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1 Summary
The analysis of microbiological communities brings many challenges: the integration of many different types of
data with methods from ecology, genetics, phylogenetics, network analysis, visualization and testing. The data itself
may originate from widely different sources, such as the microbiomes of humans, soils, surface and ocean waters,
wastewater treatment plants, industrial facilities, and so on; and as a result, these varied sample types may have
very different forms and scales of related data that is extremely dependent upon the experiment and its question(s).
The phyloseq package is a tool to import, store, analyze, and graphically display complex phylogenetic sequencing
data that has already been clustered into Operational Taxonomic Units (OTUs), especially when there is associated
sample data, phylogenetic tree, and/or taxonomic assignment of the OTUs. This package leverages many of the tools
available in R for ecology and phylogenetic analysis (vegan, ade4, ape, picante), while also using advanced/flexible
graphic systems (ggplot2) to easily produce publication-quality graphics of complex phylogenetic data. phyloseq uses
a specialized system of S4 classes to store all related phylogenetic sequencing data as single experiment-level object,
making it easier to share data and reproduce analyses. In general, phyloseq seeks to facilitate the use of R for efficient
interactive and reproducible analysis of OTU-clustered high-throughput phylogenetic sequencing data.

2 About this vignette
A separate vignette is included within the phyloseq-package that describes the basics of importing pre-clustered phylo-
genetic sequencing data, data filtering, as well as some transformations and some additional details about the package
and installation. A quick way to load it is:

vignette("phyloseq_basics")

By contrast, this vignette is intended to provide functional examples of the analysis tools and wrappers included in
phyloseq. All necessary code for performing the analysis and producing graphics will be included with its description,
and the focus will be on the use of example data that is included and documented within the phyloseq-package.

Let’s start by loading the phyloseq-package:

library("phyloseq")
library("ggplot2")

And because we will show examples of custom modifications to ggplot2 plots, we also loaded ggplot2 as
well.

3 Data
To facilitate testing and exploration of tools in phyloseq, this package includes example data from published studies.
Many of the examples in this vignette use either the GlobalPatterns or enterotype datasets as source data.
The GlobalPatterns data was described in an article in PNAS in 2011 [1], and compares the microbial commu-
nities of 25 environmental samples and three known “mock communities” — a total of 9 sample types — at a depth
averaging 3.1 million reads per sample. The enterotype dataset was described in a 2011 article in Nature [2],
which compares the faecal microbial communities from 22 subjects using complete shotgun DNA sequencing. The
authors further compare these microbial communities with the faecal communities of subjects from other studies, for
a total of 280 faecal samples / subjects, and 553 genera. Sourcing data from different studies invariable leads to gaps
in the data for certain variables, and this is easily handled by R’s core NA features.

Because this data is included in the package, the examples can easily be run on your own computer using the
code shown in this vignette. The data is loaded into memory using the data command. Let’s start by loading the
GlobalPatterns data.
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Later on we will use an additional categorical designation — human versus non-human associated samples —
that was not in the original dataset. Now is a good time to add it as an explicit variable of the sample data, and
because we don’t want to type long words over and over, we’ll choose a shorter name for this modified version of
GlobalPatterns, call it GP, and also remove a handful of taxa that are not present in any of the samples included
in this dataset (probably an artifact):

# prune OTUs that are not present in at least one sample
GP <- prune_species(taxa_sums(GlobalPatterns) > 0, GlobalPatterns)
# Define a human-associated versus non-human categorical variable:
human <- get_variable(GP, "SampleType") %in% c("Feces", "Mock", "Skin", "Tongue")
# Add new human variable to sample data:
sample_data(GP)$human <- factor(human)

4 Simple exploratory graphics

4.1 Easy Richness Estimates
We can easily create a complex graphic that compares the richness estimates of samples from different environment
types in the GlobalPatterns dataset, using the plot richness function. Note that it is important to use raw
(untrimmed) OTU-clustered data when performing richness estimates, as they are highly dependent on the number of
singletons in a sample.

