Uncovering gene regulatory relationships using networkBMA

Ka Yee Yeung, Chris Fraley, Adrian E. Raftery
Departments of Microbiology (KYY) and Statistics (CF and AER)
University of Washington

This document illustrates the use of the networkBMA R package (Fraley et al. 2012) to uncover regulatory relationships in yeast (Saccharomyces cerevisiae) from microarray data measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected to a drug (rapamycin) perturbation.

1 Data

The expression data for this vignette is provided in the networkBMA package in the vignette database, which consists of three R objects:
timeSeries: A 582 by 102 data frame in which the first two columns are factors identifying the replicate and time (in minutes) after drug perturbation, and the remaining 100 columns are the expression measurements for a subset of 100 genes from the yeastrapamycin experiment described in Yeung et al. (2011). There are 582/6 $=97$ replicates (the 95 segregants plus two parental strains of the segregants), each with measurements at 6 time points. The complete time series data is available from Array Express (Parkinson et al. 2007) with accession number E-MTAB-412
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-412).
reg.known: A 18 by 3 data frame giving known regulatory relationships among this subset of 100 genes. The first two columns give the regulator and target gene, respectively, while the third encodes the source of the regulatory information ('YPD' for Yeast Proteome Database (Hodges et al. 1999) and 'SCPD' for The Promoter Database of Saccharomyces cerevisiae (Zhu and Zhang 1999). In this example, we constrained reg.known to high-confidence experimental results obtained from biochemical (non-high-throughput) experiments.
reg.prob: A 100 by 100 matrix, giving probability estimates for regulatory relationships in which the (i, j) entry gives the estimated probability that gene i regulates gene j. These were computed using the supervised framework integrating multiple data sources of Lo et al. (2012).
referencePairs: A 2-column data frame giving 287 regulator-gene pairs among the selected set of 100 genes reported from the literature. In this yeast example, the reference network was extracted from the documented evidence from the YEASTRACT database (Teixeira et al. 2006), which includes curated regulatory relationships from the literature inferred from high-throughput experiments.
brem.data: An 85 by 111 subset of the data used for network inference in yeast (Brem et al. 2002, Brem and Kruglyak 2005). The rows correspond to genes and the columns to experiments. Provided courtesy of Rachel Brem.

> library (networkBMA) > data(vignette) > dim(timeSeries)			
[1] 582102			
> dim(reg.prob)			
[1] 100100			
> dim(brem.data)			
[1] 85111			
> reg.known			
Regulator TargetGene source			
1	YDR216W	YKR009C	YPD
2	YER040W	YPL111W	YPD
3	YER040W	YKL015W	YPD
4	YER040W	YOR348C	YPD
5	Y JR094C	YDR523C	YPD
6	YKL062W	YMR169C	YPD
7	YKL062W	YPL061W	YPD
8	YKL062W	YAL062W	YPD
9	YKL062W	YIL155C	YPD
10	YKL062W	YFL014W	YPD
11	YKL062W	YCR021C	YPD
12	YKL062W	YDR258C	YPD
13	YKL062W	YJR094C	YPD
14	YKL062W	YER150W	YPD
15	YKL062W	YNL194C	YPD
16	YBL103C	YNL037C	YPD
17	YKL112W	YCL064C	SCPD
18	YKL112W	YHR051W	SCPD

2 Network Modeling

Given the yeast expression data from the Rapamycin experiments, the networkBMA function can be invoked to estimate the probabilities of regulatory relationships using iterative Bayesian Model Averaging (Yeung et al. 2005, 2011):

```
> edges <- networkBMA(data = timeSeries[,-(1:2)],
+ nTimePoints = length(unique(timeSeries$time)),
+ prior.prob = reg.prob, known = reg.known,
+ nvar = 50, ordering = "bic1+prior")
> edges[1:9,]
```

	Regulator	TargetGene	PostProb
1	YBL103C	YBL103C	1
2	YNR053C	YBL103C	1
3	YOR206W	YBL103C	1
4	YKL112W	YKL112W	1
5	YMR229C	YKL112W	1
8	YDR216W	YDR216W	1
9	YDL170W	YDR216W	1
10	YOR302W	YDR216W	1
11	YPL265W	YDR216W	1

For each gene g, the observed gene expression of genes at time $t-1$ serve as linear predictors for modeling the observed expression of gene g at time t. BMA modeling results in a weighted average of models consisting of relatively small numbers of predictors. The probability of gene h being a linear predictor in the model for gene g is taken as the probability that gene h regulates gene g in the network.

