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Abstract

The lmdme package implements analysis of variance (ANOVA) de-
composition through linear models on designed multivariate experiments
in R (R Development Core Team, 2012), allowing ANOVA-principal com-
ponent analysis (APCA) and ANOVA-simultaneous component analysis
(ASCA). It also extends both methods with the application of partial least
squares (PLS) through the specification of a desired output matrix. The
package is freely available on the Bioconductor website (Gentleman et al.,
2004), licenced under GNU general public license.
ANOVA decomposition methods for multivariate designed experiments
are becoming popular in “omics” experiments (transcriptomics, metabo-
lomics, etc.) where measurements are performed according to a prede-
fined experimental design (Smilde et al., 2005), with several experimen-
tal factors or including subject specific clinical covariates, such as those
present in current clinical genomic studies. ANOVA-PCA and ASCA are
well-suited methods to study interaction patterns on multidimensional
datasets. However, current R implementation of APCA is only available
for Spectra data (ChemoSpec), meanwhile ASCA (Nueda et al., 2007) is
based on average calculations over the indexes of up to three design ma-
trices. Thus, no statistical inference over estimated effects is provided.
Moreover, ASCA is not available in R package format.
Here, R implementation on ANOVA decomposition with PCA/PLS anal-
ysis is provided. It allows a flexible formula interface the specification
on almost any linear model with appropriate inference over the estimated
effects and display functions for both PCA and PLS.
We will present the model, implementation and a high-throughput mi-
croarray example one applied on interaction pattern analysis.

1 Introduction

Current “omics” experiments (proteomics, transcriptomics, metabolomics or ge-
nomics) are multivariate by nature. Modern technology allows the exploration
of the whole genome or a big subset of the proteome, where each gene/protein is
in essence a variable explored to elucidate its relationship with some outcome.
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In addition, these experiments are including more and more experimental fac-
tors (time, dose, etc.) from design or subject specific information such as age,
gender, linage and so on, and are available for analysis. Hence, in order to
discover or evaluate experimental design or subject specific patterns, some mul-
tivariate approaches should be applied. In this context, principal component
analysis (PCA) and partial least squares regression (PLS) are the most com-
mon. However, it is known that working with raw data could mask information
of interest. Therefore, analysis of variance (ANOVA) based decomposition, is
becoming popular in order to split variability sources, before the application
of such multivariate approaches. Seminal works on genomics were De Haan
et al. (2007) on ANOVA-PCA (APCA) and Smilde et al. (2005) on ANOVA-
SCA (ASCA) models. However, as far as the authors know, R implementation
of APCA is only available for Spectra data, ChemoSpec R package by Hanson
(2012). Unfortunately, there is no R package for ASCA but, it is only accessible
by uploading script-function files resulting from a MATLAB code translation
(Nueda et al., 2007). As in the former, it only accepts up to three design matri-
ces, limiting and making its use difficult. Moreover, coefficient estimations are
based on average calculations using binary design matrices, without any statis-
tical inference over them.
Here, a flexible linear model based decomposition framework is provided. Al-
most any model can be specified, according to the experimental design, by means
of a flexible formula interface. Since the estimation is carried out by means of
maximum likelihood, statistical significance on coefficient estimates is naturally
given. It also provides both PCA or PLS analysis capabilities over appropriate
ANOVA decomposition results, as well as graphical representations. The imple-
mentation is well-suited to directly analyze gene expression matrices (variables
on rows) from high-throughput data such as microarray or RNA-seq experi-
ments. One example will introduce the user to the package usage, through the
exploration of interaction patterns on a microarray experiment.

