getMipsInfo) whose entries describe the corrsponding
protein complex.

mips The matrix representation of the protein complex membership graph for the
MIPS protein complexes

Value

The return value is a data frame with three coluumns: the names column records the names of the
protein complexes as indexed in the incidence matrix; the ID column records the MIPS ID that
corresponds to each protein complex; the Desc column describes each of the protein complexes.

createMipsMatrix 13

Author(s)

Tony Chiang

References

mips.gsf.de

createMipsMatrix A function to create the bipartite graph incidence matrix from MIPS
protein complexes

Description

This function takes the output from the getMipsInfo function and creates the bipartite graph inci-
dence matrix where the rows are indexed by proteins and colunms by protein complexes (given by
the MIPS ID’s).

Usage

createMipsMatrix(mipsL)

Arguments

mipsL A list consisting of the two items: mipsL$Mips is a named list of character
vectors. The names correspond to MIPS protein complexes and the character
vector correspond to the proteins within that complex; and mipsL$DESC is a
named character vector where the names are the protein complex MIPS ID and
the values is the description of the complex.

Value

A bipartite graph incidence matrix of the MIPS protein complexes where rows are indexed by
proteins names and colunms by the MIPS ID’s pre-fixed with "MIPS-".

Author(s)

Tony Chiang

References

mips.gfs.de

Examples

#mips= getMipsInfo(wantSubComplexes = FALSE)
#mipsM = createMipsMatrix(mips)

14 dataS

createYeastDataObj Creates an object of class yeastData

Description

Creates an instance of the class yeastData.

Usage

createYeastDataObj(dataFrameISI)

Arguments

dataFrameISI A dataframe with three slots: complex name (from the incidence matrix), com-
plex ID (from some database), complex description.

Value

An object of class yeastData.

Author(s)

Tony Chiang

Examples

#mips = createMipsMatrix(wantList=TRUE)
#mipsDF = createMipsDF(mips$DESC, mips$Matrix)
#mipsOb = createYeastDataObj(mipsDF)

dataS A character matrix containing the source data for the ScISI

Description

This data object is a matrix that gives the description of each of the data repositories used to generate
the ScISI.

Usage

data(dataS)

Format

The format is: chr "dataS"

Desc 15

Examples

data(dataS)

Desc A method to return a description of a protein complex

Description

The Desc method takes in the protein complex name of a bi-partite graph incidence matrix (usually
an ad hoc name) and returns a description of that protein complex.

The object to be referenced is an instance of the class yeastData.

Usage

Desc(object, name)

Arguments

object An instance of a subclass of yeastData.

name A character. It is the name of the protein complex with respect to the bi-partite
graph incidence matrix

eAt An edge attribute data file

Description

This file contains edge attributes used in the rendering of the graph ARP 2/3 in the ScISI.Rnw file.

Usage

data(eAt)

Format

The format is: chr "eAt"

Examples

data(eAt)

16 edgeProp

eAt2 A file containing edge attributes

Description

This file contains edge attributes used in the rendering of the graph ARP 2/3 in the ScISI.Rnw paper.

Usage

data(eAt2)

Format

The format is: chr "eAt2"

Examples

data(eAt2)

edgeProp A function to estimate the edge proportion of a y2h induced graph on
a protein complex

Description

This function first creates the Y2H symmetric adjacency matrix on a protein complex (as we ignore
directionality). Then it calculates an estimate for the proportion of edges the complex might have
with high probability (if the sampling is unbaised and without error). In addition to this statistic, it
also generates an instance of graph, specifically a graphNEL, on the adjcency matrix.

Usage

edgeProp(comp, compB2P, sampled)

Arguments

comp A character vector of the constitutent members of the protein complex of interest

compB2P A named list; the names correspond to constituent proteins used as baits and the
entries are the found hits (prey)

sampled A character vector of constituent members used as baits

Value

eProp The estimated edge proportion of the complex

y2hGraph A graphNEL instance of graph

egEBI16112 17

Author(s)

T Chiang

egEBI16112 A graph example mapping an IntAct ID to Systematic Gene Names

Description

This file is an instance of the class graph showing the mapping of the IntAct ID EBI-16112 to
multiple Systematic Names.

Usage

data(egEBI16112)

Format

The format is: chr "egEBI16112"

Examples

data(egEBI16112)

expStats A data file containing the experimental statistics

Description

This file is a matrix that details the number of protein complexes found within each data repository
(MIPS, GO, Gavin, Ho, Krogan) as well as the number of genes present (pre-processing).

Usage

data(expStats)

Format

The format is: chr "expStats"

Examples

data(expStats)

18 findSubComp

findSubComp A function that looks for either equality between two complexes or
complete containment of one complex in another

Description

This function determines if either a complex C-i of bg1 is equal to some complex K-j of bg2 or if a
complex C-i (or K-j) is a subcomplex to K-j (or C-i).

Usage

findSubComp(bg1, bg2, interSectMat, simMat)

Arguments

bg1 The first bipartite graph matrix

bg2 The second bipartite graph matrix; bg2 may be equal to bg1

interSectMat A matrix whose rows and columns are indexed by protein complexes: the rows
are indexed by complexes of bg1 (colnames of bg1) and the columns indexed
by complexes of bg2 (colnames of bg2). The (i,j) entries is the cardinality of the
intersection between the i-th complex of bg1 and the j-th complex of bg2.

simMat A matrix of similarity measures (e.g. Jaccard Index) between two bipartite
graphs where the rows are indexed by complexes of the first bipartite graph, bg1,
and the columns are indexed by the complexes of the second bipartite graph,
bg2. The (i,j) entry of this matrix would be the similarity between C-i of bg1
and K-j of bg2.

Details

This function uses interSectMat and simMat to determine which complexes C-i of bg1 is equal to
which complexes K-j of bg2. When the function finds an equality, C-i = K-j, it produces 5 statistics:

1. The name of C-i 2. The name of K-j 3. The cardinality of C-i 4. The cardinality of K-j 5. The
cardinality of (C-i intersect K-j)

When all the equality of complexes have been found, this function also uses interSectMat and sim-
Mat to find which complexes C-i (or K-j) completely contain complexes K-n (or C-m respectively),
i.e. which complexes are subcomplexes. It also returns the 5 statistics listed above.

