Likelihood calculations for vsn

Wolfgang Huber

April 3, 2013

Contents

1 Introduction

This vignette contains the computations that underlie the numerical code of vsn. If you are a new user and looking for an introduction on how to use vsn, please refer to the vignette Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model

$$
\begin{equation*}
\operatorname{arsinh}\left(f\left(b_{i}\right) \cdot y_{k i}+a_{i}\right)=\mu_{k}+\varepsilon_{k i} \tag{1}
\end{equation*}
$$

where μ_{k}, for $k=1, \ldots, n$, and a_{i}, b_{i}, for $i=1, \ldots, d$ are real-valued parameters, f is a function $\mathbb{R} \rightarrow \mathbb{R}$ (see below), and $\varepsilon_{k i}$ are i.i.d. Normal with mean 0 and variance $\sigma^{2} . y_{k i}$ are the data. In applications to μ array data, k indexes the features and i the arrays and/or colour channels.

Examples for f are $f(b)=b$ and $f(b)=e^{b}$. The former is the most obvious choice; in that case we will usually need to require $b_{i}>0$. The choice $f(b)=e^{b}$ assures that the factor in front of $y_{k i}$ is positive for all $b \in \mathbb{R}$, and as it turns out, simplifies some of the computations.

In the following calculations, I will also use the notation

$$
\begin{align*}
Y \equiv Y(y, a, b) & =f(b) \cdot y+a \tag{2}\\
h \equiv h(y, a, b) & =\operatorname{arsinh}(f(b) \cdot y+a) . \tag{3}
\end{align*}
$$

The probability of the data $\left(y_{k i}\right)_{k=1 \ldots n, i=1 \ldots d}$ lying in a certain volume element of y space (hyperrectangle with sides $\left[y_{k i}^{\alpha}, y_{k i}^{\beta}\right]$) is

$$
\begin{equation*}
P=\prod_{k=1}^{n} \prod_{i=1}^{d} \int_{y_{k i}^{\alpha}}^{y_{k i}^{\beta}} d y_{k i} p_{\text {Normal }}\left(h\left(y_{k i}\right), \mu_{k}, \sigma^{2}\right) \frac{d h}{d y}\left(y_{k i}\right) \tag{4}
\end{equation*}
$$

where μ_{k} is the expectation value for feature k and σ^{2} the variance.
With

$$
\begin{equation*}
p_{\text {Normal }}\left(x, \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{5}
\end{equation*}
$$

the likelihood is

$$
\begin{equation*}
L=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n d} \prod_{k=1}^{n} \prod_{i=1}^{d} \exp \left(-\frac{\left(h\left(y_{k i}\right)-\mu_{k}\right)^{2}}{2 \sigma^{2}}\right) \cdot \frac{d h}{d y}\left(y_{k i}\right) . \tag{6}
\end{equation*}
$$

For the following, I will need the derivatives

$$
\begin{align*}
\frac{\partial Y}{\partial a} & =1 \tag{7}\\
\frac{\partial Y}{\partial b} & =y \cdot f^{\prime}(b) \tag{8}\\
\frac{d h}{d y} & =\frac{f(b)}{\sqrt{1+(f(b) y+a)^{2}}}=\frac{f(b)}{\sqrt{1+Y^{2}}} \tag{9}\\
\frac{\partial h}{\partial a} & =\frac{1}{\sqrt{1+Y^{2}}} \tag{10}\\
\frac{\partial h}{\partial b} & =\frac{y}{\sqrt{1+Y^{2}}} \cdot f^{\prime}(b) \tag{11}
\end{align*}
$$

Note that for $f(b)=b$, we have $f^{\prime}(b)=1$, and for $f(b)=e^{b}, f^{\prime}(b)=f(b)=e^{b}$.

3 Likelihood for Incremental Normalization

Here, incremental normalization means that the model parameters μ_{1}, \ldots, μ_{n} and σ^{2} are already known from a fit to a previous set of μ arrays, i.e. a set of reference arrays. See Section ?? for the profile likelihood approach that is used if μ_{1}, \ldots, μ_{n} and σ^{2} are not known and need to be estimated from the same data. Versions ≥ 2.0 of the vsn package implement both of these approaches; in versions 1.X only the profile likelihood approach was implemented, and it was described in the initial publication [?].

