
Package ‘GenomicFeatures’
April 5, 2014

Title Tools for making and manipulating transcript centric annotations

Version 1.14.5

Author M. Carlson, H. Pages, P. Aboyoun, S. Falcon, M. Morgan,D. Sarkar, M. Lawrence

License Artistic-2.0

Description A set of tools and methods for making and manipulating transcript
centric annotations. With these tools the user can easily download the
genomic locations of the transcripts, exons and cds of a given
organism, from either the UCSC Genome Browser or a BioMart database
(more sources will be supported in the future). This information is
then stored in a local database that keeps track of the relationship
between transcripts, exons, cds and genes. Flexible methods are
provided for extracting the desired features in a convenient format.

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Depends BiocGenerics (>= 0.1.0), IRanges (>= 1.17.13), GenomicRanges
(>= 1.13.16), AnnotationDbi (>= 1.23.14)

Imports methods, DBI (>= 0.2-5), RSQLite (>= 0.8-
1), BiocGenerics,IRanges, GenomicRanges, Biostrings (>= 2.23.2), rtracklayer (>=
1.15.1), biomaRt (>= 2.17.1), RCurl, utils, Biobase (>= 2.15.1)

Suggests
rtracklayer, biomaRt, org.Mm.eg.db, Biostrings, BSgenome,BSgenome.Hsapiens.UCSC.hg18 (>= 1.3.14),BSgenome.Hsapiens.UCSC.hg19 (>= 1.3.17),BSgenome.Celegans.UCSC.ce2, BSgenome.Dmelanogaster.UCSC.dm3 (>=
1.3.17), mir-
base.db, FDb.UCSC.tRNAs,TxDb.Hsapiens.UCSC.hg18.knownGene,TxDb.Hsapiens.UCSC.hg19.knownGene,TxDb.Dmelanogaster.UCSC.dm3.ensGene (>= 2.7.1), Rsam-
tools,pasillaBamSubset (>= 0.0.5), seqnames.db, RUnit

Collate utils.R Ensembl.utils.R TranscriptDb-class.R FeatureDb-class.R
makeTranscriptDb.R makeTranscriptDbFromUCSC.R
makeTranscriptDbFromBiomart.R makeTranscriptDbFromGFF.R
makeFeatureDbFromUCSC.R saveFeatures.R id2name.R transcripts.R
transcriptsByOverlaps.R transcriptsBy.R regions.R features.R
extractTranscriptsFromGenome.R makeTxDbPackage.R
seqnames-methods.R select-methods.R nearest-methods.R
getPromoterSeq-methods.R test_GenomicFeatures_package.R

1

2 as-format-methods

biocViews Genetics, Infrastructure, Annotation,HighThroughputSequencing

R topics documented:
as-format-methods . 2
DEFAULT_CIRC_SEQS . 3
extractTranscriptsFromGenome . 4
FeatureDb-class . 8
features . 9
GenomicFeatures-deprecated . 9
getPromoterSeq . 10
id2name . 11
makeFeatureDbFromUCSC . 12
makeTranscriptDb . 15
makeTranscriptDbFromBiomart . 17
makeTranscriptDbFromGFF . 20
makeTranscriptDbFromUCSC . 22
makeTxDbPackage . 24
nearest-methods . 28
regions . 29
saveFeatures . 30
select-methods . 32
TranscriptDb-class . 33
transcripts . 35
transcriptsBy . 38
transcriptsByOverlaps . 40

Index 43

as-format-methods Coerce to file format structures

Description

These functions coerce a TranscriptDb object to a GRanges object with metadata columns encod-
ing transcript structures according to the model of a standard file format. Currently, BED and GFF
models are supported. If a TranscriptDb is passed to export, when targeting a BED or GFF file,
this coercion occurs automatically.

Usage

S4 method for signature TranscriptDb
asBED(x)
S4 method for signature TranscriptDb
asGFF(x)

DEFAULT_CIRC_SEQS 3

Arguments

x A TranscriptDb object to coerce to a GRanges, structured as BED or GFF.

Value

For asBED, a GRanges, with the columns name, thickStart, thickEnd, blockStarts, blockSizes
added. The thick regions correspond to the CDS regions, and the blocks represent the exons. The
transcript IDs are stored in the name column. The ranges are the transcript bounds.

For asGFF, a GRanges, with columns type, Name, ID„ and Parent. The gene structures are ex-
pressed according to the conventions defined by the GFF3 spec. There are elements of each type
of feature: “gene”, “mRNA” “exon” and “cds”. The Name column contains the gene_id for genes,
tx_name for transcripts, and exons and cds regions are NA. The ID column uses gene_id and tx_id,
with the prefixes “GeneID” and “TxID” to ensure uniqueness across types. The exons and cds re-
gions have NA for ID. The Parent column contains the IDs of the parent features. A feature may
have multiple parents (the column is a CharacterList). Each exon belongs to one or more mRNAs,
and mRNAs belong to a gene.

Author(s)

Michael Lawrence

Examples

txdb_file <- system.file("extdata", "UCSC_knownGene_sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

asBED(txdb)
asGFF(txdb)

DEFAULT_CIRC_SEQS character vector: strings that are usually circular chromosomes

Description

The DEFAULT_CIRC_SEQS character vector contains strings that are normally used by major repos-
itories as the names of chromosomes that are typically circular, it is available as a convenience so
that users can us it as a default value for circ_seqs arguments, and append to it as needed.

Usage

DEFAULT_CIRC_SEQS

See Also

makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart

4 extractTranscriptsFromGenome

Examples

DEFAULT_CIRC_SEQS

extractTranscriptsFromGenome

Tools for extracting transcript sequences

Description

extractTranscriptsFromGenome extracts the transcript sequences from a BSgenome data pack-
age using the transcript information (exon boundaries) stored in a TranscriptDb or GRangesList
object.

extractTranscripts extracts a set of transcripts from a single DNA sequence.

Related utilities:

transcriptWidths to get the lengths of the transcripts (called the "widths" in this context) based
on the boundaries of their exons.

transcriptLocs2refLocs converts transcript-based locations into reference-based (aka chromosome-
based or genomic) locations.

sortExonsByRank orders (or reorders) by rank the exons stored in a GRangesList object containing
exons grouped by transcript.

Usage

extractTranscriptsFromGenome(genome, txdb,
decreasing.rank.on.minus.strand=FALSE,
use.names=TRUE)

extractTranscripts(x,
exonStarts=list(), exonEnds=list(), strand=character(0),
decreasing.rank.on.minus.strand=FALSE)

Related utilities:

transcriptWidths(exonStarts=list(), exonEnds=list())

transcriptLocs2refLocs(tlocs,
exonStarts=list(), exonEnds=list(), strand=character(0),
decreasing.rank.on.minus.strand=FALSE)

sortExonsByRank(x, decreasing.rank.on.minus.strand=FALSE)

extractTranscriptsFromGenome 5

Arguments

genome A BSgenome object. See the available.genomes function in the BSgenome
package for how to install a genome.

txdb A TranscriptDb object or a GRangesList object.
decreasing.rank.on.minus.strand

TRUE or FALSE. Describes the order of exons in transcripts located on the minus
strand: are they ordered by increasing (default) or decreasing rank? For all the
functions described in this man page (except sortExonsByRank), this argument
describes the input. For sortExonsByRank, it describes how exons should be
ordered in the output.

use.names TRUE or FALSE. Ignored if txdb is not a TranscriptDb object. If TRUE (the de-
fault), the returned sequences are named with the transcript names. If FALSE,
they are named with the transcript internal ids. Note that, unlike the transcript
internal ids, the transcript names are not guaranteed to be unique or even defined
(they could be all NAs). A warning is issued when this happens.

x A DNAString or MaskedDNAString object for extractTranscripts.
A GRangesList object for sortExonsByRank, typically coming from exonsBy(... , by="tx").

exonStarts, exonEnds

The starts and ends of the exons, respectively.
Each argument can be a list of integer vectors, an IntegerList object, or a charac-
ter vector where each element is a comma-separated list of integers. In addition,
the lists represented by exonStarts and exonEnds must have the same shape
i.e. have the same lengths and have elements of the same lengths. The length of
exonStarts and exonEnds is the number of transcripts.

strand A character vector of the same length as exonStarts and exonEnds specifying
the strand ("+" or "-") from which the transcript is coming.

tlocs A list of integer vectors of the same length as exonStarts and exonEnds. Each
element in tlocs must contain transcript-based locations.

Value

For extractTranscriptsFromGenome: A named DNAStringSet object with one element per tran-
script. When txdb is a GRangesList object, elements in the output align with elements in the input
(txdb), and they have the same names.

For extractTranscripts: A DNAStringSet object with one element per transcript.

For transcriptWidths: An integer vector with one element per transcript.

For transcriptLocs2refLocs: A list of integer vectors of the same shape as tlocs.

For sortExonsByRank: A GRangesList object with one top-level element per transcript. More
precisely, the returned object has the same "shape" (i.e. same length and same number of elements
per top-level element) as the input GRangesList object x.