NB - from the 5 statistics above, it will be clear if the relationship between the complexes is that of
equality or sub-ordination.

Value

record1 A list of lists. The value of each sublist is: 1. a complex of bg1, 2. a complex of
bg2, 3. the cardinality of the complex of bg1, 4. the cardinality of the complex
of bg2, 5. the cardinality of these two complexes mutual intersection.

gavin2mergeMG 19

record3 A list of lists. The value of each sublist is: 1. a complex of bg1, 2. a complex of
bg2, 3. the cardinality of the complex of bg1, 4. the cardinality of the complex
of bg2, 5. the cardinality of these two complexes mutual intersection.

toBeRm1 A character vector of the names of complexes in bg1 that equal some complex
in bg2. These complexes should be deleted to avoid redundancy if these two
bipartite graphs are merged.

toBeRm2 A character vector of the names of complexes from either bg1 or bg2 which are
sub-complexes of another protein complex.

Author(s)

Tony Chiang

Examples

#go = getGOInfo()
#mips = getMipsInfo()
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")

gavin2mergeMG A data file containing the pre-merged Gavin to (merged) MIPS-GO
data

Description

This file contains the pre-processed Gavin data before merging to the joint MIPS-GO interactome.

Usage

data(gavin2mergeMG)

Format

The format is: chr "gavin2mergeMG"

Examples

data(gavin2mergeMG)

20 getAPMSData

getAPMSData A function to get the estimated complexes from high throughput data
determined by the package apComplex.

Description

This function will generate the bipartite graph (BG) incidence matrix from either the experiments
of Gavin, Ho, or Krogan.

Usage

getAPMSData(author = NULL)

Arguments

author A character - name of the lead experimentor. It can be either "Gavin", "Ho", or
"Krogan"

Details

This function is called to gain access to the protein complex co-membership bipartite graph matrices
stored in the apComplex package.

The matrix that is returned will be an incidence matrix with yeast standard gene name indexing the
rows and ad hoc protein complex names indexing the columns.

The matrix that is obtained from apComplex database will be the multi-bait, multi-edge (MBME)
estimate from each of the experiment. We have elected to take the MBME estimates rather than the
cumulative estimates because the MBME’s are generated from more statistically significant data
sets.

Value

BG Incidence Matrix with rows indexed by proteins and columns by complexes

Author(s)

Tony Chiang

Examples

getAPMSData("Gavin")

getGOInfo 21

getGOInfo A function that parses through the GO database; it agreps for the term
"complex" and greps suffixes "-ase" and "-some" and returns nodes
whose description contains such terms.

Description

This function parses through the Cellular Component ontology for the GO nodes and searchs for
the term "complex" or the suffix "-ase" (e.g. RNA Polymerase) or "-some" (e.g. ribosome) and (or)
other user defined phrases in the description of these nodes.

Usage

getGOInfo(wantDefault = TRUE, toGrep = NULL,
parseType=NULL, eCode = NULL, wantAllComplexes = TRUE,
includedGOTerms=NULL, not2BeIncluded=NULL)

Arguments

wantDefault A logical. If TRUE, the default parameters ("complex", "\Base\b" and "\Bsome\b")
are used.

toGrep A character vector of the phrases (with Perl regular expressions) for which the
function will parse through the GO database and search.

parseType A character vector.This vector is in one to one correspondence with toGrep; it
takes in the parse type such as "grep", "agrep", etc.

eCode A character vector of evidence codes (see "http://www.geneontology.org/GO.evidence.shtml"
for details). The function will disallow any protein inclusion in the protein com-
plexes if they are not indexed by evidence code other than those found in eCode.

wantAllComplexes

A logical. If TRUE, the function will incorporate all GO children of the nodes
found by term searches. In addition, children of node GO:0043234 (the protein
complex node) will also be incorporated.

includedGOTerms

A character vector of GO terms that will be parsed regardless of the default and
parseType parameters. In essence, these GO terms forced to be included.

not2BeIncluded A character vector of GO terms that should not be parsed nor included in the
output.

Details

This function’s generic operation is to parse the GO database and search for pre-determined or
chosen terms. It returns a named list of chracter vectors where the names are GO id’s from the CC
ontoloy and the vectors consist of proteins corresponding to that particular GO id. Running this
function has multiple combinations:

1. If the wantDefault parameter is TRUE, the function will agrep for "complex" and grep for
"\Base\b" and "\Bsome\b".

22 getGOInfo

2. If toGrep is not NULL, it will be a character vector with terms and perl regular expressions that
are intended for searching in the GO database. NB - it toGrep is not NULL, then parseType should
also not be NULL as the parseType indicates how each term should be searched.

3. parseType needs to be supplied if toGrep is not NULL. It is a character vector, either a single
entry or of length equal to the length of toGrep, detailing how each term in toGrep will be parsed
in the GO database. If only one term is supplied for parseType, then all the terms in toGrep will be
parsed identically. Otherwise, the i-th term in parseType will reflect the parsing of the i-th term in
toGrep.

4. The eCode argument is a user determined refining mechanism. It takes in a vector of evidence
codes (as detailed by the GO website). The function will dis-allow proteins if and only if these
proteins are only indexed by evidence codes found within eCodes.

5. If wantAllComplexes parameter is True, the function will also return the children of nodes found
by parsing terms. In addition, the children of GO ID GD:0043234 (the protein complex ID) will be
returned. The union of complexes is then returned.

Value

The return value is a list of size n (n depends on the current status of the GO database) where the
name of each list element is a GO ID and each list element itself is a character vector consisting of
the proteins corresponding to a particular GO ID:

"GO:XXXXXXX" A character vector containing proteins (not indexed by only eCode evidence
codes) which make up protein complex "GO:XXXXXXXX"

Author(s)

Tony Chiang

References

www.geneontology.org

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#goCoded = getGOInfo(code = c("IPI","ND","IDA"))
#goPhrase = getGOInfo(wantDefault = FALSE, toGrep = "\Bsomal\b",
#parseType = "grep", wantAllComplexes = FALSE)
#nam1 = names(go)
#nam2 = names(goCoded)
#if(length(nam1) == length(nam2) && nam1 == nam2){
#sapply(nam1, function(x) setdiff(go[[x]], goCoded[[x]]))
#}

getLocOrfs 23

getLocOrfs A function to obtain ORFs for the ScISI

Description

This function takes a list of bi-partite graph incidence matrices as well as a vector of GO nodes, and
for each protein complex of each bi-partite graph, finds those constituent member proteins which
are annotated to each GO node.

