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1 Quickstart

To start a local intance of the gCMAPWeb application on your system, start R, install the gCMAP and
gCMAPWeb packages and type

> library( gCMAPWeb )

> gCMAPWeb()

Figure 1: Screenshot of the gCMAPWeb index page, featuring links to perform non-directional, directional and
profile queries.

A gCMAPWeb application instance populated with small, simulated datasets will open in your
default browser, using R’s internal web server. To evaluate gCMAPWeb’s functionality, choose one of
the four query types, Gene lookup, Non-directional query, Directional query or Profile query to proceed
to the respective query submission page. (See page 11 for more details on the different query types.)

1.1 Submitting queries

On each submission page, the “Example query” button below the text field will populate the text field
with a suitable query for the simulated datasets.

1.1.1 Querying with genes sets

For example, to identify experimental conditions affecting a directional gene set of interest, e.g. genes
observed to be up- or down-regulated in a previous study, choose the Directional query option (see page
11). gCMAPWeb’s query submission page is shown in (Figure 2). Clicking the Example query button
prefills the form with two sets of Entrez gene identifiers (matching the simulated example datasets).

Alternatively, you can also specify genes by providing HUGO gene symbols or microarray probe iden-
tifiers. Ticking the Gene Symbol or Probe identifier radio button, respectively, will prompt gCMAPWeb
to automatically retrieve the corresponding Entrez identifiers for you (Figure 3).

For convenience, longer gene lists can be uploaded as text files, containing identifiers separated by
tab stops, commata or semicolons.

Next, choose one or more reference datasets to query and press Submit.
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Figure 2: Screenshot of the gCMAPWeb query submission page for directional queries.

Figure 3: Detail of the gCMAPWeb submission page: Entering HUGO gene symbols
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1.1.2 Submitting differential expression profiles

To perform Profile queries (see page 11), users can provide their own quantitative differential expression
data. To see an example, choose the Profile query option on the gCMAPWeb start page.

Each gene identifier is accompanied by a single score in the same input line, e.g. a z-score indicating
the significance of the observed differential gene expression (Figure 4). Alternatively, the same information
can be uploaded in a text file.

Figure 4: The gCMAPWeb Profile query submission page: Gene identifiers are accompanied by numeric scores,
e.g. z-scores.

More information about the different fields of gCMAPWeb’s query submission page is available via
the Help link in the top right corner of each web page.

1.1.3 Performing queries in the command line

All queries can also be performed without the graphical user interface. The gCMAP provides methods
to use (or coerce) well-established gene set objects, including GeneSet and GeneSetCollection objects
from the GSEABase package and offers the CMAPCollection class for efficient storage of large gene set
collections.

Please see page 13 for examples and refer to the gCMAP documentation for details about specific
methods.
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2 A small connectivity map for human HepG2 cells

Kawata et al. used microarrays to profile the transcriptional response of human HepG2 cells upon
treatment with 2,3-Dimethoxy-1,4-naphthoquinone, N-nitrosodimethylamine, phenol and six heavy
metals [4]. (PubMed accession 17547211, ArrayExpress accession E-GEOD-6907.)

2.1 Retrieve raw microarray data from ArrayExpress

> library( ArrayExpress )

> library( affy )

> library( gCMAP )

> library( hgfocus.db )

The authors deposited the raw data at ArrayExpress from where it can be retrieved with the
ArrayExpress function from the ArrayExpress package. Ca. 25 Mb of data will be downloaded.

> GEO6907.batch <- ArrayExpress( "E-GEOD-6907" )

The experiments were performed using Affymetrix microarrays. We normalize the intensities and
summarize the probesets with the rma function from the affy package.

> GEO6907.eSet <- rma( GEO6907.batch )

2.2 Create a connectivity map

Some genes are represented by multiple probesets on the array. We map all probe identifiers to Entrez
IDs and calculate the mean expression for each gene in one step.

> GEO6907.eSet <- mapNmerge( GEO6907.eSet )

The phenoData slot of the GEO6907.eSet ExpressionSet contains various annotations columns.
Experimental factors can be identified by their Factor prefix.

> conditions <- grep( "^Factor", varLabels( GEO6907.eSet ), value=TRUE )

> conditions

[1] "Factor.Value..Dose." "Factor.Value..COMPOUND."

> pData( GEO6907.eSet ) <- pData( GEO6907.eSet )[,conditions]

> head( pData( GEO6907.eSet ) )

Factor.Value..Dose. Factor.Value..COMPOUND.

GSM159338 10.0 2,3-dimethoxy-1,4-naphthoquinone

GSM159331 20.0 Mercury (II) chloride

GSM159318 2.0 Cadmium chloride 2.5-hydrate

GSM159325 6.5 Nickel (II) chloride hexahydrate

GSM159336 10.0 2,3-dimethoxy-1,4-naphthoquinone

GSM159332 20.0 Mercury (II) chloride

Now we can use the annotated experimental factors to split the dataset into individual perturbation
instances. We are interested in the COMPOUND annotation column, in which control treatments were
entered as “none”.
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> GEO6907.list <- splitPerturbations( GEO6907.eSet,

+ control = "none",

+ factor.of.interest = "COMPOUND",

+ controlled.factors = "none"

+ )

The annotate_eset_list function collects the sample annotations from each individual treatment
instances into a singe data frame.

> sample.anno <- annotate_eset_list( GEO6907.list )

> head( sample.anno )

Factor.Value..Dose. Factor.Value..COMPOUND.