Author(s)

H. Pages

6 extractTranscriptsFromGenome

See Also

available.genomes, TranscriptDb-class, exonsBy, GRangesList-class, DNAStringSet-class, translate

Examples

library(BSgenome.Hsapiens.UCSC.hg18) # load the genome

A. USING extractTranscriptsFromGenome() WITH A TranscriptDb OBJECT

txdb_file <- system.file("extdata", "UCSC_knownGene_sample.sqlite",

package="GenomicFeatures")
txdb <- loadDb(txdb_file)
tx_seqs1 <- extractTranscriptsFromGenome(Hsapiens, txdb)
tx_seqs1

B. USING extractTranscriptsFromGenome() WITH A GRangesList OBJECT

A GRangesList object containing exons grouped by transcripts gives
the same result as above:
exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)
tx_seqs2 <- extractTranscriptsFromGenome(Hsapiens, exbytx)
stopifnot(identical(as.character(tx_seqs2), as.character(tx_seqs1)))

A sanity check:
stopifnot(identical(unname(sapply(width(exbytx), sum)), width(tx_seqs2)))

CDSs grouped by transcripts (this extracts only the translated parts
of the transcripts):
cds_seqs <- extractTranscriptsFromGenome(Hsapiens, cdsBy(txdb, by="tx"))
translate(cds_seqs)

C. GOING FROM TRANSCRIPT-BASED TO REFERENCE-BASED LOCATIONS

Get the reference-based locations of the first 4 (5 end)
and last 4 (3 end) nucleotides in each transcript:
tlocs <- lapply(width(tx_seqs2), function(w) c(1:4, (w-3):w))
tx_strand <- sapply(strand(exbytx), runValue)
Note that, because of how we made them, tlocs, start(exbytx),
end(exbytx) and tx_strand have the same length, and, for any
valid positional index, elements at this position are corresponding
to each other. This is how transcriptLocs2refLocs() expects them
to be!
rlocs <- transcriptLocs2refLocs(tlocs, start(exbytx), end(exbytx),

tx_strand, decreasing.rank.on.minus.strand=TRUE)

D. EXTRACTING WORM TRANSCRIPTS ZC101.3 AND F37B1.1

extractTranscriptsFromGenome 7

Transcript ZC101.3 (is on + strand):
Exons starts/ends relative to transcript:
rstarts1 <- c(1, 488, 654, 996, 1365, 1712, 2163, 2453)
rends1 <- c(137, 578, 889, 1277, 1662, 1870, 2410, 2561)
Exons starts/ends relative to chromosome:
starts1 <- 14678410 + rstarts1
ends1 <- 14678410 + rends1

Transcript F37B1.1 (is on - strand):
Exons starts/ends relative to transcript:
rstarts2 <- c(1, 325)
rends2 <- c(139, 815)
Exons starts/ends relative to chromosome:
starts2 <- 13611188 - rends2
ends2 <- 13611188 - rstarts2

exon_starts <- list(as.integer(starts1), as.integer(starts2))
exon_ends <- list(as.integer(ends1), as.integer(ends2))

library(BSgenome.Celegans.UCSC.ce2)
Both transcripts are on chrII:
chrII <- Celegans$chrII
tx_seqs <- extractTranscripts(chrII,

exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

Same as width(tx_seqs):
transcriptWidths(exonStarts=exon_starts, exonEnds=exon_ends)

transcriptLocs2refLocs(list(c(1:6, 135:140, 1555:1560),
c(1:6, 137:142, 625:630)),

exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

A sanity check:
ref_locs <- transcriptLocs2refLocs(list(1:1560, 1:630),

exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c("+","-"))

stopifnot(chrII[ref_locs[[1]]] == tx_seqs[[1]])
stopifnot(complement(chrII)[ref_locs[[2]]] == tx_seqs[[2]])

E. sortExonsByRank()

Typically used to reorder by decreasing rank the exons in transcripts
located on the minus strand:
exbytx3 <- sortExonsByRank(exbytx, decreasing.rank.on.minus.strand=TRUE)
exbytx3
tx_seqs3 <- extractTranscriptsFromGenome(Hsapiens, exbytx3,

8 FeatureDb-class

decreasing.rank.on.minus.strand=TRUE)
stopifnot(identical(as.character(tx_seqs3), as.character(tx_seqs1)))

FeatureDb-class FeatureDb objects

Description

The FeatureDb class is a generic container for storing genomic locations of an arbitrary type of
genomic features.

See ?TranscriptDb for a container for storing transcript annotations.

See ?makeFeatureDbFromUCSC for a convenient way to make FeatureDb objects from BioMart
online resources.

Methods

In the code snippets below, x is a FeatureDb object.

metadata(x): Return x’s metadata in a data frame.

Author(s)

Marc Carlson

See Also

• The TranscriptDb class for storing transcript annotations.

• makeFeatureDbFromUCSC for a convenient way to make a FeatureDb object from UCSC on-
line resources.

• saveDb and loadDb for saving and loading the database content of a FeatureDb object.

• features for how to extract genomic features from a FeatureDb object.

Examples

fdb_file <- system.file("extdata", "FeatureDb.sqlite",
package="GenomicFeatures")

fdb <- loadDb(fdb_file)
fdb

features 9

features Extract simple features from a FeatureDb object

Description

Generic function to extract genomic features from a FeatureDb object.

Usage

features(x)
S4 method for signature FeatureDb
features(x)

Arguments

x A FeatureDb object.

Value

a GRanges object

Author(s)

M. Carlson

See Also

FeatureDb

Examples

fdb <- loadDb(system.file("extdata", "FeatureDb.sqlite",
package="GenomicFeatures"))

features(fdb)

GenomicFeatures-deprecated

Deprecated Functions in package GenomicFeatures

Description

The functions or variables listed here have been deprecated and should no longer be used.

See Also

Deprecated

10 getPromoterSeq

getPromoterSeq Get gene promoter sequences

Description

Extract sequences for the genes or transcripts specified in the query (aGRanges or GRangesList
object) from a BSgenome object or an FaFile.

Usage

S4 method for signature GRangesList
getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)
S4 method for signature GRangesList

getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)
S4 method for signature GRanges

getPromoterSeq(query, subject, upstream=2000, downstream=200, ...)

Arguments

query A GRanges or GRangesList object containing genes grouped by transcript.

subject A BSgenome object or a FaFile from which the sequences will be taken.

upstream The number of DNA bases to include upstream of the TSS (transcription start
site)

downstream The number of DNA bases to include downstream of the TSS (transcription start
site)

... Additional arguments

Details

getPromoterSeq is an overloaded method dispatching on query, which is either a GRanges or a
GRangesList. It is a wrapper for the promoters and getSeq functions. The purpose is to allow
sequence extraction from either a BSgenome or FaFile.

Default values for upstream and downstream were chosen based on our current understanding of
gene regulation. On average, promoter regions in the mammalian genome are 5000 bp upstream
and downstream of the transcription start site.

Value

A DNAStringSet or DNAStringSetList instance corresponding to the GRanges or GRangesList
supplied in the query.

Author(s)

Paul Shannon

id2name 11

See Also

intra-range-methods ## promoters methods for Ranges objects intra-range-methods ## promoters
methods for GRanges objects getSeq

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)

e2f3 <- "1871" # entrez geneID for a cell cycle control transcription
factor, chr6 on the plus strand

transcriptCoordsByGene.GRangesList <-
transcriptsBy (TxDb.Hsapiens.UCSC.hg19.knownGene, by = "gene") [e2f3]
a GrangesList of length one, describing three transcripts

promoter.seqs <- getPromoterSeq (transcriptCoordsByGene.GRangesList,
Hsapiens, upstream=10, downstream=0)

DNAStringSetList of length 1
[["1871"]] GCTTCCTGGA GCTTCCTGGA CGGAGCCAGG

id2name Map internal ids to external names for a given feature type

Description

Utility function for retrieving the mapping from the internal ids to the external names of a given
feature type.

Usage

id2name(txdb, feature.type=c("tx", "exon", "cds"))

Arguments

txdb A TranscriptDb object.

feature.type The feature type for which the mapping must be retrieved.

Details

Transcripts, exons and CDS in a TranscriptDb object are stored in seperate tables where the primary
key is an integer called feature internal id. This id is stored in the "tx_id" column for transcripts,
in the "exon_id" column for exons, and in the "cds_id" column for CDS. Unlike other com-
monly used ids like Entrez Gene IDs or Ensembl IDs, this internal id was generated at the time the
TranscriptDb object was created and has no meaning outside the scope of this object.

12 makeFeatureDbFromUCSC

The id2name function can be used to translate this internal id into a more informative id or name
called feature external name. This name is stored in the "tx_name" column for transcripts, in the
"exon_name" column for exons, and in the "cds_name" column for CDS.

Note that, unlike the feature internal id, the feature external name is not guaranteed to be unique or
even defined (the column can contain NAs).