Usage

getLocOrfs(imList, goNode, pathToSave = NULL, name = NULL)

Arguments

imList A list of bi-partite graph incidence matrices

goNode A character vector of GO ID’s

pathToSave A character denoting where to save the resultant data

name The name by which the resulting R-object as well as the file will be named

Details

Currently, this function will take a protein complex and find those constituent protein members
which have also been annotated to the user specified GO ID. For instance, the GO ID "" is the
nucleus ID. This function will find all proteins within an interactome which has been annotated
with the ID "". NB - if n GO ID is supplied, the function returns n different interactomes, each is
has proteins uniquely annotated with each GO ID.

Value

The return value is a list of lists of lists:

1. The top level list contains entries named by each GO ID 2. The second tier level contains
entries after each entry of imList 3. The third tier level contains three entries: i. A bi-partite graph
incidence matrix which only has protein complexes restricted to the respective GO ID annotation
ii. A bi-partite graph incidence matrix which only has protein complexes listed in (i) but contains
all the original proteins iii. A vector of proportions. We look at the column sums of (i) divided by
the column sums fo (ii). This gives the ratio of proteins which are annotated by the GO ID over all
other proteins in that complex

restrictedOrfsComp

A bi-partite graph incidence matrix which only has protein complexes restricted
to the respective GO ID annotation

restrictedOrfsOnly

A bi-partite graph incidence matrix which only has protein complexes listed in
(i) but contains all the original proteins

24 getMipsInfo

ratio A vector of proportions. We look at the column sums of (i) divided by the
column sums fo (ii). This gives the ratio of proteins which are annotated by the
GO ID over all other proteins in that complex

Author(s)

TC

References

~put references to the literature/web site here ~

getMipsInfo A function that reads the downloaded text file from the MIPS repository
and generates a named list of protein complexes.

Description

This function reads the downloaded text file from the MIPS database and parses the file for those
collection of proteins either referred to as a "complex", an "-ase" (e.g. RNA Polymerase), or a
"-some" (e.g. ribosome) and (or) user supplied terms as the protein complex of interest. It returns
a list containing two items: a named list of protein complexes and a character vector (of the same
length as the named list) describing each protein complex.

Usage

getMipsInfo(wantDefault = TRUE, toGrep = NULL,
parseType = NULL, eCode = c("901.01.03", "901.01.03.01", "901.01.03.02",

"901.01.04", "901.01.04.01", "901.01.04.02",
"901.01.05", "901.01.05.01", "901.01.05.02",
"902.01.09.02", "902.01.01.02.01.01",
"902.01.01.02.01.01.01", "902.01.01.02.01.01.02",
"902.01.01.02.01.02", "902.01.01.02.01.02.01",
"902.01.01.02.01.02.02", "902.01.01.04",
"902.01.01.04.01", "902.01.01.04.01.01",
"902.01.01.04.01.02", "902.01.01.04.01.03",
"902.01.01.04.02", "901.01.09.02"), wantSubComplexes=TRUE,

ht=FALSE, dubiousGenes=NULL)

Arguments

wantDefault A logical. If true, the default parameters "complex", "\Base\b" and "\Bsome\b"
are grepped.

toGrep A character vector. Each entry is a term with perl regular expressions which are
intended to be searched in the Mips text file.

parseType A character vector. Each entry is a term that tells how each entry of toGrep
should be parsed; e.g. "grep" or "agrep"

getMipsInfo 25

eCode A character vector. The evidence code is given in the file evidence.scheme found
in the inst/extdata section of the package.

wantSubComplexes

A logical.If FALSE, the function only returns aggregate protein complexes. If
TRUE, the function will also return subcomplexes as well.

ht A logical. If FALSE, the function will not extract protein complex estimates
obtained from high throughput analysis.

dubiousGenes A character vector of genes that will be removed when parsing the MIPS repos-
itory.

Details

This function’s generic operation is to parse the Mips protein complex database (as given by the
downloaded text file) and search for pre-determined or chosen terms. It returns a named list of
chracter vectors where the names are MIPS id’s from the protein complex sub-category and the
vectors consist of proteins corresponding to that particular MIPS id. Running this function has
multiple combinations:

1. If the wantDefault parameter is TRUE, the function will grep for "complex", "\Base\b", and
"\Bsome\b".

2. If toGrep is not NULL, it will be a character vector with terms and perl regular expressions
that are intended for searching in the MIPS database. NB - it toGrep is not NULL, then parseType
should also not be NULL as the parseType indicates how each term should be searched.

3. parseType needs to be supplied if toGrep is not NULL. It is a character vector, either a single
entry or of length equal to the length of toGrep, detailing how each term in toGrep will be parsed
in the GO database. If only one term is supplied for parseType, then all the terms in toGrep will be
parsed identically. Otherwise, the i-th term in parseType will reflect the parsing of the i-th term in
toGrep.

4. The eCode argument is a character vector consistin of MIPS evidence codes. A protein will
be removed from the protein complex is ALL the evidence codes used to annotate the protein are
supplied in the eCode argument; otherwise, it is left in the complex.

5. If wantSubComplexes parameter is True, the function will return the sub-groupings (sub-complexes
or sub-structures) as given by the clusterings in the MIPS protein complex database.

6. If ht parameter is True, the function will return the will return those protein complex estimates
obtained from high throughput analysis as well.

Value

The return value is a list -

Mips A named list of the protein complexes. Each list entry is denoted by some par-
ticlar MIPS ID (with the pre-fix "MIPS-") attachedand points to a character vec-
tor which are the members of that protein complex

DESC A named chracter vector describing each protein complex parsed by the func-
tion. (The names are the MIPS ID)

26 graphSumStats

Author(s)

Tony Chiang

References

mips.gsf.ed

Examples

#mips = getMipsInfo(wantSubComplexes = FALSE)
#mipsPhrase = getMipsInfo(wantDefault = FALSE, toGrep = "\Bsomal\b",
#parseType = "grep", wantSubComplexes=FALSE)

getURL A method to return an url location of a protein complex

Description

The getURL method takes in the protein complex name of a bi-partite graph incidence matrix (usu-
ally an ad hoc name) and returns the MIPS, GO, etc url containing all information of that protein
complex.