1 10 2,3-dimethoxy-1,4-naphthoquinone

2 20 Mercury (II) chloride

3 2 Cadmium chloride 2.5-hydrate

4 6.5 Nickel (II) chloride hexahydrate

5 200 Bis [(+)-tartrato] diantimonate (III) dipotassium trihydrate

6 20 Potassium dichromate

Next, we can perform a differential expression analysis separately for each treatment instance and
collect all results in an NChannelSet. By providing a path to the big.matrix parameter, we instruct
gCMAP to leverage the bigmemory package to store the assayData as binary files on disk. Next time the
object is loaded, only a small description file will reside in memory. Subsets of the gene expression scores
will be retrieved on demand, drastically reducing the amount of memory required to query multiple
connectivity maps simultaneously.

> GEO6907.cmap <- generate_gCMAP_NChannelSet(

+ GEO6907.list,

+ sample.annotation = sample.anno,

+ big.matrix = file.path( tempdir(), "GEO6907.cmap" )

+ )

To see how many genes were up- and down-regulated in each experiment we apply a threshold to the
z-score channel.

> GEO6907.sets <- induceCMAPCollection( GEO6907.cmap,

+ lower = -3, higher = 3,

+ element = "z" )

> setSizes( GEO6907.sets )

n.up n.down n.total

1 94 1345 1439

2 115 1043 1158

3 242 320 562

4 464 776 1240

5 151 1974 2125

6 146 1169 1315

7 1 165 166

8 1014 405 1419

9 724 187 911
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2.3 Obtaining public gene set annotations

WikiPathways is an open, public platform dedicated to the curation of biological pathways. The
wiki2cmap function automatically retrieves the latest pathway annotations from the WikiPathways
website. It returns a CMAPCollection object, which represents the gene sets in a sparse matrix format.
Sparse matrices requires less memory, but still allow us to use matrix algebra operations to speed up
set-based calculations.

> wiki.hs <- wiki2cmap( species = "Homo sapiens",

+ annotation.package = "org.Hs.eg.db")

> save( wiki.hs, file = file.path( tempdir(), "wiki.hs.rdata" ) )

Similarly, the KEGG2cmap function generates a species-specific gene set collection with Entrez gene
identifiers from the latest public release of the KEGG database and returns a CMAPCollection object.
(The species identifier for Homo sapiens used by KEGG is “hsa”.) This function requires the KEGG.db
annotation package to be installed on your system.

> KEGG.hs <- KEGG2cmap( species = "hsa",

+ annotation.package = "org.Hs.eg.db" )

> save( KEGG.hs, file = file.path( tempdir(), "KEGG.hs.rdata" ) )

2.4 Starting the gCMAPWeb application

To register reference datasets with the gCMAPWeb appliction, provide basic information about them
in a nested list. (Consult the gCMAP package vignette for a detailed description of the configuration
options.)

> config <- list(

+ species = list(

+ human = list(

+ annotation = "org.Hs.eg",

+ cmaps = list(

+ GEO6907 = file.path( tempdir(), "GEO6907.cmap.rdata" ),

+ Wiki = file.path( tempdir(),"wiki.hs.rdata" ),

+ KEGG = file.path( tempdir(), "KEGG.hs.rdata" )

+ )

+ )

+ )

+ )

> writeLines( as.yaml( config ), file.path( tempdir(), "gcmap.yml" ) )

Afterward, we save this configuration file in yaml format to disk. (In this document, all objects are
saved in the session-specific temporary directory, but they can reside anywhere on the system.) Now,
start gCMAPWeb by providing the path to the configuration file.

> gCMAPWeb( config.file.path = file.path( tempdir(), "gcmap.yml" ) )

The gCMAPWeb application will open in your default browser, ready for queries with gene sets of
your choice.
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3 RNAseq analysis of the benzo[a]pyrene response in HepG2
cells

In this example, we demonstrate gCMAP’s ability to process count data using the DESeq Bioconductor
package. In 2012, van Delft et al. studied the response of human HepG2 cells to treatment with
benzo[a]pyren, a potent carcinogen, using transcriptome sequencing (RNAseq) [11]. Global expression
changes were profiled 12 and 24 hours after treatment. The authors deposted the raw sequencing reads
at the European Nucleotide Archive (ENA) and also included the study in ArrayExpress. (PubMed
accession 22889811, ArrayExpress accession E-GEOD-36242, ENA accession SRP011233.) For this
example, we used the Bioconductor HTSeqGenie package to realign the raw reads to the human genome
(hg19) to obtain the number of uniquely mapped reads for every protein coding gene. For convenience,
the count matrix is included in with this article as Supplementary Data 2.

3.1 Differential expression analysis of RNAseq data

> library( gCMAPWeb )

> library( DESeq )

To run this example, download the Supplementary_data_2.txt file accompanying this article and
provide the full path to it to the read.delim function shown below.

> GSE36242.counts <- read.delim( "Supplementary_data_2.txt",

+ row.names = "EntrezId" )

Next, we retrieve the sample annotations from ArrayExpress and extract the experimental factor of
interest.

> accession <- "E-GEOD-36242"

> url <- paste( "http://www.ebi.ac.uk/arrayexpress/files/",

+ accession, "/",

+ accession, ".sdrf.txt",

+ sep="")

> sample.anno <- read.delim(url, as.is=TRUE)

We subset the sample annotation table to the relevant rows and columns and reorder it to match the
order of the count matrix columns.