(p <- plot_richness(GP, "human", "SampleType"))
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p + geom_boxplot(data = p$data, aes(x = human, y = value, color = NULL), alpha = 0.1)
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Figure 1: Estimates of the species richness of samples in the “Global Patterns” dataset. Each
panel shows a different type of “estimate”. S.obs, observed richness; S.chao1, Chao1 esti-
mate; S.ACE, an ACE estimate. Individual color-shaded points and brackets represent the richness
estimate and the theoretical standard error range associated with that estimate, respectively. The
colors group the sample-sources into “types”. Within each panel, the samples are further organized
into human-associated (TRUE) or not (FALSE), and a boxplot is overlayed on top of this for the
two groups, illustrating that these human-associated samples are less rich than the environmental
samples (although the type of environment appears to matter a great deal as well).
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4.2 Exploratory tree plots
phyloseq also contains a method for easily plotting an annotated phylogenetic tree with information regarding the
sample in which a particular taxa was observed, and optionally the number of individuals that were observed.

For the sake of creating a readable tree, let’s subset the data to just the Chlamydiae phylum, which consists of
obligate intracellular pathogens and is present in only a subset of environments in this dataset.

GP.chl <- subset_species(GP, Phylum == "Chlamydiae")

And now we will create the tree graphic form this subset of GlobalPatterns, shading by the “SampleType”
variable, which indicates the environment category from which the microbiome samples originated. The following
command also takes the option of labeling the number of individuals observed in each sample (if at all) of each taxa.
The symbols are slightly enlarged as the number of individuals increases.

plot_tree(GP.chl, color = "SampleType", shape = "Family", label.tips = "Genus",
size = "abundance")
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Figure 2: Phylogenetic tree representation of the Chlamydiae species in the mi-
crobiome samples of the “Global Patterns” dataset [1].
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4.3 Exploratory bar plots
In the following example we use the included “enterotype” dataset [2].

data(enterotype)

We start with a simple rank-abundance barplot, using the cumulative fractional abundance of each OTU in the
dataset. In the enterotype dataset, the available published data are simplified as sample-wise fractional occurrences,
rather than counts of individuals1, and OTUs are clustered/labeled at the genus level, but no other taxonomic assign-
ment is available. For the barplot in Figure 3, we further normalize by the total number of samples (280).

par(mar = c(10, 4, 4, 2) + 0.1) # make more room on bottom margin
N <- 30
barplot(sort(taxa_sums(enterotype), TRUE)[1:N]/nsamples(enterotype), las = 2)
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Figure 3: An example exploratory barplot using base R graphics and the
taxa sums and nsamples functions.

Note that this first barplot is clipped at the 30th OTU. This was chosen because ntaxa(enterotype) = 553
1Unfortunate, as this means we lose information about the total number of reads and associated confidences, ability to do more sophisticated

richness estimates, etc. For example, knowing that we observed 1 sequence read of a species out of 100 total reads means something very different
from observing 10,000 reads out of 1,000,000 total.
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OTUs would not be legible on the plot. As you can see, the relative abundances have decreased dramatically by the
10th-ranked OTU.

So what are these OTUs? In the enterotype dataset, only a single taxonomic rank type is present:

rank_names(enterotype)

## [1] "Genus"

This means the OTUs in this dataset have been grouped at the level of genera, and no other taxonomic group-
ing/transformation is possible without additional information (like might be present in a phylogenetic tree, or with
further taxonomic classification analysis).

We need to know which taxonomic rank classifiers, if any, we have available to specify in the second barplot
function in this example, plot bar(). We have already observed how quickly the abundance decreases with rank,
so wo we will subset the enterotype dataset to the most abundant N taxa in order to make the barplot legible on this
page.

TopNOTUs <- names(sort(taxa_sums(enterotype), TRUE)[1:10])
ent10 <- prune_species(TopNOTUs, enterotype)
print(ent10)

## phyloseq-class experiment-level object
## OTU Table: [10 taxa and 280 samples]
## taxa are rows
## Sample Data: [280 samples by 9 sample variables]:
## Taxonomy Table: [10 taxa by 1 taxonomic ranks]:

Note also that there are 280 samples in this dataset, and so a remaining challenge is to consolidate these samples
into meaningful groups. A good place to look is the available sample variables, which in most cases will carry more
“meaning” than the sample names alone.

sample_variables(ent10)

## [1] "Enterotype" "Sample_ID" "SeqTech" "SampleID"
## [5] "Project" "Nationality" "Gender" "Age"
## [9] "ClinicalStatus"