The object to be referenced is an instance of the class yeastData.

Usage

getURL(object, name)

Arguments

object An instance of a subclass of yeastData.

name A character. It is the name of the protein complex with respect to the bi-partite
graph incidence matrix

graphSumStats An initiation function to generate graph statistics

Description

This function takes an in silico interactome and a list of Y2H experimental data (see details) and
generates various graph summary statistics.

Usage

graphSumStats(ISI, bait2PreyL)

ho2mergeMGG 27

Arguments

ISI An incidence matrix representation of a bi-partite graph of an in silico interac-
tome

bait2PreyL A list of y2h information. The data structure is that of intactInfo.rda of the
y2hStat package

Value

complex A character vector of the constituent members of the proteinn complex of inter-
est

complexBait A character vector of those protein members which were also tested as baits in
the y2h experiment

notBait A character vector of those protein members which were not tested as baits

avgDegOut The average out-degree of the bait proteins of the complex of interest

notIsolated A character vector of proteins that showed experimental binary affiliation for
some other complex member

y2hGraph An instance of the class graph; a graphNEL induceds Y2H graph on the protein
complex

popMeanDegree The population mean degree derived from the bait proteins

edgeProp The estimated edge proportions derived between undirected Y2H edges

degBait A named list; each name corresponds to each member of the protein complex
with the entry the number of proteins to which it is adjacent

Author(s)

T Chiang

ho2mergeMGG A data file containing the pre-merged Ho to the (merged) MIPS-GO-
Gavin data

Description

This file contains the pre-processed Ho data before merging to the joint MIPS-GO-Gavin interac-
tome.

Usage

data(ho2mergeMGG)

Format

The format is: chr "ho2mergeMGG"

28 JaccardCoef

Examples

data(ho2mergeMGG)

ID A method to return the ID of a protein complex

Description

The ID method takes in the protein complex name of a bi-partite graph incidence matrix (usually
an ad hoc name) and returns its MIPS, GO, etc id. The object to be referenced is an instance of the
class yeastData.

Usage

ID(object, name)

Arguments

object An instance of a subclass of yeastData.

name A character. It is the name of the protein complex with respect to the bi-partite
graph incidence matrix

JaccardCoef A function to calculate the Jaccard similarity index between two sets

Description

The JaccardCoef function takes the return values of compareComplex function and calculates, for
each pair of complexes C-i and K-j (where C-i is in first bipartite graph matrix and K-j is second),
the similarity coefficient of Jaccard.

Usage

JaccardCoef(dataMat)

Arguments

dataMat A list which is the output from compareComplex, which is a list of three matri-
ces: intersect, cminusk, and kminusc which are explained in the details.

krogan2mergeMGGH 29

Details

The argument of this function is a list of three matrices all of whom are indexed exactly in the same
manner - the rows of each of the matrix is indexed by the complexes, {C-i}, of the first bipartite
graph, bg1, and the colunms are indexed by the complexes, {K-j} of the second bipartite graph,
bg2.

The first matrix of the list is the intersect matrix, I. The (i,j) entry of I is the cardinality of complex
C-i of bg1 and K-j of bg2.

The second matrix of the list is the cminusk matrix, Q. The (i,j) entry of Q is the cardinality of the
set difference between C-i and K-j.

The third matrix of the list is the kminusc matrix, P. The (i,j) entry of P is the cardinality of the set
difference between K-j and C-i.

The Jaccard Coefficient between two sets (here between two complexes) C-i and K-j is given by the
quotient of cardinality(C-i intersect K-j) and cardinality(C-i union K-j). Note that cardinality(C-i
intersect K-j) is the (i,j) entry of I, and that cardinality(C-i union K-j) is the sum of the (i,j) entry of
I, Q, P.

Value

The return value is a matrix consisting of the Jaccaard coefficient for each pair of complexes C-i
and K-j with rows in indexed by C-i and columns indexed by K-j.

Author(s)

Tony Chiang

Examples

#go = getGOInfo(wantAllComplexes=FALSE)
#mips = getMipsInfo(wantSubComplexes=FALSE)
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")
#cc$simInd

krogan2mergeMGGH A data file containing the pre-merged Krogan to the (merged) MIPS-
GO-Gavin-Ho data

Description

This file contains the pre-processed Krogan data before merging to the joint MIPS-GO-Gavin-Ho
interactome

Usage

data(krogan2mergeMGGH)

30 mapping2SysG

Format

The format is: chr "krogan2mergeMGGH"

Examples

data(krogan2mergeMGGH)

locScISI A data file used to estimate the location of the complexes of the ScISI

Description

This is a three tier-ed list. The top list contains two sub-lists which have either the nucleus GO
term or the cytoplasm GO terms as reference. For each sub-list, we have three entries: 1. A matrix
indexed by only nuclear proteins in the rows and only non-trivial complexes with respect to the
row indices; 2. A matrix with all proteins of the original ScISI indexing the rows, but the same
complexes of (1) indexing the columns; 3. a numeric vector with the ratio of the column sums of
(1) by the column sums of (2). This is used to derive nuclear protein complexes - those complexes
with 75 percent or more of its constituent members belonging to the nucleus.

Usage

data(locScISI)

Format

The format is: chr "locScISI"

Examples

data(locScISI)

mapping2SysG A example graph of the mapping from IntAct to Systematic Names

Description

A instance of class graph used in the ScISI to show an example of the mapping from IntAct to
Systematic Names

Usage

data(mapping2SysG)

mappingsG 31

Format

The format is: chr "mapping2SysG"

Examples

data(mapping2SysG)

mappingsG A example graph of the mapping from IntAct to Systematic Names

Description

A instance of class graph used in the ScISI to show an example of the mapping from IntAct to
Systematic Names

Usage

data(mappingsG)

Format

The format is: chr "mappingsG"

Examples

data(mappingsG)

maximizeSimilarity A function compares two bipartite graph matrices and finds the most
similar matches between the clusters

Description

This function takes a matrix of similarity indices between two bipartite graph matrices and deter-
mines, for each complex of the first bipartite graph matrix (bg1), the most similiar complexes of the
second bipartite graph matrix (bg2).