There are options for including known regulatory relationships and prior priobabilities in the modeling (see Lo et al. 2012), as well as for ordering the variables, and for specifying the number of ordered variables to be included in the modeling.

3 Assessment of Network Models

Although, except for synthetic data, the true underlying network is unknown, the results can be assessed using a set of regulator-target gene network edges reported in the literature. The comparison is done as follows:

- Let E be the set of regulator-target gene edges resulting from networkBMA, possibly reduced using a probability threshold. In the context of the example in Section 2, E corresponds to the set of edges represented in the object edges.
- Let K be the set of known regulator-target gene edges hardcoded in the modeling. In the example in Section 2, K corresponds to reg.known.
- Let L be the set regulator-target gene edges reported in the literature. In the example in Section 2, L corresponds to referencePairs.
- Let $E \backslash K$ and $L \backslash K$ be the set of pairs in E and L, respectively, with any hardcoded edges removed. In the example of Section 2, E represented by edges contains 483 pairs, and L represented by referencePairs contains 287 pairs. Both E and L include all 18 of the known hardcoded edges K represented by reg.known. Hence $E \backslash K$ contains 465 pairs, and $L \backslash K$ contains 269 pairs.
- Let U be the set of all directed pairs $r-g$ such that r is a regulator in $L \backslash K$ and g is a target gene in $L \backslash K$. For the example of Section $2, L \backslash K$ has 11 unique regulator genes and 99 unique target genes. So there are 11×99 or 1089 pairs in U. Assume further that the linked pairs in U are precisely those pairs in $L \backslash K$, and that all other pairs are unlinked.
- Let $U \backslash K$ be the set of pairs in U with any hardcoded eges removed (hardcoded edges may resurface in the unlinked pairs). For the example of Section 2, 17 of the 18 pairs in K occur in U, so there are 1089-17 $=1072$ edges in $U \backslash K$.

The assessment is done using the contingency table of $(E \backslash K) \cap(U \backslash K)$ relative to $U \backslash K$. For the example of Section 2, the assessment would be done with the 57 of the 465 pairs in $E \backslash K$ that also belong to $U \backslash K$.

A function called contabs.netBMA is provided to produce contingency tables from a reference network according the procedure described above. Here we compare the edges produced in Section 2 by networkBMA modeling on the yeast data with the reference network referencePairs made up of results reported in the literature:

```
> ctables <- contabs.netwBMA( edges, referencePairs, reg.known,
+ thresh=c(.5,.75,.9))
> ctables
```

	TP	FN	FP	TN
0.0402434734464829	23	246	33	770
0.0454930593677806	23	246	32	771
0.0547610726848114	23	246	32	771
0.0621177818036082	23	246	31	772
0.120313556351554	22	247	31	772
0.121759397028105	22	247	30	773
0.166119151754663	22	247	28	775
0.193411367909785	22	247	28	775
0.264308050711249	21	248	27	776
0.267765506855882	21	248	27	776
0.439806592523595	21	248	25	778
0.460479253259992	21	248	24	779
0.529176356437905	21	248	23	780
0.618320042575697	21	248	23	780
0.789557961271411	21	248	22	781
0.808602928008602	20	249	22	781
0.815135804441206	19	250	22	781
0.833880848245337	19	250	21	782
0.894277522630412	19	250	20	783
0.933660013920575	19	250	18	785
0.937882218196392	18	251	18	785
1	18	251	17	786