Value

A named character vector where the names are the internal ids and the values the external names.

Author(s)

H. Pages

See Also

• transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic
features from a TranscriptDb object.

• The TranscriptDb class.

Examples

txdb1_file <- system.file("extdata", "UCSC_knownGene_sample.sqlite",
package="GenomicFeatures")

txdb1 <- loadDb(txdb1_file)
id2name(txdb1, feature.type="tx")[1:4]
id2name(txdb1, feature.type="exon")[1:4]
id2name(txdb1, feature.type="cds")[1:4]

txdb2_file <- system.file("extdata", "Biomart_Ensembl_sample.sqlite",
package="GenomicFeatures")

txdb2 <- loadDb(txdb2_file)
id2name(txdb2, feature.type="tx")[1:4]
id2name(txdb2, feature.type="exon")[1:4]
id2name(txdb2, feature.type="cds")[1:4]

makeFeatureDbFromUCSC Making a FeatureDb object from annotations available at the UCSC
Genome Browser

Description

The makeFeatureDbFromUCSC function allows the user to make a FeatureDb object from simple
annotation tracks at UCSC. The tracks in question must (at a minimum) have a start, end and a
chromosome affiliation in order to be made into a FeatureDb. This function requires a precise dec-
laration of its first three arguments to indicate which genome, track and table wish to be imported.
There are discovery functions provided to make this process go smoothly.

makeFeatureDbFromUCSC 13

Usage

supportedUCSCFeatureDbTracks(genome)

supportedUCSCFeatureDbTables(genome, track)

UCSCFeatureDbTableSchema(genome,
track,
tablename)

makeFeatureDbFromUCSC(
genome,
track,
tablename,
columns = UCSCFeatureDbTableSchema(genome,track,tablename),
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath",
chromCol,
chromStartCol,
chromEndCol)

Arguments

genome genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the annotations to retrieve. Use the supportedUCSCFeatureDbTables
utility function to get the list of supported tables for a track.

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath_url

use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

Details

makeFeatureDbFromUCSC is a convenience function that builds a tiny database from one of the
UCSC track tables. supportedUCSCFeatureDbTracks a convenience function that returns potential

14 makeFeatureDbFromUCSC

track names that could be used to make FeatureDb objects supportedUCSCFeatureDbTables a
convenience function that returns potential table names for FeatureDb objects (table names go with
a track name) UCSCFeatureDbTableSchema A convenience function that creates a named vector of
types for all the fields that can potentially be supported for a given track. By default, this will be
called on your specified tablename to include all of the fields in a track.

Value

A FeatureDb object for makeFeatureDbFromUCSC. Or in the case of supportedUCSCFeatureDbTracks
and UCSCFeatureDbTableSchema a named character vector

Author(s)

M. Carlson and H. Pages

See Also

ucscGenomes,

Examples

Display the list of genomes available at UCSC:
library(GenomicFeatures)
library(rtracklayer)
ucscGenomes()[, "db"]

Display the list of Tracks supported by makeFeatureDbFromUCSC():
supportedUCSCFeatureDbTracks("mm9")

Display the list of tables supported by your track:
supportedUCSCFeatureDbTables(genome="mm9",

track="oreganno")

Display fields that could be passed in to colnames:
UCSCFeatureDbTableSchema(genome="mm9",

track="oreganno",
tablename="oreganno")

Retrieving a full transcript dataset for Yeast from UCSC:
fdb <- makeFeatureDbFromUCSC(genome="mm9",

track="oreganno",
tablename="oreganno")

fdb

makeTranscriptDb 15

makeTranscriptDb Making a TranscriptDb object from user supplied annotations

Description

makeTranscriptDb is a low-level constructor for making a TranscriptDb object from user supplied
transcript annotations. See ?makeTranscriptDbFromUCSC and ?makeTranscriptDbFromBiomart
for higher-level functions that feed data from the UCSC or BioMart sources to makeTranscriptDb.

Usage

makeTranscriptDb(transcripts, splicings,
genes=NULL, chrominfo=NULL, metadata=NULL,
reassign.ids=FALSE)

Arguments

transcripts data frame containing the genomic locations of a set of transcripts

splicings data frame containing the exon and cds locations of a set of transcripts

genes data frame containing the genes associated to a set of transcripts

chrominfo data frame containing information about the chromosomes hosting the set of
transcripts

metadata 2-column data frame containing meta information about this set of transcripts
like species, organism, genome, UCSC table, etc... The names of the columns
must be "name" and "value" and their type must be character.

reassign.ids controls how internal ids should be assigned for each type of feature i.e. for
transcripts, exons, and cds. For each type, if reassign.ids is FALSE and if the
ids are supplied, then they are used as the internal ids, otherwise the internal ids
are assigned in a way that is compatible with the order defined by ordering the
features first by chromosome, then by strand, then by start, and finally by end.

Details

The transcripts (required), splicings (required) and genes (optional) arguments must be data
frames that describe a set of transcripts and the genomic features related to them (exons, cds and
genes at the moment). The chrominfo (optional) argument must be a data frame containing chro-
mosome information like the length of each chromosome.

transcripts must have 1 row per transcript and the following columns:

• tx_id: Transcript ID. Integer vector. No NAs. No duplicates.

• tx_name: [optional] Transcript name. Character vector (or factor). NAs and/or duplicates are
ok.

• tx_chrom: Transcript chromosome. Character vector (or factor) with no NAs.

• tx_strand: Transcript strand. Character vector (or factor) with no NAs where each element
is either "+" or "-".

16 makeTranscriptDb

• tx_start, tx_end: Transcript start and end. Integer vectors with no NAs.

Other columns, if any, are ignored (with a warning).

splicings must have N rows per transcript, where N is the nb of exons in the transcript. Each row
describes an exon plus, optionally, the cds contained in this exon. Its columns must be:

• tx_id: Foreign key that links each row in the splicings data frame to a unique row in the
transcripts data frame. Note that more than 1 row in splicings can be linked to the same
row in transcripts (many-to-one relationship). Same type as transcripts$tx_id (integer
vector). No NAs. All the values in this column must be present in transcripts$tx_id.

• exon_rank: The rank of the exon in the transcript. Integer vector with no NAs. (tx_id,
exon_rank) pairs must be unique.

• exon_id: [optional] Exon ID. Integer vector with no NAs.
• exon_name: [optional] Exon name. Character vector (or factor).
• exon_chrom: [optional] Exon chromosome. Character vector (or factor) with no NAs. If

missing then transcripts$tx_chrom is used. If present then exon_strand must also be
present.

• exon_strand: [optional] Exon strand. Character vector (or factor) with no NAs. If missing
then transcripts$tx_strand is used and exon_chrom must also be missing.

• exon_start, exon_end: Exon start and end. Integer vectors with no NAs.
• cds_id: [optional] cds ID. Integer vector. If present then cds_start and cds_end must also

be present. NAs are allowed and must match NAs in cds_start and cds_end.
• cds_name: [optional] cds name. Character vector (or factor). If present then cds_start and
cds_end must also be present. NAs are allowed and must match NAs in cds_start and
cds_end.

• cds_start, cds_end: [optional] cds start and end. Integer vectors. If one of the 2 columns
is missing then all cds_* columns must be missing. NAs are allowed and must occur at the
same positions in cds_start and cds_end.

Other columns, if any, are ignored (with a warning).

genes must have N rows per transcript, where N is the nb of genes linked to the transcript (N will
be 1 most of the time). Its columns must be:

• tx_id: [optional] genes must have either a tx_id or a tx_name column but not both. Like
splicings$tx_id, this is a foreign key that links each row in the genes data frame to a unique
row in the transcripts data frame.

• tx_name: [optional] Can be used as an alternative to the genes$tx_id foreign key.
• gene_id: Gene ID. Character vector (or factor). No NAs.

Other columns, if any, are ignored (with a warning).

chrominfo must have 1 row per chromosome and the following columns:

• chrom: Chromosome name. Character vector (or factor) with no NAs and no duplicates.
• length: Chromosome length. Either all NAs or an integer vector with no NAs.
• is_circular: [optional] Chromosome circularity flag. Either all NAs or a logical vector with

no NAs.

Other columns, if any, are ignored (with a warning).

makeTranscriptDbFromBiomart 17

Value

A TranscriptDb object.

Author(s)

H. Pages

See Also

• makeTranscriptDbFromUCSC and makeTranscriptDbFromBiomart for convenient ways to
make TranscriptDb objects from UCSC or BioMart online resources.

• makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available as
a GFF3 or GTF file.

• The TranscriptDb class.