Usage

maximizeSimilarity(simMat, bywhich = "ROW", zeroSim = "NO")

32 maximizeSimilarity

Arguments

simMat A matrix of similarity coefficients between two bipartite graph matrices (bg1
and bg2) where the rows are indexed by the first bipartite graph matrix and the
colunms are indexed by the second bipartite graph matrix. The (i,j)th entry is
the similarity index between complex i of bg1 and complex j of bg2.

bywhich Takes one of these three arguments: "ROW", "COL", "BOTH"

zeroSim Takes either one of the following arguments: "NO", "YES"

Details

This function’s purpose is to take one (or both) bipartite graph matrix, wlog we take bg1, and, for
each complex, C-i, of bg1, finds the complex(es) of bg2 that are the most similiar to C-i based on the
similarity index. Since the complexes of bg1 is indexed by the rows of simMat argument, finding
the complexes of bg2 that are the most similar to C-i means finding the maximal value, m, of row i
and then the complexes, K-j, that index the colunm for which m belongs.

If byWhich argument is set to "ROW", the function parses through each complex of bg1 and finds
the complex(es) of bg2 which are most similar. If byWhich is set to "COL", the function parses
through each complex of bg2 and finds the complex(es) of bg1 which are most similar. If byWhich
is set to "BOTH", the function parses through both the complexes of bg1 and bg2. Since this matrix
is not symmetric (this matrix is usually not square) this maximizing is different between row and
column.

If zeroSim argument is set to "NO", the only maximal matching occurs if the similarity index is
nonzero; e.g. if we want to maximize the match for complex C-i of bg1, but row i is comprised only
of 0, C-i will not be matched to any complex of bg2.

Value

The return value is a list consisting of a vector and a list:

maximize A named numeric vector. The name is the complex, C-i, for which the function
is trying to find a maximal match. The entries of the vector is the maximal
similarity index between C-i and all of the complexes of the other bipartite graph
matrix, i.e. the maximal entry row i in simMat.

maxComp A named list of named vectors. The name is the complex, C-i, for which the
function is trying to find a maximal match. The named vector consists of the
positions of the maximal matches (either which row or which column) and the
names correspond to the conmplex of maximal matching.

Author(s)

Tony Chiang

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#mips = getMipsInfo(wantSubComplexes = FALSE)
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)

meanDeg 33

#cc = runCompareComplex(mipsM, goM, byWhich="ROW")
#m = maximizeSimilarity(cc$JC, byWhich = "ROW")
#m$maximize
#m$maxComp

meanDeg A function to estimate the population mean nodal degree of a protein
complex of interest

Description

This function uses the nodal degree from Y2H data and estimates the overall mean nodal degree for
all proteins of a particular complex

Usage

meanDeg(comp, degBait, sampled)

Arguments

comp A character vector of the constituent members of some protein complex of in-
terest

degBait A named list; each name is a constituent member and the entry is the out deg

sampled A character vector of those constituent members tested as baits in the Y2H ex-
periments

Value

A scalar - the estimate of the population mean nodal degree

Author(s)

TC

mergeBGMat A function that merges two bipartite graph (BG) incidence matrices
into one.

Description

This function takes the union of the row names of mat1 and mat2 for the row names of the aggregate
matrix, and takes the union of the complexes of mat1 and mat2. The resulting matrix is also an
incidence matrix so an entry of unity impiles protein p is a member of complex C.

34 mips2go

Usage

mergeBGMat(mat1, mat2, toBeRm)

Arguments

mat1 The first bipartite graph incidence matrix

mat2 The second bipartite graph incidence matrix

toBeRm A character vector of complexes to be removed

Details

This function takes two bipartite graph matrices and merges them into one aggregate incidence
matrix where informational redundancy is removed.

The rows of the aggregate matrix is indexed by the union of the rownames of mat1 and mat2. It is
important that the rownames of mat1 and the rownames of mat2 are from the same name set (e.g.
for yeast, only the standard gene names should be used).

The columns will be indexed by different protein complexes. If two protein complexes are identical,
say C-i = K-j, then either C-i or K-j should be listed in toBeRm argument (given as an argument).
When the matrices are merged, only one of the two will be kept. The vector toBeRm is generated
by calling either runCompareComplex or findSubComp.

Value

An aggregate bipartite graph incidence matrix.

Author(s)

Tony Chiang

Examples

#go = getGOInfo()
#mips = getMipsInfo()
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")
#merged = mergeBGMat(mipsM, goM, cc$toBeRm)

mips2go A data file containing the pre-merged GO to the MIPS data

Description

This file contains the pre-processed GO data before merging to the MIPS data.

nAt 35

Usage

data(mips2go)

Format

The format is: chr "mips2go"

Examples

data(mips2go)

nAt A file containing node attributes

Description

This file contains node attributes used in the rendering of the graph ARP 2/3 in the ScISI.Rnw paper.

Usage

data(nAt)

Format

The format is: chr "nAt"

nAtMap A file containing node attributes

Description

This file contains node attributes used in the rendering of the graph ARP 2/3 in the ScISI.Rnw paper.

Usage

data(nAtMap)

Format

The format is: chr "nAtMap"

Examples

data(nAtMap)

36 nucComp

nonGenes Genes found in MIPS which are not gene locus names

Description

A character vector of the genes found in MIPS which are not gene locus names.

They include: RNA_TLC1, SNRNA_NME1, and RNA_RNASE-P.

Usage

data(nonGenes)

Format

The format is: chr "nonGenes"

Examples

data(nonGenes)

nucComp A data file containing the nuclear complexes

Description

This file is a character vector of the names of those protein complexes which have at least 75 percent
of its constituent members annotated with the nucleus GO term.

Usage

data(nucComp)

Format

The format is: chr "nucComp"

Examples

data(nucComp)

recCompSize 37

recCompSize A function that records the relative sizes of complex C-i from one bi-
partite graph with complex K-j from a different bipartite graph.

Description

This function takes two bipartite graph matrices, bg1 and bg2. For each complex C-i of bg1, we
find the relative size of C-i for every complex K-j of bg2. A matrix of these ratios is returned with
all cardinalities of C-i as the numerators and K-j as denominators. A second matrix is calculated
where the cardinality of K-j is the numerator and C-i is the denominator.