Another function called 'contabs' is provided for computing contingency tables when the true underlying network is known. The scores function can be used to obtain common assessment statistics from the contingency tables, including sensitivity, specificity, precision, recall, and false discovery rate among other measures.

```
> scores( ctables, what = c("FDR", "precision", "recall"))
```

| | FDR | precision | recall |
| :--- | ---: | ---: | ---: | ---: |
| 0.0402434734464829 | 0.5892857 | 0.4107143 | 0.08550186 |
| 0.0454930593677806 | 0.5818182 | 0.4181818 | 0.08550186 |
| 0.0547610726848114 | 0.5818182 | 0.4181818 | 0.08550186 |
| 0.0621177818036082 | 0.5740741 | 0.4259259 | 0.08550186 |
| 0.120313556351554 | 0.5849057 | 0.4150943 | 0.08178439 |
| 0.121759397028105 | 0.5769231 | 0.4230769 | 0.08178439 |
| 0.166119151754663 | 0.5600000 | 0.4400000 | 0.08178439 |
| 0.193411367909785 | 0.5600000 | 0.4400000 | 0.08178439 |
| 0.264308050711249 | 0.5625000 | 0.4375000 | 0.07806691 |
| 0.267765506855882 | 0.5625000 | 0.4375000 | 0.07806691 |
| 0.439806592523595 | 0.5434783 | 0.4565217 | 0.07806691 |
| 0.460479253259992 | 0.5333333 | 0.4666667 | 0.07806691 |
| 0.529176356437905 | 0.5227273 | 0.4772727 | 0.07806691 |
| 0.618320042575697 | 0.5227273 | 0.4772727 | 0.07806691 |
| 0.789557961271411 | 0.5116279 | 0.4883721 | 0.07806691 |
| 0.808602928008602 | 0.5238095 | 0.4761905 | 0.07434944 |
| 0.815135804441206 | 0.5365854 | 0.4634146 | 0.07063197 |
| 0.833880848245337 | 0.5250000 | 0.4750000 | 0.07063197 |
| 0.894277522630412 | 0.5128205 | 0.4871795 | 0.07063197 |
| 0.933660013920575 | 0.4864865 | 0.5135135 | 0.07063197 |
| 0.937882218196392 | 0.5000000 | 0.5000000 | 0.06691450 |
| 1 | 0.4857143 | 0.5142857 | 0.06691450 |

Areas under the ROC and Precision-Recall curves covered by contingency tables can also be estimated using functions roc and prc, with the option to plot the associated curves. The following gives the ROC and Precision-Recall curvers associated with the default contingency tables, in which the threshholds are all values for posterior probabilities that appear in edges.

```
> roc( contabs.netwBMA( edges, referencePairs), plotit = TRUE)
    area sector width
0.552920294 0.002540731 0.018867925
> title("ROC")
> prc( contabs.netwBMA( edges, referencePairs), plotit = TRUE)
    area sector width
0.27387395 0.01687811 0.02787456
> title("Precision-Recall")
```

The resulting plots are shown in Figure 1. The output components are as follows:

- area: The estimated area under the curve for the horizontal sector ranging from 0 to 1. This should be used with caution when the sector in which the data falls is small.
- sector: The estimated area under the horizontal sector covered by the contingency tables.
- width: The width of the horizontal sector covered by the contingency tables.

Figure 1: ROC and Precision-Recall curve sectors for a networkBMA model of the yeastrapamycin test data. The black lines delineate the estimated curves. The vertical red lines delineate the range of horizontal values covered by the contingency tables. The dotted black lines are linear interpolants outside this range. The diagonal blue line on the ROC plot indicates the line betwween $(0,0)$ and $(1,1)$.

4 Linear Modeling for Static Gene Expression Data

networkBMA relies on sparse linear modeling via iterative Bayesian model averaging (BMA). BMA addresses uncertainty in model selection, and builds a weighted-average model from plausible models. The resulting model has better overall predictive ability than constituent models, and tends to use few variables from among a larger set. BMA has been iteratively extended to data with more variables that observations (Yeung at al. 2005, 2009, 2011). The networkBMA package includes a function, iterateBMAlm, for linear modeling via iterative BMA. We illustrate its use on a static gene expression dataset (without any time points), brem.data, to infer the regulators of a particular gene by regressing it on the expression levels of the other genes. Function iterateBMAlm can be applied to each gene so as to infer all edges in the network. For one gene, the procedure is as follows:

```
> gene <- "YNL037C"
> variables <- which(rownames(brem.data) != gene)
> control <- iBMAcontrolLM(OR = 50, nbest = 20, thresProbne0 = 5)
> iBMAmodel.YNL037C <- iterateBMAlm( x = t(brem.data[variables,]),
+ y = unlist(brem.data[gene,]), control = control)
```