Examples

transcripts <- data.frame(
tx_id=1:3,
tx_chrom="chr1",
tx_strand=c("-", "+", "+"),
tx_start=c(1, 2001, 2001),
tx_end=c(999, 2199, 2199))

splicings <- data.frame(
tx_id=c(1L, 2L, 2L, 2L, 3L, 3L),
exon_rank=c(1, 1, 2, 3, 1, 2),
exon_start=c(1, 2001, 2101, 2131, 2001, 2131),
exon_end=c(999, 2085, 2144, 2199, 2085, 2199),
cds_start=c(1, 2022, 2101, 2131, NA, NA),
cds_end=c(999, 2085, 2144, 2193, NA, NA))

txdb <- makeTranscriptDb(transcripts, splicings)

makeTranscriptDbFromBiomart

Make a TranscriptDb object from annotations available on a BioMart
database

Description

The makeTranscriptDbFromBiomart function allows the user to make a TranscriptDb object from
transcript annotations available on a BioMart database.

18 makeTranscriptDbFromBiomart

Usage

getChromInfoFromBiomart(biomart="ensembl",
dataset="hsapiens_gene_ensembl",
id_prefix="ensembl_",
host="www.biomart.org",
port=80)

makeTranscriptDbFromBiomart(biomart="ensembl",
dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqs=DEFAULT_CIRC_SEQS,
filters="",
id_prefix="ensembl_",
host="www.biomart.org",
port=80,
miRBaseBuild=NA)

Arguments

biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl", "mmusculus_gene_ensembl",
"dmelanogaster_gene_ensembl", "celegans_gene_ensembl", "scerevisiae_gene_ensembl",
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say ’Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filters Additional filters to use in the BioMart query. Must be a named list. An example
is filters=as.list(c(source="entrez"))

host The host URL of the BioMart. Defaults to www.biomart.org.

port The port to use in the HTTP communication with the host.

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts
may have an attribute specified as "ensembl_transcript_id" whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
cessor.

Details

makeTranscriptDbFromBiomart is a convenience function that feeds data from a BioMart database

makeTranscriptDbFromBiomart 19

to the lower level makeTranscriptDb function. See ?makeTranscriptDbFromUCSC for a similar
function that feeds data from the UCSC source.

BioMart databases that are known to have compatible transcript annotations are:

• the most recent ensembl: ENSEMBL GENES (SANGER UK)

• the most recent bacterial_mart: ENSEMBL BACTERIA (EBI UK)

• the most recent fungal_mart: ENSEMBL FUNGAL (EBI UK)

• the most recent metazoa_mart: ENSEMBL METAZOA (EBI UK)

• the most recent plant_mart: ENSEMBL PLANT (EBI UK)

• the most recent protist_mart: ENSEMBL PROTISTS (EBI UK)

• the most recent ensembl_expressionmart: EURATMART (EBI UK)

Not all annotations will have CDS information.

Value

A TranscriptDb object.

Author(s)

M. Carlson and H. Pages

See Also

listMarts, useMart, listDatasets, DEFAULT_CIRC_SEQS, makeTranscriptDbFromUCSC, makeTranscriptDbFromGFF,
makeTranscriptDb, supportedMiRBaseBuildValues

Examples

Discover which datasets are available in the "ensembl" BioMart
database:
library("biomaRt")
head(listDatasets(useMart("ensembl")))

Retrieving an incomplete transcript dataset for Human from the
"ensembl" BioMart database:
transcript_ids <- c(

"ENST00000268655",
"ENST00000313243",
"ENST00000341724",
"ENST00000400839",
"ENST00000435657",
"ENST00000478783"

)
txdb <- makeTranscriptDbFromBiomart(transcript_ids=transcript_ids)
txdb # note that these annotations match the GRCh37 genome assembly

Now what if we want to use another mirror? We might make use of the
new host argument. But wait! If we use biomaRt, we can see that
this host has named the mart differently!

20 makeTranscriptDbFromGFF

listMarts(host="uswest.ensembl.org")
Therefore we must also change the name passed into the "mart"
argument thusly:
try(
txdb <- makeTranscriptDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",

transcript_ids=transcript_ids,
host="uswest.ensembl.org")

)
txdb

makeTranscriptDbFromGFF

Make a TranscriptDb object from annotations available as a GFF3 or
GTF file

Description

The makeTranscriptDbFromGFF function allows the user to make a TranscriptDb object from tran-
script annotations available as a GFF3 or GTF file.

Usage

makeTranscriptDbFromGFF(file,
format=c("gff3","gtf"),
exonRankAttributeName=NA,
gffGeneIdAttributeName=NA,
chrominfo=NA,
dataSource=NA,
species=NA,
circ_seqs=DEFAULT_CIRC_SEQS,
miRBaseBuild=NA,
useGenesAsTranscripts=FALSE)

Arguments

file path/file to be processed
format "gff3" or "gtf" depending on which file format you have to process
exonRankAttributeName

character(1) name of the attribute that defines the exon rank information, or NA
to indicate that exon ranks are inferred from order of occurrence in the GFF.

gffGeneIdAttributeName

an optional argument that can be used for gff style files ONLY. If the gff file
lacks rows to specify gene IDs but the mRNA rows of the gff file specify the
gene IDs via a named attribute,then passing the name of the attribute for this
argument can allow the file to still extract gene IDs that map to these transcripts.
If left blank, then the parser will try and extract rows that are named ’gene’ for
gene to transcript mappings when parsing a gff3 file. For gtf files this argument
is ignored entirely.

makeTranscriptDbFromGFF 21

chrominfo data frame containing information about the chromosomes. Will be passed to the
internal call to makeTranscriptDb. See ?makeTranscriptDb for the details.

dataSource Where did this data file originate? Please be as specific as possible.

species What is the Genus and species of this organism. Please use proper scientific
nomenclature for example: "Homo sapiens" or "Canis familiaris" and not "hu-
man" or "my fuzzy buddy". If properly written, this information may be used
by the software to help you out later.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
cessor.

useGenesAsTranscripts

This flag is normally off, but if enabled it will try to salvage a file that has no
RNA features by assuming that you can use the ranges available for the Gene
features in their place. Obviously, this is something you won’t want to do unless
you are dealing with something very simple like a prokaryote.

Details

makeTranscriptDbFromGFF is a convenience function that feeds data from the parsed file to the
lower level makeTranscriptDb function.

There are some real deficiencies in the gtf and the gff3 file formats to bear in mind when making
use of them. For gtf files the length of the transcripts is not normally encoded and so it has to be
inferred from the exon ranges presented. That’s not a horrible problem, but it bears mentioning for
the sake of full disclosure. And for gff3 files the situation is typically even worse since they usually
don’t encode any information about the exon rank within a transcript. This is a serious oversight
and so if you have an alternative to using this kind of data, you should really do so.

Some files will have an attribute defined to indicate the exon rank information. For GTF files this
is usually given as "exon_number", however you still must specify this argument if you don’t want
the code to try and infer the exon rank information. For gff3 files, we have not seen any examples
of this information encoded anywhere, but if you have a file with an attribute, you can still specify
this to avoid the inference.

Value

A TranscriptDb object.

Author(s)

M. Carlson

See Also

DEFAULT_CIRC_SEQS, makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart, makeTranscriptDb,
supportedMiRBaseBuildValues

22 makeTranscriptDbFromUCSC

Examples

TESTING GFF3
gffFile <- system.file("extdata","a.gff3",package="GenomicFeatures")
txdb <- makeTranscriptDbFromGFF(file=gffFile,

format="gff3",
exonRankAttributeName=NA,
dataSource="partial gtf file for Tomatoes for testing",
species="Solanum lycopersicum")

if(interactive()) {
saveDb(txdb,file="TESTGFF.sqlite")
}

TESTING GTF, this time specifying the chrominfo
gtfFile <- system.file("extdata","Aedes_aegypti.partial.gtf",

package="GenomicFeatures")
chrominfo <- data.frame(chrom = c(supercont1.1,supercont1.2),

length=c(5220442, 5300000),
is_circular=c(FALSE, FALSE))

txdb2 <- makeTranscriptDbFromGFF(file=gtfFile,
format="gtf",
exonRankAttributeName="exon_number",
chrominfo=chrominfo,
dataSource=paste("ftp://ftp.ensemblgenomes.org/pub/metazoa/",

"release-13/gtf/aedes_aegypti/",sep=""),
species="Aedes aegypti")

if(interactive()) {
saveDb(txdb2,file="TESTGTF.sqlite")

}

makeTranscriptDbFromUCSC

Make a TranscriptDb object from annotations available at the UCSC
Genome Browser

Description

The makeTranscriptDbFromUCSC function allows the user to make a TranscriptDb object from
transcript annotations available at the UCSC Genome Browser.

Usage

supportedUCSCtables()

getChromInfoFromUCSC(
genome,
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath")

makeTranscriptDbFromUCSC(
genome="hg18",

makeTranscriptDbFromUCSC 23

tablename="knownGene",
transcript_ids=NULL,
circ_seqs=DEFAULT_CIRC_SEQS,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath",
miRBaseBuild=NA)

Arguments

genome genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hg18".

tablename name of the UCSC table containing the transcript annotations to retrieve. Use
the supportedUCSCtables utility function to get the list of supported tables.
Note that not all tables are available for all genomes.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say ’Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

url,goldenPath_url

use to specify the location of an alternate UCSC Genome Browser.