The parameters to plot bar in the following code-chunk were chosen after various trials. We suggest that you
also try different parameter settings while you’re exploring different features of the data. In addition to the variables
names of sample data, the plot bar() function recognizes the names of taxonomic ranks (if present). See the
help documentation and further details in the examples and on the wiki page. In this example we have also elected to
organize data by “facets” (separate, adjacent sub-plots) according to the genus of each OTU. Within each genus facet,
the data is further separated by sequencing technology, and the enterotype label for the sample from which each OTU
originated is indicated by fill color. Abundance values from different samples and OTUs but having the same variables
mapped to the horizontal (x) axis are sorted and stacked, with thin horizontal lines designating the boundaries. With
this display it is very clear that the choice of sequencing technology had a large effect on which genera were detected,
as well as the fraction of OTUs that were assigned to a Genus.

Figure 4 summarizes quantitatively the increased abundances of Bacteroides and Prevotella in the Enterotypes 1
and 2, respectively. Interestingly, a large relative abundance of Blautia was observed for Enterotype 3, but only from
454-pyrosequencing data sets, not the Illumina or Sanger datasets. This suggests the increased Blautia might actually
be an artifact. Similarly, Prevotella appears to be one of the most abundant genera in the Illumina-sequenced samples
among Enterotype 3, but this is not reproduced in the 454-pyrosequencing or Sanger sequencing data.
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plot_bar(ent10, "SeqTech", fill = "Enterotype", facet_grid = ˜Genus)
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Figure 4: An example exploratory bar plot using the plot bar() function. In this case we have faceted the data (abundance
values) according to the genera of each OTU. The subset of OTUs that have not been assigned to a specific genus are in the NA panel.
Within each facet, the data is further separated by sequencing technology, and each OTU is shaded according to the enterotype of
the sample it form which it came. Abundance values from different samples and OTUs but having the same variables mapped to
the horizontal (x) axis are sorted and stacked, with thin horizontal lines designating the boundaries.
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5 Exploratory analysis and graphics

5.1 Exploratory Heat Map
As the number of taxa in a dataset gets very large, the ability to effectively display all of the elements of the data
becomes compromised, and a heatmap representation is no exception. It can also be time-consuming to render. To
address both these issues, we show an example in which we have subsetted the Global Patterns dataset to a manageable
portion, in this case, the Crenarchaeota phylum.

data("GlobalPatterns")
gpac <- subset_species(GlobalPatterns, Phylum == "Crenarchaeota")
(p <- plot_heatmap(gpac, "NMDS", "bray", "SampleType", "Family"))

Note that it is possible to order the sample/species indices by any of the ordination methods supported in the
ordinate function; and also that the color scheme can be modified with additional arguments. For additional details
and examples, try the function-level documentation in the phyloseq-package itself, or the wiki-page showing detailed
code/plot examples for heat maps at:

https://github.com/joey711/phyloseq/wiki/plot_heatmap.
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Figure 5: Heat map representation of the Crenarchaeota phylum abundance pat-
tern across different sample types in the Global Patterns dataset.
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5.2 Microbiome Network Representation
Continuing with the enterotype dataset, here are some examples for creating a custom network representation of
the relationship between microbiome samples in an experiment. This relies heavily on the igraph and ggplot2
packages to create a network display of the “connectedness” of samples according to some user-provided ecological
similarity. By default, points represent microbiom samples, and are determined using an algorithm that optimizes the
clarity of the display of network “edges”, but the spatial position of points does not imply any continuous similarity
information like would be the case in an ordination. In this example, the default dissimilarity index was used (Jaccard,
co-occurrence), with a maximum distance of 0.3 required to create an edge. Any function that can operate on
phyloseq-objects and return a sample-wise distance can be provided as the dist.fun argument, or a character string
of the name of the distance function already supported in phyloseq. Other distances may result in very different
clustering, and this is a choice that should be understood and not taken too lightly, although there is little harm in
trying many different distances.