Usage

recCompSize(bg1, bg2)

Arguments

bg1 The first bipartite graph as an incidence matrix

bg2 The second bipartite graph as an incidence matrix

Value

The return value is a list:

OneOverTwo The matrix where the cardinalities of complexes from bg1 are numerators.

TwoOverOne Matrix where cardinalities of complexes from bg2 are numerators.

Author(s)

Tony Chiang

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#goM = createGOMatrix(go)
#mips = getMipsInfo(wantSubComplexes = FALSE)
#mipsM = createMipsMatrix(mips)
#recCompSize(goM, mipsM)

38 rmByEvi

redundantM A matrix of redundant complex summary statistics

Description

This matrix contains the redundant protein complex summary statistics for the ScISI. The rows and
columns are indexed by the individual data-set from where the protein complex estimates orginated.
The (i,j) entry details how many protein complexes of the index i are identical to those with respect
to index j. This matrix is symmetric.

Usage

data(redundantM)

Format

Matrix

Examples

data(redundantM)

rmByEvi A function that parses through each GO protein complex and removes
proteins based on evidence codes.

Description

The set of proteins protKept argument is a filtered set of proteins based on evidence codes given by
the users. If complex contains any protein not in protKept, that protein will be deleted.

Usage

rmByEvi(protKept, complex)

Arguments

protKept A character vector of filtered proteins. Only the proteins listed in this vector
should be kept in the protein complexes

complex A list of the GO protein complexes

runAlignment 39

Details

When getGOInfo is called, the user can specify a set of evidence codes in the argument (see get-
GOInfo.Rd). The function getGOInfo then generates a set of proteins, protKept (which are indexed
by evidence codes other than the user specified set of evidence codes), that are valid proteins.

This function takes this set of proteins and compares it with each GO protein complex. If any
protein is found within a GO protein complex and does not belong to protKept, it is deleted from
that protein complex.

Value

The return value is the "complex" list with a protein removed from the protein complex if that
protein is not found in protKept.

Author(s)

Tony Chiang

runAlignment A function to establish preliminaries for the compBijection function.

Description

This function creates the record keeping bijMat and calls the compBijection function.

Usage

runAlignment(TSNMat, estMat, c2kMat)

Arguments

TSNMat The first bipartite graph matrix

estMat The second bipartite graph matrix

c2kMat The matrix of similarity index between TSNMat and estMat

Value

The matrix bijMat with an alignment calculated by the function compBijection

Author(s)

Tony Chiang

40 runCompareComplex

Examples

#go = getGOInfo()
#mips = getMipsInfo()
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")
#align = runAlignment(mipsM, goM, cc$simInd)

runCompareComplex A function that calls all other types of comparison functions

Description

This function begins by acquiring the same vertex set for both BGMat1 and BGMat2. Then it
calls the compareComplex function to calculate three statistics (see compareComplex man page
for details). Next it calls calculates a similarity measure (default is Jaccard). Next it calls the
runAlignment function to greedily calculate an alignment between BGMat1 and BGMat2.

Usage

runCompareComplex(BGMat1, BGMat2, index = "Jaccard", byWhich)

Arguments

BGMat1 The first bipartite graph matrix

BGMat2 The second bipartite graph matrix

index The type of similarity index used

byWhich A parameter for the maximizeSimilarity function. It can either be "ROW",
"COL", or "BOTH"

Value

The return value of runCompareComplex is a list with the following statistics:

simInd The matrix of similarity measures between two bipartite graphs.

maxIntersect The output of maximizeSimilarity. A list. The first value is the largest similarity
indices between complexes of the row and complexes of the columns if byWhich
is "ROW" and vice versa if byWhich="COL". The second value returns the
actual complex of highest similarity (column complexes if byWhich="ROW"
and row complexes if byWhich="COL"

equal A list of complexes of BGMat1 equal to complexes of BGMat2. The values
of the list are the complex, C, of BGMat1, the complex, K, of BGMat2, the
cardinality of C, the cardinality of K, and the cardinality of the intersection of C
and K

ScISI 41

toBeRm A character vector of complexes that should be removed if two bipartite graphs
are merged since they would represent redundant complexes. If the function is
called on one bi-partite graph, then this vector looks for redundancies within one
database and those complexes needs to be removed as well. These complexes
are derived from BGMat1 only.

subcomplex A list of complexes of BGMat1 which is contained in complexes of BGMat2 or
vice versa. The values of the list are the complex, C, of BGMat1, the complex,
K, of BGMat2, the cardinality of C, the cardinality of K, and the cardinality of
the intersection of C and K

toBeRmSubC A character vector. The same as toBeRm but instead of redundant protein com-
plexes, this is a compilation of all the sub-complexes between two bi-partite
graph matrices (bi-partite graph matrices need not be different)

Author(s)

Tony Chiang

Examples

#go = getGOInfo()
#mips = getMipsInfo()
#goM = createGOMatrix(go)
#mipsM = createMipsMatrix(mips)
#cc = runCompareComplex(mipsM, goM, byWhich = "ROW")

ScISI The In Silico Interactome for Saccharomyces cerevisiae

Description

This is the incidence sparse-matrix representatin for the bi-partite graph for the in silico interactome
given by Saccharomyces cerevisiae. The rows are indexed by the systematic gene names and the
colunmns are indexed by the protein complexes. This matrix contains a 1 in the (i,j) postion if the
protein in indexed in the i-th row is a member of the protein complex of the j-th column; it contains
a 0 otherwise.

ScISIC is a sub-interactome of ScISI which consists of protein complexes derived from small scale
experiments and have been curated by Gene Ontology (GO) or MIPS. While these complexes have
been curated, not all of them have been completely verified to be true. Periodic changes to GO
and MIPS will percolate through the protein complexes or protein complex composition and so the
ScISIC will need to be rebuilt. A script located in the inst/Scripts/ entitled createScISIC.R creates
an updated ScISIC if the GO and MIPS’s files are up to date. GO 2.0.0 and complexcat-data-2006
(MIPS) were used to build ScISIC for Bioconductor 2.1 release of the package ScISI. Both are the
most up to date versions of the repository as of 9 October 2007. In addition to MIPS and GO,
we have also incorporated protein complexes curated by the IntAct repository. The IntAct protein
complexes are obtained from the complex data XML file obtained from IntAct via Rintact.