2 The model

A detailed explanation of ANOVA decomposition and multivariate analysis can
be found in Smilde et al. (2005) and Zwanenburg et al. (2011). Briefly and
without the loss of generality, let’s assume a microarray experiment where the
expression of (G1, G2, . . . , Gg) genes are arrayed in a chip. In this context,
let’s consider an experimental design with two main factors: A with a levels
(A1, A2, . . . , Ai, . . . , Aa) and B with b levels (B1, B2, . . . , Bj , . . . , Bb), with repli-
cates R1, R2, . . . , Rk, . . . , Rr for each A × B combination levels. After prepro-
cessing steps as described elsewhere (Smyth, 2004), each chip is represented by a
column vector of gene expression measurements of g×1. Then, the whole exper-
imental data is arranged into a g×n expression matrix (X) where n = a×b×r.
In this context, single gene measurements across the different treatment com-
binations (Ai × Bj) are presented in a row on the X matrix, as depicted in
Figure 1. An equivalent X matrix structure needs to be obtained for 2D-DIGE
or RNA-seq experiments and so forth.
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Regardless of data generation, the ANOVA model for each gene (row) in X
can be written into the Equation (1):

xijk = µ+ αi + βj + αi × βj + εijk (1)

where xijk is the measured expression for “some” gene, at combination “ij” of
factors A and B for the k replicate; µ is the overall mean; α, β and α×β are the
main and interaction effects respectively; and the error term εijk ∼ N(0, σ2).
Equation (1) can also be expressed in matrix form for all genes (2):

X = Xµ +Xα +Xβ +Xαβ + E =
∑

l∈{µ,α,β,αβ}

Xl + E (2)

where Xl, E matrices are of dimension g×n and contain the level means of the
corresponding l − th term and the random error respectively. However, in the
context of linear models Xl can also be written as a linear combination of two
matrix multiplications (3):

X =
∑

l∈{µ,α,β,αβ}

Xl+E =
∑

l∈{µ,α,β,αβ}

BlZ
T
l +E = BµZ

T
µ +. . .+BαβZ

T
αβ+E =

µ1> +BαZ
T
α + . . .+BαβZ

T
αβ + E (3)

where Bl and Zl are referenced in the literature as coefficient and model matri-
ces, of dimensions g ×m(l) and n×m(l) respectively, where m(l) is the number
of levels of factor l. The first term is usually called intercept, being Bµ = µ and
Zµ = 1 of dimension g × 1 and n × 1 respectively. In this example, all Zl are
binary matrices, identifying whether a measurement belongs (“1”) or not (“0”),
to the corresponding factor.
In Smilde et al. (2005) and Nueda et al. (2007) implementations, the estima-
tion of the coefficient matrices is based on average calculations using the design
matrix (up to three design matrices Zα,β,αβ) to identify the average samples.
Theoretically, they fully decompose the original matrix as shown in Equation
(1). On the contrary, in this package the model coefficients are estimated, itera-
tively, by the maximum likelihood approach, using the lmFit function provided
by limma package (Smyth et al., 2011). Consequently, three desirable features
are also incorporated:

1. Flexible formula interface to specify any potential model. The user only
needs to provide: i) the gene expression matrix (X), ii) the experimen-
tal data.frame (design) with treatment structure on it, and iii) the
model in a formula style, just like in an ordinary lm R function. Internal
model.matrix call, will automatically build the appropriate Z matrices,
overcoming the constraint on factorial design size, and tedious model ma-
trix definitions.

2. Hypothesis tests on coefficient Bl matrices. A T test is automatically
carried out for the s− th gene model, to test whether the o− th coefficient
is equal to zero or not, i.e., H0 : bso = 0 vs H1 : bso 6= 0. In addition,
an F test is performed to simultaneously see if all bso are equal to zero or
not.
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3. Empirical Bayes correction can also be achieved through the eBayes limma
function. It uses an empirical Bayes method to shrink the row/gene-wise
sample variances towards a common value and, to augment the degrees of
freedom for the individual variances (Smyth, 2004).