> sample.anno <- sample.anno[seq(1, nrow(sample.anno), 2) ,c(30,33,36)]

> row.names( sample.anno ) <- sample.anno[,"Comment..ENA_RUN."]

> sample.anno[,"Comment..ENA_RUN."] <- NULL

> sample.anno <- sample.anno[ colnames( GSE36242.counts),]

> colnames( sample.anno ) <- c("COMPOUND", "TIME")

> sample.anno

> COMPOUND TIME

> SRR427095 Benzo[a]pyrene 12h

> SRR427096 Benzo[a]pyrene 12h

> SRR427097 Benzo[a]pyrene 24h

> SRR427098 Benzo[a]pyrene 24h

> SRR427099 DMSO 12h

> SRR427100 DMSO 12h

> SRR427101 DMSO 24h

> SRR427102 DMSO 24h
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Now, the count matrix and the sample annotation data frame are combined into a countDataSet

object, suitable as input for gCMAP .

> cds <- newCountDataSet( GSE36242.counts, conditions=sample.anno)

Next, we match the different treatment and control samples using the sample annotation provided
by ArrayExpress, creating separate CounDataSets for each individual experimental condition.

> cds.list <- splitPerturbations( cds,

+ control="DMSO",

+ controlled.factors ="TIME",

+ factor.of.interest ="COMPOUND")

We are now ready to perform a differential expression analysis for each perturbation, using DESeq’s
nbinomTest function, and collect all results in the GSE36242 NChannelSet.

> GSE36242.cmap <- generate_gCMAP_NChannelSet( cds.list,

+ uids=c("24h", "12h"))

The NChannelSet contains five channels: the average counts across all experimental instances (exprs),
the log2 fold change calculated from normalized counts (log fc), the log2 fold change calculated after
performing variance-stabilizing transformation of the counts (mod fc), the raw p-value (p) and z-score
obtained by transforming the raw p-value using a standard normal distribution (z).

Figure 5: Fold change versus count (MA) plots showing the effect of treating HepG2 cells with benzo[a]pyrene for
12 hours. On the left, the y-axis corresponds to log2 fold change calculated from normalized counts. On the right,
counts were transformed using a DESeq’s varianceStabilizingTransformation function before calculating the
log2 fold changes. Genes with a z-score >3 or <-3 are indicated in green.

> MA.plot <- function( A, M, z, ylab, xlab, alpha=0.25,

+ ylim=c(-5,5), main=""){

+ plot( A,
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+ M,

+ ylim=ylim,

+ xlab=xlab,

+ ylab=ylab,

+ main=main,

+ col=rgb(0.8,0.8,0.8,alpha=alpha), pch=20, cex=0.5)

+ points(A[abs(z) > 3], M[abs(z) >3], col="darkgreen", pch=20,

+ cex=0.5)

+ abline(h=0)

+ }

> A <- log10( assayDataElement( GSE36242.cmap, "exprs")[,"12h"] )

> z <- assayDataElement( GSE36242.cmap, "z")[,"12h"]

> ## Infinite log fold changes are hart to plot, so we set them

> ## to 110% of the largest observed finite value

> M <- assayDataElement( GSE36242.cmap, "log_fc")[,"12h"]

> M[ M == -Inf ] <- -1.1 * max( abs( M[ is.finite(M)] ))

> M[ M == Inf ] <- 1.1 * max( abs( M[ is.finite(M)] ))

> M.mod <- assayDataElement( GSE36242.cmap, "mod_fc")[,"12h"]

> par(mfrow=c(1,2))

> MA.plot( A, M, z,

+ ylab="Fold change (log2)",

+ xlab="Average counts (log10)",

+ ylim=range( M, na.rm=TRUE ))

> MA.plot( A, M.mod, z,

+ xlab="Average counts (log10)",

+ ylab="Moderated fold change (log2)",

+ ylim=range( M, na.rm=TRUE ))

> par(mfrow=c(1,1))

> title(main="Benzo[a]pyren treatment, 12 hours")

To see how many genes were up- and down-regulated, respectively, we apply a threshold to the
z-score channel.

> GSE36242.sets <- induceCMAPCollection( GSE36242.cmap, element="z",

+ lower=-3, higher=3)

> setSizes( GSE36242.sets)

> n.up n.down n.total

> 24h 456 340 796

> 12h 45 50 95

While only 95 genes show significant signs of differential expression after exposure to benzo[a]pyrene
for 12 hours (figure 5), nearly 800 genes are affected after 24 hours. Next, we can use gCMAP’s gene set
enrichment analysis methods to learn more about the observed drug response.

3.2 Connectivity mapping with gCMAPWeb

The connectivity map approach is aimed at identifying those experimental instances in the collection
of reference experiments with signifiant similarity to the query [5]. Different similarity metrics and
associated statistical tests thave been proposed in the literature, several of which are available as methods
in the gCMAPWeb package for interactive use.

For the gCMAPWeb application, we operationalized the connectivity mapping process by employing
either Fisher’s exact test (for queries with gene set identifiers) [1] or the JG summary score [3] ( for
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directional gene set and profile queries). Both metrics can be computed without requiring time-consuming
permutations of the reference database and their p-values can be estimated parametrically.

In this section, we will use the gCMAPWeb application to explore the benzo[a]pyrene response in
HepG2 cells. Like the authors of the original study, we take advantage of pathway annotations compiled
by the WikiPathways project.