42 ScISI2html

In addition to the protein complexes found within MIPS and GO, ScISIC also contains manually
curated protein complexes obtained from IntAct. Because IntAct has yet to version its release, the
protein complexes were obtained on 25 May 2007.

ScISIC replaces ScISIverified which has been deprecated.

ScISI combines ScISIC with protein complex estimates on the datasets derived by Gavin et al
(2002), Ho et al (2002), and Krogan et al (2004) using the penalized algorithm found with ap-
Complex developed by Scholtens et al (2004).

Usage

data(ScISI)

Format

The format of both the ScISI and ScISIC is a binary incidence matrix. The rows are indexed by the
gene locus names and the columns are indexed by the identification codes for the protein complexes
based on the repository from where they are obtained.

Details

This is the working in silico interactome built for computational experimentation. The data from
which this interactome is built is from the Intact, Gene Ontology, Mips, and estimated protein
complexes from apComplex.

Source

http://www.geneontology.org

References

http://www/bioconductor.org

Examples

data(ScISIC)

ScISI2html A function that generates an html page for the GO and MIPs protein
complexes

Description

This function takes a vector or url’s and a vector of the protein complex description names (known
names of the protein complexes) and creates an html file that lets the user link to each of the protein
complex description site based on the particular url.

ScISI2html 43

Usage

ScISI2html(urlVect, linkName, filename, title,
othernames, table.head, table.center = TRUE, compSize=NULL)

Arguments

urlVect A character vector containing the url for each speficied protein complex

linkName A character vector containing a description name for each of the url’s in urlVect
that will be the anchor for the url

filename The output file; an html file written to the home directory

title The title given to the html file

othernames Other titles that are needed; sub-titles

table.head The title for the table

table.center Logical; to center the table

compSize A numeric vector of the complex sizes for the various protein complexes of GO
and MIPS

Value

An html file written to the user’s home directory. The file contains a page of links (given by the
url’s) where each link is anchored by a description name for each url.

Author(s)

Tony Chiang

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#goM = createGOMatrix(go)
#goDF = createGODataFrame(go, goM)
#goOb = createYeastDataObj(goDF)
#goNames = colnames(goM)
#url = vector(length = length(goNames))
#for(i in 1:length(goNames)){
url[i] = getURL(goOb, goNames[i])
#}
#ScISI2html(url, goNames, test, GO Complexes)

44 sumStats

subCompM A matrix of sub-complex summary statistics

Description

This matrix contains the sub-complex summary statistics for the ScISI. The rows and columns are
indexed by the individual data-set from where the protein complex estimates orginated. The (i,j)
entry details how many protein complexes of the index i are sub-complexes of the index j.

Usage

data(subCompM)

Format

Matrix

Examples

data(subCompM)

sumStats A function to calculate some summary statistics between an two inter-
actomes

Description

This function takes in a named list of in silico interactomes (by its incidence matrix representation
of the bi-partite graph). The function compares each interactome pairwise (with itself as well as
with each other interactome) and generates some summary statistics: e.g. the number of redundant
protein complexes, the number of protein sub-complexes one interactome may posses with respect
to some other interactome (possibly itself), etc.

Usage

sumStats(imList, pathToSave = NULL)

Arguments

imList A named list of in silic interactomes (incidence matrix)

pathToSave A character vector of a path location to where the summary statistics will be
saved

unwanted 45

Value

redundantM A symmetric matrix with the row and column names named by the interactome
names. The shows the number of redundancies (i.e. the number of repeated
protein complexes) within two interactomes

subM A matrix with the row and column names named by the interactome names.
Each entry details how many protein sub-complexes are found within the in-
teractome indexed by the row with respect to the interactome indexed by the
column

Author(s)

TC

Examples

#gavin <- getAPMSData("Gavin")
#krogan <- getAPMSData("Krogan")
#imList <- vector("list", length=2)
#imList[[1]] <- gavin
#imList[[2]] <- krogan
#names(imList) <- c("Gavin", "Krogan")

#sumStats(imList)

unwanted GO terms that are parsed but not protein complexes

Description

A character vector of the GO terms parsed but known not to be protein complexes in GO.

The include: GO:0000262, GO:0000228, GO:0000775, GO:0010008, GO:0005792, GO:0005768,
GO:0005769, GO:0005770, GO:0005777, GO:0005844, and GO:0001400.

Usage

data(unwanted)

Format

The format is: chr "unwanted"

Examples

data(unwanted)

46 unWantedComp

unWantedComp A function to manually remove protein complexes from some in silico
interactome

Description

This function takes in an in silico interactome by its bipartite graph representation and a character
vector of complex ID’s. The function parses through the column names of the in silico interactome
and removes those columns whose names are found in the character vector.

Usage

unWantedComp(ISI, unwantedComplex = c("GO:0000262", "GO:0000228",
"GO:0000775", "GO:0010008", "GO:0005792", "GO:0005768", "GO:0005769",
"GO:0005770", "GO:0005777", "GO:0005844", "GO:0001400"), unwantedGenes =
c("RNA_TLC1", "SNRNA_NME1","RNA_RNASE-P"))

Arguments

ISI The in silico interactome as a bipartite graph
unwantedComplex

A character vector. Each entry is a protein complex id for which should be
removed from the interactome.

unwantedGenes A character vector of gene names that will be deleted from the row indexing set
of the in silico interactome.

Value

An incidence matrix. A new matrix with those columns indexed by unwantedComplex removed. It
will also remove any protein which is now no longer contained in any protein complex.

Note

The entries of unwantedComplex must be found in the column names of ISI, otherwise, they will
not be removed. This is especially important since there are many id’s that index the same protein
complex.

Author(s)

T. Chiang

Examples

#mips = getMipsInfo()
#go = getGOInfo()
#mipsM = createMipsMatrix(mips)
#goM = createGOMatrix(go)

xtraGO 47

#mips2go = runCompareComplex(mipsM, goM, byWhich = "ROW")
#merged = mergeBGMat(mipsM, goM, mips2go$toBeRm)
#ISI = unWantedComp(merged)

xtraGO A character vector of hand selected GO protein complexes

Description

Hand selected protein complexes that will be used to see if any subset should be incorporated into
the ScISI

Usage

data(xtraGO)

Format

The format is: chr "xtraGO"

Examples

data(xtraGO)

xtraGONodes A function to check manually curated GO nodes

Description

This function takes any manually curated GO nodes and checks to see if those nodes belong should
be incorporated to the ScISI

Usage

xtraGONodes(xtraGO, goM)

Arguments

xtraGO A character vector of the GO nodes to be checked

goM A bi-partite graph incidence matrix of the complexes selected by the getGOInfo
function and put together by the createGOMatrix function.