Interestingly, at this level of analysis and parameter-settings the two major sub-graphs appear to be best explained
by the sequencing technology and not the subject enterotype (Figure 6), suggesting that the choice of sequencing
technology has a major effect on the microbial community one can observe. This seems to differ somewhat with the
inferences described in the “enterotype” article [2]. However, there could be some confounding or hidden variables that
might also explain this phenomenon, and the well-known differences in the sequence totals between the technologies
may also be an important factor. Furthermore, since this is clearly an experimental artifact (and they were including
data from multiple studies that were not orginally planned for this purpose), it may be that the enterotype observation
can also be shown in a network analysis of this data after removing the effect of sequencing technology and related
sequencing effort. Such an effort would be interesting to show here, but is not yet included.
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data(enterotype)
ig <- make_network(enterotype, max.dist = 0.3)
plot_network(ig, enterotype, color = "SeqTech", shape = "Enterotype", line_weight = 0.4,

label = NULL)
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Figure 6: Network representation of the relationship between microbiome sam-
ples in the “Enterotype” dataset [2].
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5.3 Ordination Methods
Ordination methods can be a useful tool for exploring complex phylogenetic sequencing data, particularly when the
hypothesized structure of the data is poorly defined (or there isn’t a hypothesis). The phyloseq package provides some
useful tools for performing ordinations and plotting their results, via the ordinate() and plot ordination()
functions, respectively. Although there are many options and methods supported, a first-step will probably look
something like the following:

my.physeq <- import("Biom", BIOMfilename = "myBiomFile.biom")
my.ord <- ordinate(my.physeq)
plot_ordination(my.physeq, my.ord, color = "myFavoriteVarible")

It is probably a good idea to read the documentation for these two functions, as they also provide links to related
functions and additional examples you can try immediately on your own machine.

help(import)
help(ordinate)
help(distance)
help(plot_ordination)

5.3.1 Principal Coordinates Analysis (PCoA)

We take as our first example, a reproduction of Figure 5 from the “Global Patterns” article [1]. The authors show
a 3-dimensional representation of the first three axes of a Principal Coordinates Analysis (PCoA2) performed on the
unweighted-UniFrac distance (see section 5.4.2) using all of the available sequences (their approach included both 5’
and 3’ sequences). According to the authors, “the first axis [appears to be associated with a] host associated/free living
[classification],” and similarly the third axis with “saline/nonsaline environment[s].”

The following reproduces the unweighted UniFrac distance calculation on the full dataset. Note that this calcu-
lation can take a long time because of the large number of OTUs. Parallelization is recommended for large datasets,
typically if they are as large as GlobalPatterns, or larger. For details on parallelization, see the details section
and examples in the UniFrac() documentation, and also the page dedicated to the topic on the phyloseq-wiki:

https://github.com/joey711/phyloseq/wiki/Fast-Parallel-UniFrac

data(GlobalPatterns)

GPUF <- UniFrac(GlobalPatterns)

GloPa.pcoa <- pcoa(GPUF)

Before we look at the results, let’s first investigate how much of the total distance structure we will capture in the
first few axes. We can do this graphically with a “scree plot”, an ordered barplot of the relative fraction of the total
eigenvalues associated with each axis (Fig. 7).

2This is also sometimes referred to as “Multi-Dimensional Scaling”, or “MDS”
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barplot(GloPa.pcoa$values$Relative_eig)
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Figure 7: Scree plot of the PCoA used to create Figure 5 from the “Global
Patterns” article [1]. The first three axes represent 43% of the total variation in
the distances. Interestingly, the fourth axis represents another 9%, and so may
warrant exploration as well. A scree plot is an important tool for any ordination
method, as the relative importance of axes can vary widely from one dataset to
another.
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Next, we will reproduce Figure 5 from the “Global Patterns” article [1], but separating the three axes into 2 plots
using plot ordination() (Fig. 8).
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Figure 8: A reproduction in phyloseq / R of the main panel of Figure 5 from the “Global Patterns” article [1], on
two plots. The horizontal axis represents the first axis in the PCoA ordination, while the top and bottom vertical axes
represent the second and third axes, respectively. Different points represent different samples within the dataset, and
are shaded according to the environment category to which they belong. The color scheme is the default used by
ggplot.

5.3.2 non-metric Multi-Dimensional Scaling (NMDS)

We repeat the previous example, but instead using non-metric multidimensional scaling (NMDS - metaMDS())
limited to just two dimensions. This approach limits the amount of residual distance “not shown” in the first two (or
three) axes, but forefeits some mathematical properties and does not always converge within the specified number of
axes.