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
cessor.

Details

makeTranscriptDbFromUCSC is a convenience function that feeds data from the UCSC source to
the lower level makeTranscriptDb function. See ?makeTranscriptDbFromBiomart for a similar
function that feeds data from a BioMart database.

Value

A TranscriptDb object.

Author(s)

M. Carlson and H. Pages

See Also

ucscGenomes, DEFAULT_CIRC_SEQS, makeTranscriptDbFromBiomart, makeTranscriptDbFromGFF,
makeTranscriptDb, supportedMiRBaseBuildValues

24 makeTxDbPackage

Examples

Display the list of genomes available at UCSC:
library(rtracklayer)
ucscGenomes()[, "db"]

Display the list of tables supported by makeTranscriptDbFromUCSC():
supportedUCSCtables()

Not run:
Retrieving a full transcript dataset for Yeast from UCSC:
txdb1 <- makeTranscriptDbFromUCSC(genome="sacCer2", tablename="ensGene")

End(Not run)

Retrieving an incomplete transcript dataset for Mouse from UCSC
(only transcripts linked to Entrez Gene ID 22290):
transcript_ids <- c(

"uc009uzf.1",
"uc009uzg.1",
"uc009uzh.1",
"uc009uzi.1",
"uc009uzj.1"

)

txdb2 <- makeTranscriptDbFromUCSC(genome="mm9", tablename="knownGene",
transcript_ids=transcript_ids)

txdb2

makeTxDbPackage Making a TranscriptDb packages from annotations available at the
UCSC Genome Browser, biomaRt or from another source.

Description

The makeTxDbPackageFromUCSC function allows the user to make a TranscriptDb object from tran-
script annotations available at the UCSC Genome Browser. The makeTxDbPackageFromBiomart
function allows the user to do the same thing as makeTxDbPackageFromUCSC except that the anno-
tations originate from biomaRt. Finally, the makeTxDbPackage function allows the user to make a
TranscriptDb object from transcript annotations that are in a custom transcript Database, such as
could be produced using makeTranscriptDb.

Usage

makeTxDbPackageFromUCSC(
version=,
maintainer,
author,
destDir=".",

makeTxDbPackage 25

license="Artistic-2.0",
genome="hg19",
tablename="knownGene",
transcript_ids=NULL,
circ_seqs=DEFAULT_CIRC_SEQS,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath",
miRBaseBuild=NA)

makeFDbPackageFromUCSC(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
track="tRNAs",
tablename="tRNAs",
columns = UCSCFeatureDbTableSchema(genome, track, tablename),
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath",
chromCol=NULL,
chromStartCol=NULL,
chromEndCol=NULL)

makeTxDbPackageFromBiomart(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
biomart="ensembl",
dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqs=DEFAULT_CIRC_SEQS,
miRBaseBuild=NA)

makeTxDbPackage(txdb,
version,

maintainer,
author,

destDir=".",
license="Artistic-2.0")

supportedMiRBaseBuildValues()

Arguments

version What is the version number for this package?

26 makeTxDbPackage

maintainer Who is the package maintainer? (must include email to be valid)

author Who is the creator of this package?

destDir A path where the package source should be assembled.

license What is the license (and it’s version)

biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl", "mmusculus_gene_ensembl",
"dmelanogaster_gene_ensembl", "celegans_gene_ensembl", "scerevisiae_gene_ensembl",
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

genome genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the transcript annotations to retrieve. Use
the supportedUCSCtables utility function to get the list of supported tables.
Note that not all tables are available for all genomes.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say ’Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath_url

use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

txdb A TranscriptDb object that represents a handle to a transcript database. This ob-
ject type is what is returned by makeTranscriptDbFromUCSC, makeTranscriptDbFromUCSC
or makeTranscriptDb

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuildValues.
By default, this value will be set to NA, which will inactivate the microRNAs ac-
cessor.

makeTxDbPackage 27

Details

makeTxDbPackageFromUCSC is a convenience function that calls both the makeTranscriptDbFromUCSC
and the makeTxDbPackage functions. The makeTxDbPackageFromBiomart follows a similar pattern
and calls the makeTranscriptDbFromBiomart and makeTxDbPackage functions. supportedMiRBaseBuildValues
is a convenience function that will list all the possible values for the miRBaseBuild argument.

Value

A TranscriptDb object.

Author(s)

M. Carlson

See Also

ucscGenomes, DEFAULT_CIRC_SEQS, makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart,
makeTranscriptDb supportedUCSCtables getChromInfoFromUCSC getChromInfoFromBiomart

Examples

First consider relevant helper/discovery functions:
Display the list of tables supported by makeTxDbPackageFromUCSC():
supportedUCSCtables()

Can also list all the possible values for the miRBaseBuild argument:
supportedMiRBaseBuildValues()

Next are examples of actually building a package:
Not run:
Makes a transcript package for Yeast from the ensGene table at UCSC:
makeTxDbPackageFromUCSC(version="0.01",

maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
genome="sacCer2",
tablename="ensGene")

Makes a transcript package from Human by using biomaRt and limited to a
small subset of the transcripts.
transcript_ids <- c(

"ENST00000400839",
"ENST00000400840",
"ENST00000478783",
"ENST00000435657",
"ENST00000268655",
"ENST00000313243",
"ENST00000341724")

makeTxDbPackageFromBiomart(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",

28 nearest-methods

transcript_ids=transcript_ids)

End(Not run)

nearest-methods Finding the nearest genomic range neighbor in a TranscriptDb

Description

The distance methods for TranscriptDb objects and subclasses.

Usage

S4 method for signature GenomicRanges,TranscriptDb
distance(x, y, ignore.strand=FALSE,

..., id, type=c("gene", "tx", "exon", "cds"))

Arguments

x The query GenomicRanges instance.

y For distance, a TranscriptDb instance. The id is used to extract ranges from
the TranscriptDb which are then used to compute the distance from x.

id A character vector the same length as x. The id must be identifiers in the
TranscriptDb object. type indicates what type of identifier id is.

type A character(1) describing the id. Must be one of ‘gene’, ‘tx’, ‘exon’ or ‘cds’.

ignore.strand A logical indicating if the strand of the ranges should be ignored. When TRUE,
strand is set to +.

... Additional arguments for methods.

Details

• distance: Returns the distance for each range in x to the range extracted from the TranscriptDb
object y. Values in id are matched to one of ‘gene_id’, ‘tx_id’, ‘exon_id’ or ‘cds_id’ identifiers
in the TranscriptDb and the corresponding ranges are extracted. The type argument specifies
which identifier is represented in id. The extracted ranges are used in the distance calculation
with the ranges in x.
The behavior of distance has changed in Bioconductor 2.12. See the man page ?distance
in IRanges for details.

Value

For distance, an integer vector of distances between the ranges in x and y.

regions 29

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

• nearest-methods man page in IRanges.

• nearest-methods man page in GenomicRanges.

Examples

distance()

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
gr <- GRanges(c("chr2L", "chr2R"),

IRanges(c(100000, 200000), width=100))
distance(gr, txdb, id=c("FBgn0259717", "FBgn0261501"), type="gene")
distance(gr, txdb, id=c("10000", "23000"), type="cds")

The ids must be in the appropriate order with respect to x.
distance(gr, txdb, id=c("4", "4097"), type="tx")

id "4" is on chr2L and "4097" is on chr2R.
transcripts(txdb, list(tx_id=c("4", "4097")))

If we reverse the id the chromosomes are incompatable with gr.
distance(gr, txdb, id=c("4097", "4"), type="tx")

distance() compares each x to the corresponding y.
If an id is not found in the TranscriptDb y will not
be the same lenth as x and an error is thrown.
Not run:
distance(gr, txdb, id=c("FBgn0000008", "INVALID"), type="gene") ## will fail

End(Not run)

regions Functions that compute genomic regions of interest.

Description

Functions that compute genomic regions of interest such as promotor, upstream regions etc, from
the genomic locations provided in a UCSC-style data frame.

WARNING: All the functions described in this man page are now defunct!

Please use transcripts, exons or intronsByTranscript on a TranscriptDb object instead.

30 saveFeatures

Usage

transcripts_deprecated(genes, proximal = 500, distal = 10000)
exons_deprecated(genes)
introns_deprecated(genes)

Arguments

genes A UCSC-style data frame i.e. a data frame with 1 row per transcript and at least
the following columns: "name", "chrom", "strand", "txStart", "txEnd",
"exonCount", "exonStarts", "exonEnds", "intronStarts" and "intronEnds".
A value in any of the last 4 columns must be a comma-separated list of integers.
Note that unlike what UCSC does the start values here must be 1-based, not
0-based.

proximal The number of bases on either side of TSS and 3’-end for the promoter and end
region, respectively.

distal The number of bases on either side for upstream/downstream, i.e. enhancer/silencer
regions.

Details

The assumption made for introns is that there must be more than one exon, and that the introns are
between the end of one exon and before the start of the next exon.