As a second source of pathway annotations, we will compile gene sets from the reactome database with
the reactome2cmap command. gCMAP also provides an analogous go2cmap function to leverage data
from the GO.db Gene Ontology annotation package. These functions require the respective Bioconductor
packages to be available on your system.

> reactome.hs <- reactome2cmap( species="Homo sapiens",

+ annotation.package="org.Hs.eg.db")

> save( reactome.hs, file=file.path( tempdir(), "reactome.hs.rdata"))

Now, we are ready to deploy the gCMAPWeb application by exporting the paths to the reference
datasets to a configuration file. As a control, we will also include the NChannelSet with the results from
the benzo[a]pyrene RNAseq analysis itself as a connectivity map.

> library(yaml)

> config <- list(

+ species=list(

+ human=list(

+ annotation="org.Hs.eg",

+ cmaps=list(

+ WikiPathways=file.path( tempdir(), "wiki.hs.rdata"),

+ Reactome=file.path( tempdir(), "reactome.hs.rdata"),

+ Benzopyrene=file.path( tempdir(), "GSE36242.cmap.rdata")

+ )

+ )

+ )

+ )

> writeLines(as.yaml(config),file.path( tempdir(), "gcmap.yml"))

We can start the web application by providing the path to the configuration file.

> library(gCMAPWeb)

> gCMAPWeb(config.file.path = file.path( tempdir(), "gcmap.yml"))

gCMAPWeb offers three different query options, addressing the following questions:

• Non-directional query: Is there significant overlap between your query genes and a reference
gene set?

• Directional query: Do your query genes consistently change expression in other experiments?

• Profile query: Are genes changing expression in other studies consistantly up- or down-regulated
in your experiment?

Note that additional methods to process complete, replicated microarray experiments via sample
permutation and rotation approaches are available in the gCMAP command line package.
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Figure 6: Screenshot of the gCMAPWeb submission page for non-directional queries.

3.2.1 Performing a non-directional query

To identify significant overlaps between genes responding to benzop[a]yrene treatment after 12 hours, we
perform a non-directional query. We retrieve the identifiers of all differentially regulated genes from
the GSE36242.sets object with the geneIds command.

> library(gCMAP)

> cat( paste( geneIds(GSE36242.sets)[["12h"]], collapse=", "))

Figure 7: Screenshot of the gCMAPWeb result table for WikiPathway genes signficantly overrepresented in
genes differentially regulated after 12 hours of benzop[a]yrene treatment.

We ignore the fact that some genes are up- and others downregulated (for now) and paste the list
into the textbox of the gCMAPWeb Non-directional query submission form (Figure 6).

By default, gCMAPWeb employs Fisher’s exact test [1] for set-wise comparisons, which tests for
significant over-/under-representation of the query genes in other reference gene sets. This test requires
only a list of gene identifiers, but it assumes statistical independence between genes (figure 9). For a
detailed discussion of gene-set enrichment approaches, please refer to Goeman and Bühlmann [2].

On the gCMAPWeb output page, results are presented in separate tabs for each reference database:
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Figure 8: Screenshot of the gCMAPWeb density plot showing the distribution z-scores based on a standard
normal distribution for all WikiPathway categories. Gene sets signficantly overrepresented in genes differentially
regulated after 12 hours of benzop[a]yrene treatment are indicated in the rug. For reference, a standard normal
distribution is shown (dashed line).

Querying the WikiPathway database returns two pathways with significant p-values after correcting
for multiple testing (figure 7): Cholesterol biosynthesis and benzop[a]yrene metabolism. (Both pathways
are also significantly enriched after 24 hours of treatment, as will be highlighted on page 13).

gCMAPWeb also displays the results of the gene-set enrichment analysis in graphical form, as a
density plot of the distribution of similarity scores across all queried gene sets (figure 8). To allow for
comparison between different gene-set enrichment methods, p-values are transformed to z-scores based
on a standard normal distribution. In this analysis, most gene sets receive z-scores close to zero, while
the two significantly overrepresented categories appear as outliers with positive scores.

For each significantly enriched gene set, detailed information about member genes is available via
the link in the Genes column of the result table. For categorial comparisons, a pie chart is produced,
highlighting the fraction of overlap between query and reference set.

The second panel presents results from querying the Reactome gene set collection, again highlighting
the effect of benzo[a]pyrene on the cholesterol metabolism as well as the regulation of gene expression.

Finally, the third panel contains results from querying the Benzo[a]pyrene dataset iself. To enable
set-wise comparisons, gCMAPWeb automatically applied a z-score threshold (customizable via the global
lower.threshold and higher.threshold parameters, see package vignette for details) to derive gene
sets from the experiments. Our query, consisting of genes signficantly regulated at 12 hours, yields
perfect overlap with the experiment it was derived from and also shows significant overlap with genes
differentially expressed at the later timepoint. As quantitative information is available in the reference
database, gCMAPWeb displays a heatmap with differential expression scores for our queries found in
the two experiments (figure 10).

The other two query types, directional and profile queries, take advantage of the quantitative
information available in gCMAP connectivity maps. They will be explored in section 4 below.

3.2.2 Connectivity mapping in the command line

All methods and classes used by the gCMAPWeb application are also available in the command line.
The following examples reproduce the queries executed above by calling the corresponding gCMAP
methods directly.