In contrast, De Haan et al. (2007) main and interaction effects are estimated
by overall mean subtraction. Hence, genes need to be treated as an additional
factor. Meanwhile, in Smilde et al. (2005) and Nueda et al. (2007) implemen-
tations, the estimations are obtained in a gene by gene basis as in Equation
(1). Therefore, in a two-way factor experiment e.g. time× oxygen, De Haan’s
model includes two additional double interactions and a triple interaction, due
to treating genes as a factor, in contrast to Smilde’s and Nueda’s.

2.1 The decomposition algorithm

The ANOVA model (2) is decomposed iteratively using Equation (3), where in
each step the l − th coefficients B̂l, Êl matrices and σ̂2

l are estimated. Then,

the particular term contribution matrix X̂l = B̂lZ
>
l is subtracted from the

preceding residuals to feed the next model, as depicted in Equation (4):

X = Xµ +Xα +Xβ +Xαβ + E =
∑

l∈{µ,α,β,αβ}

Xl + E

step µ : X = Xµ + Eµ ⇒ X = B̂µZ
>
µ + Êµ ⇒ Êµ = X − B̂µZ>µ

step α : Eµ = Xα + Eα ⇒ Êµ = B̂αZ
>
α + Êα ⇒ Êα = Êµ − B̂αZ>α

...
...

step l : El−1 = Xl + El ⇒ Êl−1 = B̂lZ
>
l + Êl ⇒ Êl = Êl−1 − B̂lZ>l (4)

...
...

step αβ : Eβ = Xαβ + E ⇒ Êβ = B̂αβZ
>
αβ + Ê ⇒ Ê = Êβ − B̂αβZ>αβ

where the hat (“∧”) denotes estimated coefficients. In this implementation,
the first step always estimates the intercept term, i.e. formula=∼1 in R style,
with B̂µ = µ̂ and Zµ = 1. The following models, will only include the l − th
factor without the intercept, i.e. formula=∼lth_term-1 where lth term stands
for α, β or αβ in this example. This procedure is quite similar to the one
proposed by Harrington et al. (2005).

2.2 PCA and PLS analysis

These methods are concerned with explaining the variance/covariance structure
of a set of observations (e.g. genes) through a few linear combinations of vari-
ables (e.g. experimental conditions). Both methods can be applied on the l− th
ANOVA decomposed step of Equation (4) tackling different aspects:

� PCA concerns with the variance of a single matrix, usually following two
main objectives: i) data reduction and ii) interpretation. In this context,
depending on the matrix which it is applied to, two different methods arise.
When it is applied on coefficient matrix, B̂l, it is known as ASCA (Smilde
et al., 2005). When it is calculated on the residual, Êl−1, the procedure
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follows the idea of APCA; in which it is usually applied on, Xl + E, i.e,
the mean factor matrix Xl, plus the error of the fully decomposed model
E of Equation (1) as in De Haan et al. (2007).

� PLS not only generalizes but, also combines features from PCA and regres-
sion, to explore the covariance structure between input and some output
matrices, Abdi and Williams (2010) and Shawe-Taylor and Cristianini
(2004). It is particularly useful when one or several dependent variables
(outputs - O) must be predicted from a large and potentially highly cor-
related set of independent variables (inputs). In our implementation, the
input could be the coefficient matrix B̂l, or the residual Êl−1 and the
output matrix a diagonal O=diag(nrow(B̂l)) or design matrix O = Zl,
when using the coefficient or residual respectively. In addition the user
can specify their own output matrix, O, to verify some particular hypoth-
esis. For instance, in functional genomics it could be the Gene Ontology
class matrix as used in Gene Set Enrichment Analysis (Subramanian et al.,
2005).

When working with the coefficient matrix, the user can directly use the reduced
factor dimension of X, instead of worrying about the expected number of com-
ponents (rank of the matrix), given the number of replicates per treatment level
as suggested by Smilde et al. (2005). They are directly summarized in the B̂l
matrix. In addition, for both PCA/PLS, the lmdme package also offers different
methods for visualization results e.g. biplot, loadingplot and screeplot or
leverage calculation, in order to filter out rows/genes as in Tarazona et al.
(2012).