Value

All of these functions return a RangedData object with a gene column with the UCSC ID of
the gene. For transcripts_deprecated, each element corresponds to a transcript, and there
are columns for each type of region (promoter, threeprime, upstream, and downstream). For
exons_deprecated, each element corresponds to an exon. For introns_deprecated, each ele-
ment corresponds to an intron.

Author(s)

M. Lawrence.

See Also

transcripts, exons, intronsByTranscript, TranscriptDb-class

saveFeatures Methods to save and load the database contents for a TranscriptDb or
FeatureDb object.

saveFeatures 31

Description

These methods provide a way to dump a TranscriptDb or FeatureDb object to an SQLite file, and to
recreate that object from the saved file.

However, these methods are now deprecated and have been replaced by saveDb and loadDb.

Users are encouraged to switch to those other methods as the methods documented here will soon
be defunct.

Usage

saveFeatures(x, file)
loadFeatures(file)

Arguments

x A TranscriptDb or FeatureDb object.

file An SQLite Database filename.

Value

For loadFeatures only, a TranscriptDb or FeatureDb object is returned.

Author(s)

M. Carlson

See Also

saveDb, TranscriptDb, FeatureDb

Examples

Not run:
txdb <-
loadFeatures(system.file("extdata", "UCSC_knownGene_sample.sqlite",

package = "GenomicFeatures"))
txdb

End(Not run)

32 select-methods

select-methods Using the "select" interface on TranscriptDb objects

Description

select, columns and keys can be used together to extract data from a TranscriptDb object.

Details

In the code snippets below, x is a TranscriptDb object.

keytypes(x): allows the user to discover which keytypes can be passed in to select or keys and
the keytype argument.

keys(x, keytype, pattern, column, fuzzy): Return keys for the database contained in the
TranscriptDb object .
The keytype argument specifies the kind of keys that will be returned. By default keys will
return the "GENEID" keys for the database.
If keys is used with pattern, it will pattern match on the keytype.
But if the column argument is also provided along with the pattern argument, then pattern
will be matched against the values in column instead.
And if keys is called with column and no pattern argument, then it will return all keys that
have corresponding values in the column argument.
Thus, the behavior of keys all depends on how many arguments are specified.
Use of the fuzzy argument will toggle fuzzy matching to TRUE or FALSE. If pattern is not
used, fuzzy is ignored.

columns(x): Show which kinds of data can be returned for the TranscriptDb object.

select(x, keys, columns, keytype): When all the appropriate arguments are specified select
will retrieve the matching data as a data.frame based on parameters for selected keys and
columns and keytype arguments.

Author(s)

Marc Carlson

See Also

• AnnotationDb-class for more descriptsion of methods select,keytypes,keys and columns.

• transcripts, transcriptsBy, and transcriptsByOverlaps, for other ways to extract ge-
nomic features from a TranscriptDb object.

• The TranscriptDb class.

TranscriptDb-class 33

Examples

txdb_file <- system.file("extdata", "Biomart_Ensembl_sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)
txdb

find key types
keytypes(txdb)

list IDs that can be used to filter
head(keys(txdb, "GENEID"))
head(keys(txdb, "TXID"))
head(keys(txdb, "TXNAME"))

list columns that can be returned by select
columns(txdb)

call select
res <- select(txdb, head(keys(txdb, "GENEID")),

columns=c("GENEID","TXNAME"),
keytype="GENEID")

head(res)

TranscriptDb-class TranscriptDb objects

Description

The TranscriptDb class is a container for storing transcript annotations.

See ?FeatureDb for a more generic container for storing genomic locations of an arbitrary type of
genomic features.

See ?makeTranscriptDbFromUCSC and ?makeTranscriptDbFromBiomart for convenient ways to
make TranscriptDb objects from UCSC or BioMart online resources.

See ?makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available as
a GFF3 or GTF file.

Methods

In the code snippets below, x is a TranscriptDb object.

metadata(x): Return x’s metadata in a data frame.
seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences.

Note that, for now, the setter only supports replacement of the sequence names, i.e., except
for their sequence names (accessed with seqnames(value) and seqnames(seqinfo(x)), re-
spectively), Seqinfo objects value (supplied) and seqinfo(x) (current) must be identical.

isActiveSeq(x): Return the currently active sequences for this txdb object as a named logical
vector. Only active sequences will be tapped when using the supplied accessor methods.
Inactive sequences will be ignored. By default, all available sequences will be active.

34 TranscriptDb-class

isActiveSeq(x) <- value: Allows the user to change which sequences will be actively accessed
by the accessor methods by altering the contents of this named logical vector.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by
looking up seqlevels(x) against a seqname style database stored in the seqnames.db meta-
data package (required).

determineDefaultSeqnameStyle(x): Determine the default seqname style for the database in x.

as.list(x): Dumps the entire db into a list of data frames txdump that can be used in do.call(makeTranscriptDb, txdump)
to make the db again with no loss of information. Note that the transcripts are dumped in the
same order in all the data frames.

Author(s)

H. Pages, Marc Carlson

See Also

• The FeatureDb class for storing genomic locations of an arbitrary type of genomic features.

• makeTranscriptDbFromUCSC and makeTranscriptDbFromBiomart for convenient ways to
make TranscriptDb objects from UCSC or BioMart online resources.

• makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available as
a GFF3 or GTF file.

• saveDb and loadDb for saving and loading the database content of a TranscriptDb object.

• transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic
features from a TranscriptDb object.

• select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

• The Seqinfo class in the GenomicRanges package.

Examples

txdb_file <- system.file("extdata", "Biomart_Ensembl_sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)
txdb

Use of seqinfo
seqinfo(txdb)
seqlevels(txdb) # shortcut for seqlevels(seqinfo(txdb))
seqlengths(txdb) # shortcut for seqlengths(seqinfo(txdb))
isCircular(txdb) # shortcut for isCircular(seqinfo(txdb))
names(which(isCircular(txdb)))

Can set txdb so that only chr1 and chr2 are used by using the seqlevels
seqlevels(txdb, force=TRUE) <- c("1", "2")
And then you can restore the default seqlevels
txdb <- restoreSeqlevels(txdb)

transcripts 35

Use of as.list
txdump <- as.list(txdb)
txdump
txdb1 <- do.call(makeTranscriptDb, txdump)
stopifnot(identical(as.list(txdb1), txdump))

transcripts Extract genomic features from an object

Description

Generic functions to extract genomic features from an object. This page documents the methods for
TranscriptDb objects only.

Usage

transcripts(x, ...)
S4 method for signature TranscriptDb
transcripts(x, vals=NULL, columns=c("tx_id", "tx_name"))

exons(x, ...)
S4 method for signature TranscriptDb
exons(x, vals=NULL, columns="exon_id")

cds(x, ...)
S4 method for signature TranscriptDb
cds(x, vals=NULL, columns="cds_id")

genes(x, ...)
S4 method for signature TranscriptDb
genes(x, vals=NULL, columns="gene_id", single.strand.genes.only=TRUE)

#promoters(x, upstream=2000, downstream=200, ...)
S4 method for signature TranscriptDb
promoters(x, upstream=2000, downstream=200, ...)

disjointExons(x, ...)
S4 method for signature TranscriptDb
disjointExons(x, aggregateGenes=FALSE,

includeTranscripts=TRUE, ...)

microRNAs(x)
S4 method for signature TranscriptDb
microRNAs(x)

tRNAs(x)

36 transcripts

S4 method for signature TranscriptDb
tRNAs(x)

Arguments

x A TranscriptDb object.

... Arguments to be passed to or from methods.

vals Either NULL or a named list of vectors to be used to restrict the output. Valid
names for this list are: "gene_id", "tx_id", "tx_name", "tx_chrom", "tx_strand",
"exon_id", "exon_name", "exon_chrom", "exon_strand", "cds_id", "cds_name",
"cds_chrom", "cds_strand" and "exon_rank".

columns Columns to include in the output. Must be NULL or a character vector as given
by the columns method. With the following restrictions:

• "TXCHROM" and "TXSTRAND" are not allowed for transcripts.
• "EXONCHROM" and "EXONSTRAND" are not allowed for exons.
• "CDSCHROM" and "CDSSTRAND" are not allowed for cds.

If the vector is named, those names are used for the corresponding column in
the element metadata of the returned object.

single.strand.genes.only

TRUE or FALSE. If TRUE (the default), then genes that have exons located on both
strands of the same chromosome or on two different chromosomes are dropped.
In that case, the genes are returned in a GRanges object. Otherwise, all genes are
returned in a GRangesList object with the columns specified thru the columns
argument set as top level metadata columns. (Please keep in mind that the top
level metadata columns of a GRangesList object are not displayed by the show
method.)

upstream For promoters : An integer(1) value indicating the number of bases upstream
from the transcription start site. For additional details see ?promoters,GRanges-method.

downstream For promoters : An integer(1) value indicating the number of bases down-
stream from the transcription start site. For additional details see ?promoters,GRanges-method.

aggregateGenes For disjointExons : A logical. When FALSE (default) exon fragments that
overlap multiple genes are dropped. When TRUE, all fragments are kept and the
gene_id metadata column includes all gene ids that overlap the exon fragment.

includeTranscripts

For disjointExons : A logical. When TRUE (default) a tx_name metadata
column is included that lists all transcript names that overlap the exon fragment.