As a first analysis, we used Fisher’s exact test to check for overlap between genes significantly
changing their expression upon exposure to benzo[a]pyrene with gene set annotated in the WikiPathways
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Figure 9: Schematic overview of a non-directional query. The query gene set is an unordered list of gene
identifiers. The reference connectivity map can either be a collection of gene annotation categories (e.g., from
WikiPathways, KEGG, etc.) or contain quantitative differential expression scores. In the latter case, a significance
threshold is applied to define regulated gene sets on the fly. For each reference gene set, a two-way table is
created, summarizing the overlap between query and reference and a p-value is obtained using Fisher’s exact test.

Figure 10: Heatmap produced by gCMAPWeb when quantitative scores are available in the reference database.
Rows correspond to experimental instances in the reference, columns correspond to query genes in the order
they were submitted. Differential expression scores observed in the reference experiment are indicated from blue
(down-regulated) to red (up-regulated). The green annotation bar on the right indicates significant overlap of
query and reference gene sets.

database.

> fisher.results <- fisher_score( GSE36242.sets, wiki.hs,

+ universe=featureNames(GSE36242.sets)

+ )

> cmapTable( fisher.results[["12h"]], n=5)[,c(1,4,6:8)]

> cmapTable( fisher.results[["24h"]], n=5)[,c(1,4,6:8)]

All gCMAP gene-set enrichment methods return an object of class
RclassCMAPResults, containing the information about the statistical test used, one or more summary
statistics, instance annotations from the reference databse and (optionally) gene-level scores for each
tested gene set. The cmapTable function coerces the results into a standard data frame.

As reported by van Delft and co-workers [11], genes involved in benzo(a)pyrene metabolism, the
Keap1-Nrf2 pathway [8] and cholesterol biosynthesis are significantly overrepresented, both after 12 and
24 hours.
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While Fisher’s test only considered the overlap between groups of gene identifiers, the gCMAP
package also offers methods that take into account the strength of the observed expression changes.
For example, th JG score summarizes the observed z-scores and assigns a p-value based on a standard
normal distribution [3]. (For more on the JG score and directional gene queries see section 4.)

> res <- gsealm_jg_score( GSE36242.cmap, wiki.hs, keep.scores=TRUE)

> cmapTable( res[["12h"]], n=5)[,c(1,4,5)]

set padj effect

1 Hs_Benzo(a)pyrene_metabolism_WP696_41182 1.735171e-22 10.281400

2 Hs_Cholesterol_biosynthesis_WP197_44991 7.701360e-17 -8.865919

3 Hs_Electron_Transport_Chain_WP111_41171 4.872039e-13 7.780917

4 Hs_Proteasome_Degradation_WP183_59174 1.995547e-12 7.563220

5 Hs_Oxidative_phosphorylation_WP623_45305 3.579053e-08 6.129503

The sign of the effect size (JG score) column is positive for up- and negative for down-regulated sets,
e.g., for the Benzo[a]pyrene metabolism and cholesterol biosynthesis pathways, respectively.

As we set the keep.scores parameter of the gsealm_jg_score function to TRUE, the gene-levels
scores are stored in the res CMAPResults object. (We could also retrieve them directly from the original
reference dataset).

> scores.24h <- geneScores( res[["24h"]][1,] )

> barplot( unlist( scores.24h ), names.arg=names( scores.24h[[1]] ),

+ las=2, ylab="Expression change after 24 hr (z-score)",

+ xlab="EntrezId",

+ main="WikiPathways:\nBenzo[a]pyrene metabolism",

+ ylim=c(-10,50))

Figure 11: Differential expression z-scores after treatment of HepG2 cells for 24 hours for genes annotated in
the Benzo[a]pyrene metablism pathway by WikiPathways.
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4 Building and querying the Broad connectivity Map

In 2006, Lamb and co-workers recorded the response of five human cell lines to hundreds of chemical
compounds to generate the Broad connectivity Map [5]. The results for the first phase of this endeavor,
release 1 of the data, is available in the ArrayExpress repository. (PubMed accession 17008526,
ArrayExpress accession E-GEOD-5258.)

We can use the ArrayExpress function from the ArrayExpress Bioconductor package to download
the raw data. Note: ca. 2Gb of data will be retrieved.

> GEOD5258.batch <- ArrayExpress( "E-GEOD-5258" )

Since its deposition, the first array platform has changed its name, so we update its annotation string.

> annotation(GEOD5258.batch[[1]]) <- "hthgu133a"

As this experiment was performed on two different array platforms, ArrayExpress returns a list
with two affyBatch objects, one for each array platform. We normalize each object separately. (The
necessary annotation packages (hthgu133a.db and hgu133a.db) are available from Bioconductor.)

> library("hthgu133a.db")

> library("hgu133a.db")

> GEOD5258.rma <- lapply( GEOD5258.batch, rma )

> rm( GEOD5258.batch )

We map probe IDs to Entrez identifiers and average data for genes assayed by multiple probes.

> GEOD5258.eSets <- lapply( GEOD5258.rma, mapNmerge)

> rm( GEOD5258.rma )

Now the two normalized ExpressionSets can be combined into one.

> GEOD5258.eSet <- mergeCMAPs( GEOD5258.eSets[[1]], GEOD5258.eSets[[2]] )

> rm( GEOD5258.eSets )

Next, we identify the experimental factors of interest from the sample annotations provided by
ArrayExpress and shorten them to make them easier to read.