Figure 9 nicely shows the relative dissimilarities between microbial communities from different habitats. However,
it fails to indicate what was different between the communities. For an ordination method that provides information
on the taxa that explain differences between samples (or groups of samples), we use Correspondence Analysis (Sec-
tion 5.3.3).
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Figure 9: An example exploratory ordination using non-metric multidimensional
scaling (NMDS) on the unweighted UniFrac distance between samples of the
“Global Patterns” dataset. Sample points are shaded by environment type, and
connected by a line if they belong to the same type. Compare with Figure 5 from
the “Global Patterns” article [1].

16



5.3.3 Correspondence Analysis (CA)

In the following section we will show continue our exploration of the “GlobalPatterns” dataset using various features
of an ordination method called Correspondence Analysis. We give special emphasis to exploratory interpretations
using the biplot, because it provides additional information that is not available from PCoA or NMDS.

Let’s start by performing a Correspondence Analysis and investigating the scree plot (Figure 10). Both interestingly
and challengingly, the scree plot suggests that the GlobalPatterns abundance data is quite high-dimensional, with
the first two CA axes accounting for not quite 17% of the total (chi-square) variability. Note the absence of a steep
decline in eigenvalue fraction as axis number increases. Each additional axis represents only marginally less variability
than the previous. It is often more convenient if the first two (or three) axes account for most of the variability.

First, let’s severely subset the number of species for the sake of run-time.3

data(GlobalPatterns)
# Take a subset of the GP dataset, top 200 species
topsp <- names(sort(taxa_sums(GlobalPatterns), TRUE)[1:200])
GP <- prune_species(topsp, GlobalPatterns)
# Subset further to top 5 phyla, among the top 200 OTUs.
top5ph <- sort(tapply(taxa_sums(GP), tax_table(GP)[, "Phylum"], sum), decreasing = TRUE)[1:5]
GP <- subset_species(GP, Phylum %in% names(top5ph))
# Re-add human variable to sample data:
sample_data(GP)$human <- factor(human)

Now perform the correspondence analysis.
Now let’s investigate how the samples behave on the first few CA axes.

(p12 <- plot_ordination(GP, gpca, "samples", color = "SampleType") + geom_line() +
geom_point(size = 5))

3This is for illustration purposes only, do not repeat unless you are very sure you have a good reason for doing this.
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# Now perform a unconstrained correspondence analysis
gpca <- ordinate(GP, "CCA")
barplot(gpca$CA$eig/sum(gpca$CA$eig), las = 2)
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Figure 10: The correspondence analysis (CA) scree plot of the “Global Patterns”
dataset [1].
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(p34 <- plot_ordination(GP, gpca, "samples", axes = c(3, 4), color = "SampleType") +
geom_line() + geom_point(size = 5))
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A clear feature of these plots is that the feces and mock communities cluster tightly together, far away from all
other samples on the first axis (CA1) in Fig. 11a. The skin and tongue samples separate similarly, but on the second
axis. Taken together, it appears that the first two axes are best explained by the separation of human-associated
“environments” from the other non-human environments in the dataset, with a secondary separation of tongue and
skin samples from feces.

We will now investigate further this top-level structure of the data, using an additional feature of correspondence
analysis that allows us to compare the relative contributions of individual taxa on the same graphical space: the
“biplot”. However, because we just displayed the position of samples in the ordination and there are often many
thousands of OTUs, we will focus on creating an interpretable plot of the OTUs. For creating graphics that combine
the two plots, try the “biplot” or “split” option for type in plot ordination().

Let’s try drawing Fig 12 again, only this time summarizing the species points as a 2D density estimate, without
any individual points.

20



−2

−1

0

−1.0 −0.5 0.0 0.5 1.0
CA1

C
A

2

SampleType

Feces

Freshwater

Freshwater (creek)

Mock

Ocean

Sediment (estuary)

Skin

Soil

Tongue

(a) Axes 1, 2

−8

−6

−4

−2

0

−2 −1 0 1
CA3

C
A

4

SampleType

Feces

Freshwater

Freshwater (creek)

Mock

Ocean

Sediment (estuary)

Skin

Soil

Tongue

(b) Axes 3, 4

Figure 11: First 4 axes of Correspondence Analysis (CA) of the “Global Patterns” dataset [1].