Details

These are the main functions for extracting transcript information from a TranscriptDb object.
With the exception of microRNAs, these methods can restrict the output based on categorical in-
formation. To restrict the output based on interval information, use the transcriptsByOverlaps,
exonsByOverlaps, and cdsByOverlaps functions.

The promoters function computes user-defined promoter regions for the transcripts in a TranscriptDb
object. The return object is a GRanges of promoter regions around the transcription start site the

transcripts 37

span of which is defined by upstream and downstream. For additional details on how the promoter
range is computed and the handling of + and - strands see ?promoters,GRanges-method.

disjointExons creates a GRanges of non-overlapping exon parts with metadata columns of gene_id
and exonic_part. Exon parts that overlap more than 1 gene can be dropped with aggregateGenes=FALSE.
When includeTranscripts=TRUE a tx_name metadata column is included that lists all transcript
names that overlap the exon fragment. This function replaces prepareAnnotationForDEXSeq in
the DEXSeq package.

Value

A GRanges object. The only exception being when genes is used with single.strand.genes.only=FALSE,
in which case a GRangesList object is returned.

Author(s)

M. Carlson, P. Aboyoun and H. Pages. disjointExons was contributed by Mike Love and Alejan-
dro Reyes.

See Also

• transcriptsBy and transcriptsByOverlaps for more ways to extract genomic features
from a TranscriptDb object.

• select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

• id2name for mapping TranscriptDb internal ids to external names for a given feature type.

• The TranscriptDb class.

Examples

transcripts(), exons(), genes():
txdb <- loadDb(system.file("extdata", "UCSC_knownGene_sample.sqlite",

package="GenomicFeatures"))
vals <- list(tx_chrom = c("chr3", "chr5"), tx_strand = "+")

transcripts(txdb, vals)

exons(txdb, vals=list(exon_id=1), columns=c("EXONID", "TXNAME"))
exons(txdb, vals=list(tx_name="uc009vip.1"), columns=c("EXONID",

"TXNAME"))

genes(txdb) # a GRanges object
cols <- c("tx_id", "tx_chrom", "tx_strand",

"exon_id", "exon_chrom", "exon_strand")
single_strand_genes <- genes(txdb, columns=cols)

Because weve returned single strand genes only, the "tx_chrom"
and "exon_chrom" metadata columns are guaranteed to match
seqnames(single_strand_genes):
stopifnot(identical(as.character(seqnames(single_strand_genes)),

as.character(mcols(single_strand_genes)$tx_chrom)))

38 transcriptsBy

stopifnot(identical(as.character(seqnames(single_strand_genes)),
as.character(mcols(single_strand_genes)$exon_chrom)))

and also the "tx_strand" and "exon_strand" metadata columns are
guaranteed to match strand(single_strand_genes):
stopifnot(identical(as.character(strand(single_strand_genes)),

as.character(mcols(single_strand_genes)$tx_strand)))
stopifnot(identical(as.character(strand(single_strand_genes)),

as.character(mcols(single_strand_genes)$exon_strand)))

all_genes <- genes(txdb, columns=cols, single.strand.genes.only=FALSE)
all_genes # a GRangesList object
multiple_strand_genes <- all_genes[elementLengths(all_genes) >= 2]
multiple_strand_genes
mcols(multiple_strand_genes)

microRNAs() :
Not run: library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(mirbase.db)
microRNAs(TxDb.Hsapiens.UCSC.hg19.knownGene)

End(Not run)

promoters() :
head(promoters(txdb, 100, 50))

transcriptsBy Extract and group genomic features of a given type

Description

Generic functions to extract genomic features of a given type grouped based on another type of
genomic feature. This page documents the methods for TranscriptDb objects only.

Usage

transcriptsBy(x, by=c("gene", "exon", "cds"), ...)
S4 method for signature TranscriptDb
transcriptsBy(x, by=c("gene", "exon", "cds"), use.names=FALSE)

exonsBy(x, by=c("tx", "gene"), ...)
S4 method for signature TranscriptDb
exonsBy(x, by=c("tx", "gene"), use.names=FALSE)

cdsBy(x, by=c("tx", "gene"), ...)
S4 method for signature TranscriptDb
cdsBy(x, by=c("tx", "gene"), use.names=FALSE)

intronsByTranscript(x, ...)
S4 method for signature TranscriptDb

transcriptsBy 39

intronsByTranscript(x, use.names=FALSE)

fiveUTRsByTranscript(x, ...)
S4 method for signature TranscriptDb
fiveUTRsByTranscript(x, use.names=FALSE)

threeUTRsByTranscript(x, ...)
S4 method for signature TranscriptDb
threeUTRsByTranscript(x, use.names=FALSE)

Arguments

x A TranscriptDb object.
... Arguments to be passed to or from methods.
by One of "gene", "exon", "cds" or "tx". Determines the grouping.
use.names Controls how to set the names of the returned GRangesList object. These func-

tions return all the features of a given type (e.g. all the exons) grouped by an-
other feature type (e.g. grouped by transcript) in a GRangesList object. By
default (i.e. if use.names is FALSE), the names of this GRangesList object (aka
the group names) are the internal ids of the features used for grouping (aka the
grouping features), which are guaranteed to be unique. If use.names is TRUE,
then the names of the grouping features are used instead of their internal ids.
For example, when grouping by transcript (by="tx"), the default group names
are the transcript internal ids ("tx_id"). But, if use.names=TRUE, the group
names are the transcript names ("tx_name"). Note that, unlike the feature ids,
the feature names are not guaranteed to be unique or even defined (they could
be all NAs). A warning is issued when this happens. See ?id2name for more in-
formation about feature internal ids and feature external names and how to map
the formers to the latters.
Finally, use.names=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene_name" column for
storing alternate gene names.

Details

These functions return a GRangesList object where the ranges within each of the elements are
ordered according to the following rule:
When using exonsBy and cdsBy with by = "tx", the ranges are returned in the order they appear in
the transcript, i.e. order by the splicing.exon_rank field in x’s internal database. In all other cases,
the ranges will be ordered by chromosome, strand, start, and end values.

Value

A GRangesList object.

Author(s)

M. Carlson, P. Aboyoun and H. Pages

40 transcriptsByOverlaps

See Also

• transcripts and transcriptsByOverlaps for more ways to extract genomic features from
a TranscriptDb object.

• select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

• id2name for mapping TranscriptDb internal ids to external names for a given feature type.

• The TranscriptDb class.

Examples

txdb_file <- system.file("extdata", "UCSC_knownGene_sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

Get the transcripts grouped by gene:
transcriptsBy(txdb, "gene")

Get the exons grouped by gene:
exonsBy(txdb, "gene")

Get the cds grouped by transcript:
cds_by_tx0 <- cdsBy(txdb, "tx")
With more informative group names:
cds_by_tx1 <- cdsBy(txdb, "tx", use.names=TRUE)
Note that cds_by_tx1 can also be obtained with:
names(cds_by_tx0) <- id2name(txdb, feature.type="tx")[names(cds_by_tx0)]
stopifnot(identical(cds_by_tx0, cds_by_tx1))

Get the introns grouped by transcript:
intronsByTranscript(txdb)

Get the 5 UTRs grouped by transcript:
fiveUTRsByTranscript(txdb)
fiveUTRsByTranscript(txdb, use.names=TRUE) # more informative group names

transcriptsByOverlaps Extract genomic features from an object based on their by genomic
location

Description

Generic functions to extract genomic features for specified genomic locations. This page documents
the methods for TranscriptDb objects only.

transcriptsByOverlaps 41

Usage

transcriptsByOverlaps(x, ranges,
maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"), ...)

S4 method for signature TranscriptDb
transcriptsByOverlaps(x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = c("tx_id", "tx_name"))

exonsByOverlaps(x, ranges,
maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"), ...)

S4 method for signature TranscriptDb
exonsByOverlaps(x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = "exon_id")

cdsByOverlaps(x, ranges,
maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"), ...)

S4 method for signature TranscriptDb
cdsByOverlaps(x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = "cds_id")

Arguments

x A TranscriptDb object.

... Arguments to be passed to or from methods.

ranges A GRanges object to restrict the output.

type How to perform the interval overlap operations of the ranges. See the findOverlaps
manual page in the GRanges package for more information.

maxgap A non-negative integer representing the maximum distance between a query
interval and a subject interval.

minoverlap Ignored.

columns Columns to include in the output. See ?transcripts for the possible values.

Details

These functions subset the results of transcripts, exons, and cds function calls with using the
results of findOverlaps calls based on the specified ranges.