> conditions <- grep("^Factor", varLabels( GEOD5258.eSet ), value=TRUE)

> pData( GEOD5258.eSet ) <- pData( GEOD5258.eSet )[, conditions]

> varLabels( GEOD5258.eSet ) <- c("CellLine", "Vehicle",

+ "Compound", "Time", "Dose")

> pData( GEOD5258.eSet )[30,]

CellLine Vehicle Compound Time Dose

GSM119261 MCF7 DMSO (-)-catechin 6 1.1e-05

This preprocessed ExpressionSet is now suitable as input for gCMAP .

4.1 Differential expression analysis

The splitPerturbations function automatically combines matched treatment and control samples into
separate ExpressionSets, one for each tested condition, and returns them in a list. We are interested
in studying the effect of the different Compounds. Controls received treatment “none” and need to be
matched to perturbations performed in the same CellLine, treated with the correct Vehicle and for
the same amount of Time.
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> GEOD5258.list <- splitPerturbations( GEOD5258.eSet,

+ factor.of.interest="Compound",

+ control="none",

+ controlled.factors=c("CellLine",

+ "Vehicle",

+ "Time")

+ )

> sample.anno <- annotate_eset_list( GEOD5258.list )

> sample.anno[23,]

CellLine Vehicle Compound Time Dose

23 MCF7 DMSO 15-delta prostaglandin J2 6 1e-05

We obtain a list with 281 treatment conditions with biological replication, suitable for differential
expression analysis. Again, we use the generate_gCMAP_NChannelSet function to analyze all instances
(using limma).

> GEOD5258.cmap <- generate_gCMAP_NChannelSet( GEOD5258.list,

+ uids=paste( "Exp",

+ 1:length( GEOD5258.list ), sep=""),

+ big.matrix=file.path( tempdir(),

+ "GEOD5258.cmap"),

+ sample.annotation=sample.anno

+ )

> assayDataElementNames( GEOD5258.cmap )

[1] "exprs" "log_fc" "p" "z"

By thresholding the z-scores we identify significantly up- and down-regulated genes and store them
in a CMAPCollection. (Here, a z-score cutoff of >3 or <-3 is chosen, as the p-values stored in the
NChannelSet have not been corrected for multiple testing. If adjusted p-values are desired, simply apply
the p.adjust function to the pval element of the NChannelSet.)

> GEOD5258.sets <- induceCMAPCollection( GEOD5258.cmap,

+ element="z",

+ higher=3,

+ lower=-3 )

> GEOD5258.sets <- minSetSize( GEOD5258.sets, min.members=10 )

> head( setSizes( GEOD5258.sets ) )

n.up n.down n.total

Exp1 51 21 72

Exp2 2 39 41

Exp7 0 14 14

Exp8 13 285 298

Exp9 0 71 71

Exp11 1 400 401

4.2 Querying the Broad connectivity map with gCMAPWeb

To register the Broad connectivity map with the gCMAPWeb application, we provide basic information
in a nested list and save it in yaml format.
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> config <- list(

+ species=list(

+ human=list(

+ annotation="org.Hs.eg",

+ cmaps=list(

+ Broad=file.path( tempdir(), "GEOD5258.cmap.rdata")

+ )

+ )

+ )

+ )

> writeLines(as.yaml(config),file.path( tempdir(), "gcmap.yml"))

We can start the web application by providing the path to the configuration file.

> gCMAPWeb(config.file.path = file.path( tempdir(), "gcmap.yml"))

4.2.1 Non-directional query: assessing overlap between query and reference datasets

As discussed on page 12, we can perform a non-directional test by retrieving the identifiers of all
differentially regulated genes from the CMAPCollection object with the geneIds method and paste
them into gCMAPWeb’s non-directional query submission form.

> cat(paste(geneIds( GEOD5258.sets[,"Exp23"]), sep=", "))

1026 10420 10723 10849 10912 124222 124565 133 1466 1605 1645 1646 1649 1663

1843 1999 206358 2114 23175 23338 2355 23598 23645 23657 23729 23764 2534

25803 25837 25888 26136 2669 2703 27289 29948 3162 3310 3337 374655 375449

4097 4131 467 5029 51447 54455 54541 54894 54910 55122 55290 55323 55652

55893 57016 57493 58190 6464 64782 6509 7043 7277 7422 7841 79094 79803

80271 80328 8061 81621 8419 84705 8744 8795 8820 8878 899 9020 90627 9203

9283 9682 9903

As expected, the query instance itself — treatment of MCF7 cells with 15-delta prostaglandin J2 —
is returned as the top hit, with multiple other reference sets also displaying highly significant overlap
with the query. (Please refer to page 13 for details, where this query is executed in the command line. )

4.2.2 Directional query: using information about the direction of gene expression changes

While a non-directional query merely detects overrepresentation between different gene lists, a direc-
tional query can take advantage of the quantiative information stored in the connectivity map to see if
the query genes consistently change expression in other experiments.

By default gCMAPWeb uses the JG score to summarize the differential expression scores across all
gene set members in a reference dataset. As the differential expression scores of up- and down-regulated
genes have the opposite sign, it is important to include information about the direction of gene expression
change in the query. (Otherwise, scores for up- and down-regulated gene set members would cancel each
other out.)

As an example for a directional query, we will use one drug perturbation from the Broad connectivity
map to query the full reference dataset. In experiment 23, MCF7 cells were treated with 15-delta
prostaglandin J2, an inhibitor of NF κ B signaling [10]. We apply a z-score threshold to the Connectiivty
map and retrieve the identifiers for up- and down-regulated genes specifically for experiment 23. To
identify perturbations that led to similar expression changes, we paste the identifiers into “up-” and
“down-regulated query” text fields of the gCMAPWeb directional query submission form (figure 13).