Figs 12 and 13 reveal some useful patterns and interesting outliers, but what if we want a complete summary of
how each phylum is represented along each axis? The following code is a way to show this using boxplots, while
still avoiding the occlusion problem (points layered on top of each other), and also conveying some useful information
about the pattern of taxa that contribute to the separation of human-associated samples from the other sample types. It
re-uses the data that was stored in the ggplot2 plot object created in the previous figure, p, and creates a new boxlot
graphical summary of the positions of each phylum (Fig 14).

## Warning: Removed 1 rows containing missing values (geom text).
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Figure 12: Species plot of the “Global Patterns” correspondence analysis first two
axes, with each phylum on a different panel (“facet”). Only the most abundant 5
phyla among the most abundant 200 taxa (cumulative, all samples) are included.
Arbitrary reduction, for computational efficiency of example.
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Figure 13: Redrawn Fig. 12, which is severely overplotted, as a 2-dimensional
species-density topographic map, faceted in the same way.
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Figure 14: Boxplot of taxa (species in this case) of the “Global Patterns” CA first
two axes, shaded/separated by phylum. Through this approach it is much easier to
see particular species that cluster unusually relative to the rest of their phylum, for
example the Bacteroidetes species (Prevotellaceae family) that is positioned most
in the negative CA2 direction toward the Tongue/Skin samples.
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One way to relate some of the high-level patterns we observed from correspondence analysis is to directly visualize
the abundances in an organized, quantitative way, to see if this does in fact support / explain the human/environment
microbiome differences. Here is an example using the plot bar function described earlier in Section 4.3.
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Figure 15: Phylum-level comparison of relative abundance of taxa in samples that
are from human microbiomes (or not).

In Fig 15 we’ve used the threshold parameter to omit all but phyla accounting for the top 90% of phyla in
any one sample. Some patterns emerging from this display appear to be: (1) Cyanobacteria, Actinobacteria appear
under-represented in human samples; (2) conversely, Firmicutes appear over-represented in human samples; (3) Aci-
dobacteria, Verrucomicrobia appear over-represented in the fecal samples; (4) the only Crenarchaeota were observed
in the Mock sample, which is not really a community but a simulated community used as a control. These are not
hugely surprising based on previous biological observations from the field, but it is hopefully useful code that can be
applied on other datasets that you might have.
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5.3.4 Double Principle Coordinate Analysis (DPCoA)

Here is a quick example illustrating the use of Double Principal Coordinate Analysis (DPCoA [3]), using the using
the DPCoA() function in phyloseq, as well as the “biplot” option for plot ordination(). For a description that
includes an applied example using the “enterotype” dataset and comparison with UniFrac/PCoA, see Fukuyama et
al [4].

GP.dpcoa <- DPCoA(GP)
# GP.dpcoa <- ordinate(GP, 'DPCoA') # Alternative; ordinate() function
pdpcoa <- plot_ordination(GP, GP.dpcoa, type = "biplot", color = "SampleType",

shape = "Phylum")
shape.fac <- pdpcoa$data[, deparse(pdpcoa$mapping$shape)]
man.shapes <- c(19, 21:25)
names(man.shapes) <- c("samples", levels(shape.fac)[levels(shape.fac) != "samples"])
p2dpcoa <- pdpcoa + scale_shape_manual(values = man.shapes)
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Figure 16: A biplot representation of a Double Principal Coordinate Analysis
(DPCoA), on a simplified version of the “Global Patterns” dataset with only the
most abundant 200 OTUs included.
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5.4 Distance Methods
5.4.1 distance(): Central Distance Function

Many comparisons of microbiome samples, including the graphical model (Section 5.2) and the PCoA analysis (Sec-
tion 5.3.1), require a calculation for the relative dissimilarity of one microbial community to another, or “distance”.
The phyloseq-package provides a general “wrapper” function for calculating ecological distance matrices between the
samples in an experiment.

distance() currently supports 43 method options, as well as user-provided arbitrary methods via an interface
to vegan’s designdist() function. Currrently only sample-wise distances are supported (the type argument),
but eventually species-wise (OTU-wise) distances will be supported as well. In addition to supporting any of the
method options to the three main distance functions of the vegan-package [5] — including the 14 distances of the
vegdist() function and all 24 ecological distances reviewed in Koleff et al. 2003 [6] coded by betadiver —
distance() will eventually support many of the distance methods in the ade4-package [7], and others. It also
supports the Fast UniFrac distance function (Section 5.4.2) included in phyloseq as native R code, and a wrapper for
retreiving the sample-distances from Double Principal Coordinate Analysis (DPCoA).