Value

A bi-partite graph incidence matrix with whichever xtraGO nodes checked and deemed appropriate
added to the goM matrix.

48 yeastData-class

Author(s)

T. Chiang

yeastData-class Class "yeastData"

Description

A class representing an interactome of yeast. The object is in the form of a dataframe with three
generic methods. The methods take two arguments: the first is the instance of the class yeastData;
the second is the name of a protein complex with respect as given by the bi-partite graph incidence
matrix.

Objects from the Class

Objects can be created by calls of the form new("yeastData", reference = dataFrameISI).

Slots

reference The yeastData slot is merely a data frame for some in silico interactome.

Methods

ID signature(object = "yeastData", name = "character"): ...

Desc signature(object = "yeastData", name = "character"): ...

getURL signature(object = "yeastData", name = "character"): ...

Author(s)

Tony Chiang

Examples

#go = getGOInfo(wantAllComplexes = FALSE)
#goM = createGOMatrix(go)
#cNames = colnames(goM)
#goDF = createGODataFrame(go, goM)
#goOb = createYeastObj(goDF)
#ID(goOb, cNames[5])
#Desc(goOb, cNames[5])
#getUrl(goOb, cNames[5])

Index

∗Topic array
compareComplex, 8
compBijection, 9
createGOMatrix, 11
createMipsMatrix, 13
findSubComp, 18
getAPMSData, 20
mergeBGMat, 33
runAlignment, 39

∗Topic classes
createYeastDataObj, 14
Desc, 15
getURL, 26
ID, 28
yeastData-class, 48

∗Topic datagen
calcGraphStats, 5
checkComplex, 7
checkSGN, 8
compareComplex, 8
compBijection, 9
createGODataFrame, 10
createGOMatrix, 11
createMipsDataFrame, 12
createMipsMatrix, 13
edgeProp, 16
findSubComp, 18
getAPMSData, 20
getGOInfo, 21
getLocOrfs, 23
getMipsInfo, 24
graphSumStats, 26
JaccardCoef, 28
maximizeSimilarity, 31
meanDeg, 33
mergeBGMat, 33
recCompSize, 37
rmByEvi, 38
runAlignment, 39

runCompareComplex, 40
ScISI2html, 42
sumStats, 44
unWantedComp, 46
xtraGONodes, 47

∗Topic datasets
arp23, 3
arp23G, 3
arp23Orf, 4
arp23Y2HG, 4
cfia, 6
cfiaOrf, 6
dataS, 14
eAt, 15
eAt2, 16
egEBI16112, 17
expStats, 17
gavin2mergeMG, 19
ho2mergeMGG, 27
krogan2mergeMGGH, 29
locScISI, 30
mapping2SysG, 30
mappingsG, 31
mips2go, 34
nAt, 35
nAtMap, 35
nonGenes, 36
nucComp, 36
redundantM, 38
ScISI, 41
subCompM, 44
unwanted, 45
xtraGO, 47

arp23, 3
arp23G, 3
arp23Orf, 4
arp23Y2HG, 4

calcGraphStats, 5

49

50 INDEX

cfia, 6
cfiaOrf, 6
checkComplex, 7
checkSGN, 8
compareComplex, 8, 8, 28, 40
compBijection, 9, 39
createGODataFrame, 10
createGOMatrix, 11, 11
createMipsDataFrame, 12
createMipsMatrix, 13
createYeastDataObj, 14

dataS, 14
Desc, 15
Desc,yeastData,character-method (Desc),

15

eAt, 15
eAt2, 16
edgeProp, 16
egEBI16112, 17
expStats, 17

findSubComp, 18, 34

gavin2mergeMG, 19
getAPMSData, 20
getGOInfo, 11, 21, 39
getLocOrfs, 23
getMipsInfo, 12, 13, 24
getURL, 26
getURL,yeastData,character-method

(getURL), 26
graphSumStats, 26

ho2mergeMGG, 27

ID, 28
ID,yeastData,character-method (ID), 28

JaccardCoef, 28

krogan2mergeMGGH, 29

locScISI, 30

mapping2SysG, 30
mappingsG, 31
maximizeSimilarity, 31
meanDeg, 33

mergeBGMat, 33
mips2go, 34

nAt, 35
nAtMap, 35
nonGenes, 36
nucComp, 36

recCompSize, 37
redundantM, 38
rmByEvi, 38
runAlignment, 39, 40
runCompareComplex, 9, 34, 40

ScISI, 41
ScISI2html, 42
ScISIC (ScISI), 41
ScISIverified (ScISI), 41
subCompM, 44
sumStats, 44

unwanted, 45
unWantedComp, 46

xtraGO, 47
xtraGONodes, 47

yeastData, 15, 26, 28
yeastData (yeastData-class), 48
yeastData-class, 48

	arp23
	arp23G
	arp23Orf
	arp23Y2HG
	calcGraphStats
	cfia
	cfiaOrf
	checkComplex
	checkSGN
	compareComplex
	compBijection
	createGODataFrame
	createGOMatrix
	createMipsDataFrame
	createMipsMatrix
	createYeastDataObj
	dataS
	Desc
	eAt
	eAt2
	edgeProp
	egEBI16112
	expStats
	findSubComp
	gavin2mergeMG
	getAPMSData
	getGOInfo
	getLocOrfs
	getMipsInfo
	getURL
	graphSumStats
	ho2mergeMGG
	ID
	JaccardCoef
	krogan2mergeMGGH
	locScISI
	mapping2SysG
	mappingsG
	maximizeSimilarity
	meanDeg
	mergeBGMat
	mips2go
	nAt
	nAtMap
	nonGenes
	nucComp
	recCompSize
	redundantM
	rmByEvi
	runAlignment
	runCompareComplex
	ScISI
	ScISI2html
	subCompM
	sumStats
	unwanted
	unWantedComp
	xtraGO
	xtraGONodes
	yeastData-class
	Index