18



Figure 12: Schematic overview of the JG score calculation. Query gene identifiers are accompanied by a sign
vector (up-/down-regulated) (left). For each experiment in the reference connectivity map, the scores for all
query genes are retrieved; scores for up-regulated genes are added while those for down-regulated genes are
subtracted, thereby preserving the directional contribution of all genes. Finally, to normalize for differing gene
set size, the total score is multiplied by the square root of the number of genes in the set.

> pData( GEOD5258.sets)["Exp23",c(2:6)]

CellLine Vehicle Compound Time Dose

Exp23 MCF7 DMSO 15-delta prostaglandin J2 6 1e-05

> cat( "Up-regulated")

> cat( paste( upIds( GEOD5258.sets )[["Exp23"]], sep=", "))

> cat( "Down-regulated")

> cat( paste( downIds( GEOD5258.sets)[["Exp23"]], sep=", "))

Up-regulated

1026 10723 10912 133 1466 1645 1646 1649 1843 206358 2114 23175 2355 23645

23657 23764 2534 25888 26136 2669 27289 29948 3162 3310 3337 4097 4131 467

51447 54455 54541 55122 55290 55323 55652 57016 57493 6464 64782 6509 7277

7422 79094 80271 80328 8061 8744 8795 8878 9020 9682 9903

Down-regulated

10420 10849 124222 124565 1605 1663 1999 23338 23598 23729 25803 25837

2703 374655 375449 5029 54894 54910 55893 58190 7043 7841 79803 81621 8419

84705 8820 899 90627 9203 9283

On the result page, gCMAPWeb offers two overview plots (figure 14). On the left, a density plot
shows the distribution of JG scores obtained for all experiments in the connectivity map. Genes with
signicantly postive or negative scores are indicated in the rug in green (positive, correlated) or blue
(negative, anti-correlated) dashes, respectively.

In this example, the highest similarity score (JG score >38) is returned for the query instance itself.
In addition, several other drug perturbations in the same cell line achieve highly positive scores, including
Z-Leu-Leu-Leu-CHO (also known as MG-132) (JG score >30) and celastrol (>25).

Gene-level plots, displaying the differential expression scores for the individual query genes in the
respective experiments, are available as thumbnails in the result table or on the gene result page,
accessible via the hyperlink in the “Genes” column of the table.
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Figure 13: Screenshot for the gCMAPWeb submission form for directional queries.

Both treatment with Z-Leu-Leu-Leu-CHO and celastrol lead to significant shifts in the expression
of the query genes (figure 15). Interestingly, like 15-delta prostaglandin J2, both Z-Leu-Leu-Leu-CHO
and celastrol are known inhibitors of NFκB signaling [7, 9]. It is tempting to speculate that the highly
similar gene expression changes observed after treating MCF7 cells with these three compounds may be
a result of this shared biomolecular mechanism of action.

4.2.3 Profile query: submitting differential expression scores

The third query type offered by gCMAPWeb, profile query, is closely related to the directional query
option outlined above. Instead of applying a threshold to the query experiment, though, directional
gene sets are defined for each experiment in the reference connectivity map (figure 16). Then, the JG
score summary is obtained for each reference gene set by retrieving the scores from the submitted query
scores. This allows users to assess whether gene sets defined in other studies are consistantly up- or
down-regulated in the query experiment.

We can obtain the full table of scores from the connectivity map:

> head(assayDataElement( GEOD5258.cmap, "z")[, "Exp23", drop=FALSE])

Exp23

10 -1.12296718

100 0.09706779

1000 -0.39198825

10000 0.07649412

10001 0.42311730

10002 0.16007229
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Figure 14: Left: Distribution of JG scores obtained for all experiments in the connectivity map. Genes with
signicantly postive or negative scores are indicated in the rug in green (positive, correlated) or blue (negative,
anti-correlated) dashes, respectively. Right: Heatmap of gene-level scores for the top 50 significant gene sets.
Gene sets are indicated as rows, query genes as columns. The column annotation bar shows whether genes were
submitted as “up-regulated” (grey) or “down-regulated” queries. The row annotation bar indicates whether the
expression of the query genes was correlated (green) or anti-correlated (blue) to that specified in the query.

As this list of scores is very long (12701 genes) , it is more convenient to first write it to a text file
and upload it into the gCMAPWeb interface directly (figure 17).

> write.table(assayDataElement( GEOD5258.cmap, "z")[, "Exp23", drop=FALSE],

+ file="z_scores.txt", quote=FALSE, row.names=TRUE,

+ col.names=FALSE, sep=",")

As expected, querying the Broad connectivity map with the z-scores observed for 15-delta prostaglandin
J2 treatment of MCF7 cells returns the query instance itself as a top hit. The next best result, treatment
of the same cells with 17-allylamino-geldanamycin is shown in figure 17. Genes up-regulated in response
to 17-allylamino-geldanamycin also receive positive z-scores upon treatment with 15-delta prostaglandin
J2, the query experiment. Also, genes down-regulated by 17-allylamino-geldanamycin have the tendency
to be down-regulated in the query experiment, as indicated by the shift of blue density/rug to the left.
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Figure 15: Differential gene expression z-scores obtained by the query genes in experimental treatments of
MCF7 cells with Z-Leu-Leu-Leu-CHO (left) and celastrol (right). The filled grey density shows the distribution of
all z-scores in the respective experiment. Query genes are indicated in the rug; genes submitted as “up-regulated”
are shown in green, those submitted as “down-regulated” are indicated in blue.