The function takes a phyloseq-class object and an argument indicating the distance type; and it returns a
dist-class distance matrix.

data(esophagus)
distance(esophagus) # Unweighted UniFrac

## B C
## C 0.5176
## D 0.5182 0.5422

distance(esophagus, weighted = TRUE) # weighted UniFrac

## B C
## C 0.2035
## D 0.2603 0.2477

distance(esophagus, "jaccard") # vegdist jaccard

## B C
## C 0.5776
## D 0.6646 0.7427

distance(esophagus, "g")

## B C
## C 0.6136
## D 0.6250 0.6078

distance("help")

## Available arguments to methods:
## $UniFrac
## [1] "unifrac"
##
## $DPCoA
## [1] "dpcoa"
##
## $JSD
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## [1] "jsd"
##
## $vegdist
## [1] "manhattan" "euclidean" "canberra" "bray" "kulczynski"
## [6] "jaccard" "gower" "altGower" "morisita" "horn"
## [11] "mountford" "raup" "binomial" "chao" "cao"
##
## $betadiver
## [1] "w" "-1" "c" "wb" "r" "I" "e" "t" "me" "j" "sor"
## [12] "m" "-2" "co" "cc" "g" "-3" "l" "19" "hk" "rlb" "sim"
## [23] "gl" "z"
##
## $dist
## [1] "maximum" "binary" "minkowski"
##
## $designdist
## [1] "ANY"
##
## Please be exact, partial-matching not supported.
## Can alternatively provide a custom distance.
## See:
## help("distance")
## NULL

5.4.2 UniFrac and weighted UniFrac

UniFrac is a recently-defined [8] and popular distance metric to summarize the difference between pairs of ecological
communities. All UniFrac variants use a phylogenetic tree of the relationship among taxa as central information to
calculating the distance between two samples/communities. An unweighted UniFrac distance matrix only considers
the presence/absence of taxa, while weighted UniFrac accounts for the relative abundance of taxa as well as their
phylogenetic distance. Prior to phyloseq, a non-parallelized, non-Fast implementation of the unweighted UniFrac was
available in R packages (picante::unifrac [9]). In the phyloseq package we provide optionally-parallelized
implementations of Fast UniFrac [10] (both weighted and unweighted, with plans for additional UniFrac variants), all
of which return a sample-wise distance matrix from any phyloseq-class object that contains a phylogenetic tree
component.

The following is an example calculating the UniFrac distance (both weighted and unweighted) matrix using the
“esophagus” example dataset:

data(esophagus)
UniFrac(esophagus, weighted = TRUE)
# distance(esophagus, weighted=TRUE) # Alternative using the distance()
# function
UniFrac(esophagus, weighted = FALSE)
# distance(esophagus) # Alternative using the distance() function

## B C
## C 0.204
## D 0.260 0.248
## B C
## C 0.518
## D 0.518 0.542
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See the wiki-page devoted to details about calculating the UniFrac distances for your experiment. In particular,
some example run-times are provided for comparison, as well as details for initializing a parallel “back end” to perform
the computation with multiple processor cores simultaneously:

https://github.com/joey711/phyloseq/wiki/Fast-Parallel-UniFrac

5.5 Hierarchical Clustering
Another potentially useful and popular way to visualize/decompose sample-distance matrices is through hierarchical
clustering (e.g. hclust()). In the following example, we reproduce Figure 4 from the “Global Patterns” article [1],
using the unweighted UniFrac distance and the UPGMA method (hclust parameter method="average"). Try
help("hclust") for alternative clustering methods included in standard R.