42 transcriptsByOverlaps

Value

a GRanges object

Author(s)

P. Aboyoun

See Also

• transcripts and transcriptsBy for more ways to extract genomic features from a Tran-
scriptDb object.

• select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

• id2name for mapping TranscriptDb internal ids to external names for a given feature type.

• The TranscriptDb class.

Examples

txdb <- loadDb(system.file("extdata", "UCSC_knownGene_sample.sqlite",
package="GenomicFeatures"))

gr <- GRanges(seqnames = rep("chr1",2),
ranges = IRanges(start=c(500,10500), end=c(10000,30000)),
strand = strand(rep("-",2)))

transcriptsByOverlaps(txdb, gr)

Index

∗Topic classes
FeatureDb-class, 8
TranscriptDb-class, 33

∗Topic datasets
DEFAULT_CIRC_SEQS, 3

∗Topic manip
extractTranscriptsFromGenome, 4
getPromoterSeq, 10

∗Topic methods
FeatureDb-class, 8
getPromoterSeq, 10
select-methods, 32
TranscriptDb-class, 33
transcripts, 35
transcriptsBy, 38
transcriptsByOverlaps, 40

∗Topic utilities
nearest-methods, 28

AnnotationDb-class, 32
as-format-methods, 2
as.list,TranscriptDb-method

(TranscriptDb-class), 33
asBED,TranscriptDb-method

(as-format-methods), 2
asGFF,TranscriptDb-method

(as-format-methods), 2
available.genomes, 5, 6

BSgenome, 5, 10

cds, 41
cds (transcripts), 35
cds,TranscriptDb-method (transcripts),

35
cdsBy (transcriptsBy), 38
cdsBy,TranscriptDb-method

(transcriptsBy), 38
cdsByOverlaps, 36

cdsByOverlaps (transcriptsByOverlaps),
40

cdsByOverlaps,TranscriptDb-method
(transcriptsByOverlaps), 40

class:FeatureDb (FeatureDb-class), 8
class:TranscriptDb

(TranscriptDb-class), 33
columns,TranscriptDb-method

(select-methods), 32

DEFAULT_CIRC_SEQS, 3, 19, 21, 23, 27
Deprecated, 9
determineDefaultSeqnameStyle

(TranscriptDb-class), 33
determineDefaultSeqnameStyle,TranscriptDb-method

(TranscriptDb-class), 33
disjointExons (transcripts), 35
disjointExons,TranscriptDb-method

(transcripts), 35
distance,GenomicRanges,TranscriptDb-method

(nearest-methods), 28
DNAString, 5
DNAStringSet, 5, 10
DNAStringSet-class, 6
DNAStringSetList, 10

exons, 29, 30, 41
exons (transcripts), 35
exons,data.frame-method (transcripts),

35
exons,TranscriptDb-method

(transcripts), 35
exons_deprecated (regions), 29
exonsBy, 6
exonsBy (transcriptsBy), 38
exonsBy,TranscriptDb-method

(transcriptsBy), 38
exonsByOverlaps, 36
exonsByOverlaps

(transcriptsByOverlaps), 40

43

44 INDEX

exonsByOverlaps,TranscriptDb-method
(transcriptsByOverlaps), 40

export, 2
extractTranscripts

(extractTranscriptsFromGenome),
4

extractTranscriptsFromGenome, 4

FaFile, 10
FeatureDb, 9, 12, 14, 31, 33, 34
FeatureDb (FeatureDb-class), 8
FeatureDb-class, 8
features, 8, 9
features,FeatureDb-method (features), 9
findOverlaps, 41
fiveUTRsByTranscript (transcriptsBy), 38
fiveUTRsByTranscript,TranscriptDb-method

(transcriptsBy), 38

genes (transcripts), 35
genes,TranscriptDb-method

(transcripts), 35
GenomicFeatures-deprecated, 9
GenomicRanges, 28
getChromInfoFromBiomart, 27
getChromInfoFromBiomart

(makeTranscriptDbFromBiomart),
17

getChromInfoFromUCSC, 27
getChromInfoFromUCSC

(makeTranscriptDbFromUCSC), 22
getPromoterSeq, 10
getPromoterSeq,GRanges-method

(getPromoterSeq), 10
getPromoterSeq,GRangesList-method

(getPromoterSeq), 10
getSeq, 11
GRanges, 2, 10, 36, 37, 41
GRangesList, 4, 5, 10, 36, 37, 39
GRangesList-class, 6

id2name, 11, 37, 39, 40, 42
IntegerList, 5
intra-range-methods, 11
introns_deprecated (regions), 29
intronsByTranscript, 29, 30
intronsByTranscript (transcriptsBy), 38
intronsByTranscript,TranscriptDb-method

(transcriptsBy), 38

isActiveSeq (TranscriptDb-class), 33
isActiveSeq,TranscriptDb-method

(TranscriptDb-class), 33
isActiveSeq<- (TranscriptDb-class), 33
isActiveSeq<-,TranscriptDb-method

(TranscriptDb-class), 33

keys,TranscriptDb-method
(select-methods), 32

keytypes,TranscriptDb-method
(select-methods), 32

listDatasets, 19
listMarts, 18, 19, 26
loadDb, 8, 31, 34
loadFeatures (saveFeatures), 30

makeFDbPackageFromUCSC
(makeTxDbPackage), 24

makeFeatureDbFromUCSC, 8, 12
makeTranscriptDb, 15, 19, 21, 23, 27
makeTranscriptDbFromBiomart, 3, 15, 17,

17, 21, 23, 27, 33, 34
makeTranscriptDbFromGFF, 17, 19, 20, 23,

33, 34
makeTranscriptDbFromUCSC, 3, 15, 17, 19,

21, 22, 27, 33, 34
makeTxDbPackage, 24, 27
makeTxDbPackageFromBiomart

(makeTxDbPackage), 24
makeTxDbPackageFromUCSC

(makeTxDbPackage), 24
MaskedDNAString, 5
microRNAs (transcripts), 35
microRNAs,TranscriptDb-method

(transcripts), 35

nearest-methods, 28, 29

promoters,TranscriptDb-method
(transcripts), 35

RangedData, 30
regions, 29

saveDb, 8, 31, 34
saveFeatures, 30
saveFeatures,FeatureDb-method

(saveFeatures), 30

INDEX 45

saveFeatures,TranscriptDb-method
(saveFeatures), 30

select,TranscriptDb-method
(select-methods), 32

select-methods, 32, 34, 37, 40, 42
Seqinfo, 33, 34
seqinfo,TranscriptDb-method

(TranscriptDb-class), 33
seqinfo<-,TranscriptDb-method

(TranscriptDb-class), 33
sortExonsByRank

(extractTranscriptsFromGenome),
4

supportedMiRBaseBuildValues, 19, 21, 23
supportedMiRBaseBuildValues

(makeTxDbPackage), 24
supportedUCSCFeatureDbTables

(makeFeatureDbFromUCSC), 12
supportedUCSCFeatureDbTracks

(makeFeatureDbFromUCSC), 12
supportedUCSCtables, 27
supportedUCSCtables

(makeTranscriptDbFromUCSC), 22

threeUTRsByTranscript (transcriptsBy),
38

threeUTRsByTranscript,TranscriptDb-method
(transcriptsBy), 38

TranscriptDb, 2, 4, 5, 8, 11, 12, 15, 17–24,
26–29, 31, 32, 35–42

TranscriptDb (TranscriptDb-class), 33
TranscriptDb-class, 6, 30, 33
transcriptLocs2refLocs

(extractTranscriptsFromGenome),
4

transcripts, 12, 29, 30, 32, 34, 35, 40–42
transcripts,data.frame-method

(transcripts), 35
transcripts,TranscriptDb-method

(transcripts), 35
transcripts_deprecated (regions), 29
transcriptsBy, 12, 32, 34, 37, 38, 42
transcriptsBy,TranscriptDb-method

(transcriptsBy), 38
transcriptsByOverlaps, 12, 32, 34, 36, 37,

40, 40
transcriptsByOverlaps,TranscriptDb-method

(transcriptsByOverlaps), 40

transcriptWidths
(extractTranscriptsFromGenome),
4

translate, 6
tRNAs (transcripts), 35
tRNAs,TranscriptDb-method

(transcripts), 35

UCSCFeatureDbTableSchema
(makeFeatureDbFromUCSC), 12

ucscGenomes, 13, 14, 23, 26, 27
useMart, 19

	as-format-methods
	DEFAULT_CIRC_SEQS
	extractTranscriptsFromGenome
	FeatureDb-class
	features
	GenomicFeatures-deprecated
	getPromoterSeq
	id2name
	makeFeatureDbFromUCSC
	makeTranscriptDb
	makeTranscriptDbFromBiomart
	makeTranscriptDbFromGFF
	makeTranscriptDbFromUCSC
	makeTxDbPackage
	nearest-methods
	regions
	saveFeatures
	select-methods
	TranscriptDb-class
	transcripts
	transcriptsBy
	transcriptsByOverlaps
	Index