First, let us note that the likelihood (??) is simply a product of independent terms for different i. We can optimize the parameters $\left(a_{i}, b_{i}\right)$ separately for each $i=1, \ldots, d$. From the likelihood (??) we get the i-th negative log-likelihood

$$
\begin{align*}
-\log (L) & =\sum_{i=1}^{d}-L L_{i} \tag{12}\\
-L L_{i} & =\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)+\sum_{k=1}^{n}\left(\frac{\left(h\left(y_{k i}\right)-\mu_{k}\right)^{2}}{2 \sigma^{2}}+\log \frac{\sqrt{1+Y_{k i}^{2}}}{f\left(b_{i}\right)}\right) \tag{13}
\end{align*}
$$

$$
\begin{equation*}
=\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-n \log f\left(b_{i}\right)+\sum_{k=1}^{n}\left(\frac{\left(h\left(y_{k i}\right)-\mu_{k}\right)^{2}}{2 \sigma^{2}}+\frac{1}{2} \log \left(1+Y_{k i}^{2}\right)\right)(1 \tag{14}
\end{equation*}
$$

This is what we want to optimize as a function of a_{i} and b_{i}. The optimizer benefits from the derivatives. The derivative with respect to a_{i} is

$$
\begin{align*}
\frac{\partial}{\partial a_{i}}\left(-L L_{i}\right) & =\sum_{k=1}^{n}\left(\frac{h\left(y_{k i}\right)-\mu_{k}}{\sigma^{2}}+\frac{Y_{k i}}{\sqrt{1+Y_{k i}^{2}}}\right) \cdot \frac{1}{\sqrt{1+Y_{k i}^{2}}} \\
& =\sum_{k=1}^{n}\left(\frac{r_{k i}}{\sigma^{2}}+A_{k i} Y_{k i}\right) A_{k i} \tag{15}
\end{align*}
$$

and with respect to b_{i}

$$
\begin{align*}
\frac{\partial}{\partial b_{i}}\left(-L L_{i}\right) & =-n \frac{f^{\prime}\left(b_{i}\right)}{f\left(b_{i}\right)}+\sum_{k=1}^{n}\left(\frac{h\left(y_{k i}\right)-\mu_{k}}{\sigma^{2}}+\frac{Y_{k i}}{\sqrt{1+Y_{k i}^{2}}}\right) \cdot \frac{y_{k i}}{\sqrt{1+Y_{k i}^{2}}} \cdot f^{\prime}\left(b_{i}\right) \\
& =-n \frac{f^{\prime}\left(b_{i}\right)}{f\left(b_{i}\right)}+f^{\prime}\left(b_{i}\right) \sum_{k=1}^{n}\left(\frac{r_{k i}}{\sigma^{2}}+A_{k i} Y_{k i}\right) A_{k i} y_{k i} \tag{16}
\end{align*}
$$

Here, I have introduced the following shorthand notation for the "intermediate results" terms

$$
\begin{align*}
r_{k i} & =h\left(y_{k i}\right)-\mu_{k} \tag{17}\\
A_{k i} & =\frac{1}{\sqrt{1+Y_{k i}^{2}}} \tag{18}
\end{align*}
$$

Variables for these intermediate values are also used in the C code to organise the computations of the gradient.

4 Profile Likelihood

If μ_{1}, \ldots, μ_{n} and σ^{2} are not already known, we can plug in their maximum likelihood estimates, obtained from optimizing $L L$ for μ_{1}, \ldots, μ_{n} and σ^{2} :

$$
\begin{align*}
\hat{\mu}_{k} & =\frac{1}{d} \sum_{j=1}^{d} h\left(y_{k j}\right) \tag{19}\\
\hat{\sigma}^{2} & =\frac{1}{n d} \sum_{k=1}^{n} \sum_{j=1}^{d}\left(h\left(y_{k j}\right)-\hat{\mu}_{k}\right)^{2} \tag{20}
\end{align*}
$$

into the negative log-likelihood. The result is called the negative profile log-likelihood

$$
\begin{equation*}
-P L L=\frac{n d}{2} \log \left(2 \pi \hat{\sigma}^{2}\right)+\frac{n d}{2}-n \sum_{j=1}^{d} \log f\left(b_{j}\right)+\frac{1}{2} \sum_{k=1}^{n} \sum_{j=1}^{d} \log \sqrt{1+Y_{k j}^{2}} . \tag{21}
\end{equation*}
$$

Note that this no longer decomposes into a sum of terms for each j that are independent of each other - the terms for different j are coupled through Equations (??) and (??). We need the following derivatives.