Function iBMAcontrolLM facilitates input of BMA control parameters, including nbest for specifying the number of best models of each size to be initially retained, OR for defining the width of 'Occam's window' for model exclusion, and thresProbne0 for determining the cutoff for probability (in percent) of a variable being included in the modeling (Raftery et al.
2005). See the R help documentation for iBMAcontrolLM for a detailed description of these parameters, and Hoeting et al. (1999) for a tutorial on the underlying BMA paradigm. The estimated posterior probabilities (in percent) for genes that regulate YBL103C can be seen as follows:

```
> iBMAmodel.YNLO37C$probneO[iBMAmodel.YNL037C$probneO > 0]
```

YDL170W	YHR051W	YPR002W	YML123C	YIL136W	YAL062W	YJR148W
36.178933	75.032631	100.000000	7.010839	100.000000	32.299339	32.299339
YNL036W	YFR022W	YPL265W	YOR348C	YCL064C	YFL014W	YOR388C
63.821067	100.000000	100.000000	100.000000	74.315241	15.737407	7.281450
YDR380W	YGR183C	YJL153C				
67.700661	24.967369	32.299339				

References

[1] R. B. Brem and L. Kruglyak. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences, 102(5):15721577, 2005.
[2] R. B. Brem, G. Yvert, R. Clinton, and L. Kruglyak. Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568):752-755, 2002.
[3] C. Fraley, K. Y. Yeung, and A. E. Raftery. networkBMA: Regression-based network inference using BMA, 2012. R package distributed through Bioconductor.
[4] P. E. Hodges, A. H. Z. McKee, B. P. Davis, W. E. Payne, and J. I. Garrels. The Yeast Proteome database (YPD): a model for the organization and presentation of genomewide functional data. Nucleic Acids Research, 27(1):69-73, 1999.
[5] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model averging: a tutorial. Statistical Science, 14(4):382-401, 1999.
[6] K. Lo, A. E. Raftery, K. M. Dombek, J. Zhu, E. E. Schadt, R. E. Bumgarner, and K. Y. Yeung. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Systems Biology, 6:101, 2012.
[7] H. Parkinson, M. Kapushesky, M. Shojatalab, N. Abeygunawardena, R. Coulson, A. Farne, E. Holloway, N. Kolesnykov, P. Lilja, M. Lukk, R. Mani, T. Rayner, A. Sharma, E. William, U. Sarkans, and A. Brazma. ArrayExpress - a public database of microarray experiments and gene expression profiles. Nucleic Acids Research, 35(suppl 1):D747-D750, 2007.
[8] A. Raftery, J. Hoeting, C. Volinsky, I. Painter, and K. Y. Yeung. BMA: Bayesian model averaging, 2005. R package distributed through CRAN, revised in 2012.
[9] M. C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes, N. P. Mira, N. Alenquer, A. T. Freitas, A. L. Oliveira, and I. Sá-Correia. The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research, 34(Issue supplement 1):D446-D451, 2006.
[10] K. Y. Yeung. iterativeBMA: The iterative bayesian model averaging (BMA) algorithm, 2009. R package distributed through Bioconductor, includes contributions from A. Raftery and I. Painter.
[11] K. Y. Yeung, R. E. Bumgarner, and A. E. Raftery. Bayesian model averaging: development of an improved multi-class, gene selection and classfication tool for microarray data. Bioinformatics, 21(10):2394-2402, 2005.
[12] K. Y. Yeung, K. M. Dombek, K. Lo, J. E. Mittler, J. Zhu, E. E. Schadt, R. E. Bumgarner, and A. E. Raftery. Construction of regulatory networks using expression timeseries data of a genotyped population. Proceedings of the National Academy of Sciences, 108(48):19436-19441, November 2011.
[13] J. Zhu and M. Q. Zhang. SCPD: A promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 15(7):607-611, 1999.