# (Re)load UniFrac distance matrix and GlobalPatterns data
data(GlobalPatterns)
load("Unweighted_UniFrac.RData") # reloads GPUF variable
# Manually define color-shading vector based on sample type.
colorScale <- rainbow(length(levels(get_variable(GlobalPatterns, "SampleType"))))
cols <- colorScale[get_variable(GlobalPatterns, "SampleType")]
GP.tip.labels <- as(get_variable(GlobalPatterns, "SampleType"), "character")
GP.hclust <- hclust(GPUF, method = "average")

Plot the hierarchical clustering results as a dendrogram, after first converting the hclust-class object to
phylo-class tree using the as.phylo() function.
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plot(as.phylo(GP.hclust), show.tip.label = TRUE, tip.color = "white")
tiplabels(GP.tip.labels, col = cols, frame = "none", adj = -0.05, cex = 0.7)
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Figure 17: An alternative means of summarizing a distance matrix via hierarchical cluster-
ing and plotting as an annotated dendrogram. Compare with Figure 4 from the “Global Pat-
terns” article [1]. Some differences in Figure 17 from the original article might be explained
by GlobalPatterns in phyloseq being the summed observations from both primer di-
rections (5’ and 3’), while in the article they show the results separately. Furthermore, in
the article the “mock” community is not included in the dataset, but an extra fecal sample is
included.
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6 Validation

6.1 Multiple Inference Correction
The phyloseq package includes support for significance testing with correction for multiple inference. This is par-
ticularly important when testing for significance of the abundance patterns among thousands of microbes (OTUs).
This is a common question of phylogenetic sequence data, that is, “what is the subset of microbes that significantly
correlate with a scientifically-interesting sample variable”. Although we plan to include support for other types of
multiple-inference corrected tests, this “which taxa?” test is the only directly supported test at the moment.

Our initial implementation of this support is via an extension to the mt.maxT() and mt.minP functions in the
multtest package [11] (Bioconductor repo). This uses permutation-adjusted p-values in a multiple testing procedure
that provides strong control of the Family-Wise Error Rate (FWER) among the taxa being tested. The user specifies
a sample-variable among the sample data component, or alternatively provides a sample-wise vector or factor
that classifies the samples into groups. Additional optional parameters can be provided that specify the type of test
(“test=”), the sidedness of the test (“side=”), as well as some additional technical/computational parameters.

In the following example we test whether a particular genera correlates with the Enterotype classification of each
sample. Note that we have to specify an alternate test, test="f", because the default test (t-test) can only handle up
to 2 classes, and there are three enterotype classes.

data(enterotype)
# Filter samples that don't have Enterotype classification.
x <- subset_samples(enterotype, !is.na(Enterotype))

# Calculate the multiple-inference-adjusted P-values
ent.p.table <- mt(x, "Enterotype", test = "f")
print(head(ent.p.table, 10))

genera index teststat rawp adjp plower
Prevotella 207 344.73 0.0001 0.0158 0.0001
Bacteroides 203 85.01 0.0001 0.0158 0.0001
Blautia 187 19.52 0.0001 0.0158 0.0001
Bryantella 503 16.38 0.0001 0.0158 0.0001
Parabacteroides 205 12.89 0.0001 0.0158 0.0001
Alistipes 208 8.71 0.0002 0.0301 0.0158
Bifidobacterium 240 9.29 0.0004 0.0560 0.0430
Holdemania 201 7.64 0.0009 0.1146 0.1031
Dorea 182 7.44 0.0009 0.1146 0.1031
Phascolarctobacterium 513 7.01 0.0014 0.1695 0.1585

Table 1: For computational efficiency this calculation was run separately, and
results embedded here.

Not surprisingly, Prevotella and Bacteroides top the list, since they were major components of the “Enterotype”
classification.

Please also note that we are planning to incorporate other tools from multtest that would allow for other types
of multiple-inference correction procedures, for instance, strong control of the False Discovery Rate (FDR). These
additional options will be made available shortly.
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7 Further Examples
This vignette is limited in size and scope because of constraints on the cumulative-size of packages allowed in Bio-
conductor.

7.1 phyloseq Wiki
For further examples presented in html/wiki format, please see:

https://github.com/joey711/phyloseq/wiki/Graphics-Examples

7.2 phyloseq Vignette Gallery
For additional and/or updated vignettes not present in the official Bioconductor release, please see:

https://github.com/joey711/phyloseq/wiki/Vignettes

7.3 phyloseq Feedback
For feature requests, bug reports, and other suggestions and issues, please go to:

https://github.com/joey711/phyloseq/issues
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