3 Examples

In this section we will give an overview of lmdme package by Fresno and Fernán-
dez (2012a). The example goes through a gene expression interaction pattern
analysis application, where we address: how to define the model, undertake
ANOVA decomposition, perform PCA/PLS analysis and visualize the results.
From here onwards, some outputs were suppressed for reasons of clarity and the
examples were carried out with options(digits=4).

3.1 Package overview

The original data files for the first example are available at Gene Expression Om-
nibus, (Edgar et al., 2002), with accession GSE37761 and stemHypoxia package
on the Bioconductor website (Fresno and Fernández, 2012b). In this dataset,
Prado-Lopez et al. (2010) studied differentiation of human embryonic stem cells
under hypoxia conditions. They measured gene expression at different time
points under controlled oxygen levels. This experiment has a typical two-
way ANOVA structure, where factor A stands for “time” with a = 3 levels
{0.5, 1, 5 days}, factor B for “oxygen” with b = 3 levels {1, 5, 21%} and r = 2
replicates, yielding a total of 18 samples. The rest of the dataset was excluded
in order to account for a balanced design, as suggested by Smilde et al. (2005)
to fulfill orthogonality assumptions in ANOVA decomposition.
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First, we need to load stemHypoxia package to access R objects calling the func-
tion data(stemHypoxia), which will then load the experimental design and
gene expression intensities M.

R> library("stemHypoxia")

R> data(stemHypoxia)

Now we manipulate design object to maintain only those treatment levels
which create a balanced dataset. Then, change rownames(M) of each gene in M,
with their corresponding M$Gene_ID.

R> timeIndex<-design$time %in% c(0.5, 1, 5)

R> oxygenIndex<-design$oxygen %in% c(1, 5, 21)

R> design<-design[timeIndex & oxygenIndex, ]

R> design$time<-as.factor(design$time)

R> design$oxygen<-as.factor(design$oxygen)

R> rownames(M)<-M$Gene_ID

R> M<-M[, colnames(M) %in% design$samplename]

Now we can explore microarray gene expression data present on the M ma-
trix, with g = 40736 rows (individuals/genes) and n = 18 columns (sam-
ples/microarrays). In addition, the experimental design data.frame contains
main effect columns (e.g. time and oxygen) and the samplename. A brief sum-
mary of these objects is shown using head function:

R> head(design)

time oxygen samplename

3 0.5 1 12h_1_1

4 0.5 1 12h_1_2

5 0.5 5 12h_5_1

6 0.5 5 12h_5_2

7 0.5 21 12h_21_1

8 0.5 21 12h_21_2

R> head(M)[, 1:3]

12h_1_1 12h_1_2 12h_5_1

A_24_P66027 7.182 7.512 8.225

A_32_P77178 6.385 6.035 6.440

A_23_P212522 9.562 9.390 9.211

A_24_P934473 6.288 6.397 6.265

A_24_P9671 12.007 11.995 12.282

A_32_P29551 10.176 9.273 9.360

Once finished the preprocessing of the experiment data, library("lmdme")
should be loaded. This instruction will automatically load the required packages:
limma (Smyth et al., 2011) and pls (Mevik et al., 2011). Once they are loaded,
the ANOVA decomposition of section 2.1 can be carried out using Equation
(4) by lmdme function with the model formula, actual data and experimental
design.
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R> library("lmdme")

R> fit<-lmdme(model=~time*oxygen, data=M, design=design)

R> fit

lmdme object:

Data dimension: 40736 x 18

Design (head):

time oxygen samplename

3 0.5 1 12h_1_1

4 0.5 1 12h_1_2

5 0.5 5 12h_5_1

6 0.5 5 12h_5_2

7 0.5 21 12h_21_1

8 0.5 21 12h_21_2

Model:~time * oxygen

Model decomposition:

Step Names Formula CoefCols

1 1 (Intercept) ~ 1 1

2 2 time ~ -1 + time 3

3 3 oxygen ~ -1 + oxygen 3

4 4 time:oxygen ~ -1 + time:oxygen 9

The results of lmdme will be stored inside the fit object, which is an S4
R class. By invoking the fit object, a brief description of the used data and
design are shown. In addition, the applied Model and a decomposition summary
are shown. This data.frame describes for each Step, the applied Formula and
Names, as well as the amount of estimated coefficients for each gene (CoefCols).
At this point, we can choose those subjects/genes in which at least one interac-
tion coefficient is statistically different from zero (F test on the coefficients) with
a threshold p-value of 0.001 and perform ASCA on the interaction coefficient
term, and PLS against the identity matrix (default option).

R> id<-F.p.values(fit, term="time:oxygen")<0.001

R> decomposition(fit, decomposition="pca", type="coefficient",

+ term="time:oxygen", subset=id, scale="row")

R> fit.plsr<-fit

R> decomposition(fit.plsr, decomposition="plsr", type="coefficient",

+ term="time:oxygen", subset=id, scale="row")

These instructions will perform ASCA and PLS decomposition over the
scaled="row" version of the 305 selected subjects/genes (subset=id) on fit

and fit.plsr object respectively. The results will be stored inside these ob-
jects. In addition, we have explicitly indicated type="coefficient" in order
to apply the decomposition on the coefficient matrix, on interaction term

"time:oxygen" (B̂αβ).
Now, we can visualize the associated biplots (see Figures 2 (a) and (b)).

R> biplot(fit, xlabs="o", expand=0.7)

R> biplot(fit.plsr, which="loadings", xlabs="o",

+ ylabs=colnames(coefficients(fit.plsr, term="time:oxygen")),

+ var.axes=TRUE)
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Figure 2: Biplot on the decomposed interaction coefficients (time× oxygen) on
genes satisfying the F test with p-value < 0.001. It is worth noticing that the
interaction matrix in the ASCA model is of rank 9-1, thus a score plot with 9
points is expected.

For visual clarity, xlabs are changed with the "o" symbol, instead of using
the rownames(M) with manufacturer ids, and second axis with the expand=0.7

option to avoid cutting off loading labels. In addition PLS biplot, is modi-
fied from the default pls behavior to obtain a graphic similar to ASCA output
(which="loadings"). In this context,ylabs is changed to match the corre-
sponding interaction coefficients term and var.axes is set to TRUE.
The ASCA biplot of the first two components (see Figure 2(a)), explains over
70% of the coefficient variance. The genes are arranged in an elliptical shape.
In this context, it is possible to observe that some genes tend to interact with
different combinations of time and oxygen. Similar behavior is present in PLS
biplot of Figure 2(b).
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The interaction effect on the fit object, can also be displayed by the use
of the loadingplot function (see Figure 3). The figure shows for every com-
bination of two consecutive levels of factors (time and oxygen), an interaction
effect on the first component, which explains 50.61% of the total variance of the
“time:oxygen” term.

R> loadingplot(fit, term.x="time", term.y="oxygen")
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Figure 3: ANOVA Simultaneous Component Analysis loadingplot on genes
satisfying the F test with p-value < 0.001 on the interaction coefficients (time×
oxygen).

In the case of an ANOVA-PCA/PLS analysis, the user only needs to change
the type = "residuals" parameter in the decomposition function and per-
form a similar exploration.

Acknowledgements

Funding : This work was supported by the National Agency for Promoting Sci-
ence and Technology, Argentina (PICT00667/07 to E.A.F. and PICT 2008-
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Session Info

R> sessionInfo()

R version 3.0.0 (2013-04-03)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] lmdme_1.2.1 pls_2.3-0 limma_3.16.2

[4] stemHypoxia_0.99.3

loaded via a namespace (and not attached):

[1] tools_3.0.0
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