$$
\begin{align*}
\frac{\partial \hat{\sigma}^{2}}{\partial a_{i}} & =\frac{2}{n d} \sum_{k=1}^{n} r_{k i} \frac{\partial h\left(y_{k i}\right)}{\partial a_{i}} \\
& =\frac{2}{n d} \sum_{k=1}^{n} r_{k i} A_{k i} \tag{22}\\
\frac{\partial \hat{\sigma}^{2}}{\partial b_{i}} & =\frac{2}{n d} \cdot f^{\prime}\left(b_{i}\right) \sum_{k=1}^{n} r_{k i} A_{k i} y_{k i} \tag{23}
\end{align*}
$$

So, finally

$$
\begin{align*}
\frac{\partial}{\partial a_{i}}(-P L L) & =\frac{n d}{2 \hat{\sigma}^{2}} \cdot \frac{\partial \hat{\sigma}^{2}}{\partial a_{i}}+\sum_{k=1}^{n} A_{k i}^{2} Y_{k i} \\
& =\sum_{k=1}^{n}\left(\frac{r_{k i}}{\hat{\sigma}^{2}}+A_{k i} Y_{k i}\right) A_{k i} \tag{24}\\
\frac{\partial}{\partial b_{i}}(-P L L) & =-n \frac{f^{\prime}\left(b_{i}\right)}{f\left(b_{i}\right)}+f^{\prime}\left(b_{i}\right) \sum_{k=1}^{n}\left(\frac{r_{k i}}{\hat{\sigma}^{2}}+A_{k i} Y_{k i}\right) A_{k i} y_{k i} \tag{25}
\end{align*}
$$

5 Summary

Likelihoods, from Equations (??) and (??):

$$
\begin{align*}
& -L L_{i}=\underbrace{\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)}_{\text {scale }}+\underbrace{\sum_{k=1}^{n} \frac{\left(h\left(y_{k i}\right)-\mu_{k}\right)^{2}}{2 \sigma^{2}}}_{\text {residuals }} \underbrace{-n \log f\left(b_{i}\right)+\frac{1}{2} \sum_{k=1}^{n} \log \left(1+Y_{k i}^{2}\right)}_{\text {jacobian }} \tag{26}\\
& -P L L=\underbrace{\frac{n d}{2} \log \left(2 \pi \hat{\sigma}^{2}\right)}_{\text {scale }}+\underbrace{\frac{n d}{2}}_{\text {residuals }}+\underbrace{\sum_{i=1}^{d}\left(-n \log f\left(b_{i}\right)+\frac{1}{2} \sum_{k=1}^{n} \log \left(1+Y_{k i}^{2}\right)\right)}_{\text {jacobian }} \tag{27}
\end{align*}
$$

The computations in the C code are organised into steps for computing the terms "scale", "residuals" and "jacobian".

Partial derivatives with respect to a_{i}, from Equations (??) and (??):

$$
\begin{align*}
\frac{\partial}{\partial a_{i}}\left(-L L_{i}\right) & =\sum_{k=1}^{n}\left(\frac{r_{k i}}{\sigma^{2}}+A_{k i} Y_{k i}\right) A_{k i} \tag{28}\\
\frac{\partial}{\partial a_{i}}(-P L L) & =\sum_{k=1}^{n}\left(\frac{r_{k i}}{\hat{\sigma}^{2}}+A_{k i} Y_{k i}\right) A_{k i} \tag{29}
\end{align*}
$$

Partial derivatives with respect to b_{i}, from Equations (??) and (??):

$$
\begin{align*}
\frac{\partial}{\partial b_{i}}\left(-L L_{i}\right) & =-n \frac{f^{\prime}\left(b_{i}\right)}{f\left(b_{i}\right)}+f^{\prime}\left(b_{i}\right) \sum_{k=1}^{n}\left(\frac{r_{k i}}{\sigma^{2}}+A_{k i} Y_{k i}\right) A_{k i} y_{k i} \tag{30}\\
\frac{\partial}{\partial b_{i}}(-P L L) & =-n \frac{f^{\prime}\left(b_{i}\right)}{f\left(b_{i}\right)}+f^{\prime}\left(b_{i}\right) \sum_{k=1}^{n}\left(\frac{r_{k i}}{\hat{\sigma}^{2}}+A_{k i} Y_{k i}\right) A_{k i} y_{k i} . \tag{31}
\end{align*}
$$

Note that the terms have many similarities - this is used in the implementation in the C code.

References

[1] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance stablization applied to microarray data calibration and to quantification of differential expression. Bioinformatics, 18:S96-S104, 2002.
[2] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter estimation for the calibration and variance stabilization of microarray data. Statistical Applications in Genetics and Molecular Biology, Vol. 2: No. 1, Article 3, 2003. http://www.bepress.com/sagmb/vol2/iss1/art3