Figure 16: Schematic overview of gCMAPWeb’s profile query type. Instead of applying a threshold to the query
experiment (left), the reference connectivity map is converted into a collection of directional gene sets (center).
Then, the JG score is calculated by summarizing the z-scores observed in the query experiment, separately for
each of these reference gene sets.
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Figure 17: Screenshot of the profile submission page. Gene identifiers and scores are uploaded as a csv file (red
box).

Figure 18: gCMAPWeb density plot of gene scores after 15-delta prostaglandin J2 treatment of MCF7 cells.
The filled grey density shows the distribution of scores for all genes on the array. The scores for genes observed
as significantly up- or down-regulated in a different experiment, treatment of MCF7 cells with 17-allylamino-
geldanamycin, are highlighted in green (up-regulated by 17-allylamino-geldanamycin) and blue (down-regulated
by 17-allylamino-geldanamycin). Clearly, genes up-regulated in response to 17-allylamino-geldanamycin are also
up-regulated in the query experiment, indicated by the strong shift of the green density/rug to positive z-scores.
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4.3 Queries in the command line

4.3.1 Non-directional queries

To reproduce the results of a non-directional query with gCMAPWeb, the fisher_score method can
be used. The following command evaluates the overlap of genes observed as significantly differentially
expressed in MCF7 cells after treatment with 15-delta prostaglandin J2 (Exp23) with all other gene sets
in the Broad connectivity map.

> res <- fisher_score( GEOD5258.sets[,"Exp23"], GEOD5258.sets,

+ universe=featureNames( GEOD5258.sets))

> cmapTable( res )[1:3, c(1,2,4,6,9,11)]

set trend padj LOR UID Vehicle

1 Exp23 over 2.124065e-214 Inf Exp23 DMSO

2 Exp86 over 1.275727e-74 5.095233 Exp86 DMSO

3 Exp43 over 9.724655e-48 4.802453 Exp43 DMSO

As observed above, the three NFκB inhibitors display the largest overlap. As expected, the query
itself receives a perfect score — an infinite log odds ratio.

4.3.2 Directional queries

gCMAP offers efficient methods to perform large numbers of queries in the command line. For example,
it is straightforward to calculate the pairwise Fisher or JG summary scores [3] between all gene sets in
the Broad connectivity map.

> res.fisher <- fisher_score( GEOD5258.sets,

+ GEOD5258.sets,

+ universe=featureNames( GEOD5258.sets ))

> res <- gsealm_jg_score( GEOD5258.cmap[,sampleNames( GEOD5258.sets)],

+ GEOD5258.sets )

By performing the all-versus-all comparisons, we obtained two scores for each pair of experimental
conditions, with each instance used first as a query and then also as a reference. To obtain a symmetrical
score we average the “query vs. reference” and “reference vs query” scores for each pair. Finally, we use
the pheatmap function from the pheatmap Bioconductor package to cluster and display the results in a
heatmap.

> library( pheatmap )

> scores <- sapply( res, function(x) {

+ effect(x)[ sampleNames( GEOD5258.sets) ]

+ })

> scores[is.nan(scores)] <- 0

> scores <- (scores + t( scores ) )/2

> scores[ abs( scores ) > 100] <- 100*sign(scores[ abs( scores ) > 100])

> pheatmap( scores,

+ breaks=seq(-100,100, length=101),

+ show_rownames=FALSE,

+ show_colnames=FALSE,

+ main="Pairwise JG scores",

+ border_color=NA

+ )
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Figure 19: Heatmap of average pairwise JG scores for all Broad connectivity map (v1) experiments with at
least ten signficant genes.

5 Quality control

Like individual microarray experiments, reference instances compiled for use in a connectivity map must
be of sufficient quality to provide useful information. As a quality control step, we routinely inspect the
z-score denstity distributions and MA plots for connectivity map experiments.

For example, the MA plot for treatment of MCF7 cells with Monorden for 6 hours reveals that the
center of the log2 fold change distribution is markedly up-shifted, highlighting potential normalization
issues [6]. In contrast, the MA plot for the same treatment in SKMEL5 cells appears normal, with a
log2 fold change centered on zero (figure 20). As a consequence, the distribution of z-scores for genes
in MCF7 cells is bi-modal, while the distribution for those in SKMEL5 cells is approximately normal
(figure 21).

> pData( GEOD5258.cmap)[c(89,90),]

> par(mfrow=c(1,2))

> MA.plot(assayDataElement( GEOD5258.cmap, "exprs")[,89],

+ assayDataElement( GEOD5258.cmap, "log_fc")[,89],

+ NA,

+ main="Monorden, MCF7 cells",

+ xlab="Average expression",

+ ylab="Fold change (log2)",

+ ylim=c(-2,2))
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> MA.plot(assayDataElement( GEOD5258.cmap, "exprs")[,90],

+ assayDataElement( GEOD5258.cmap, "log_fc")[,90],

+ NA,

+ main="Monorden, SKMEL5 cells",

+ xlab="Average expression",

+ ylab="Fold change (log2)",

+ ylim=c(-2,2))

> par(mfrow=c(1,1))

Figure 20: MA plot for MCF7 (left) and SKMEL5 (right) cells treated with Monorden for 6 hours. Genes with
a z-score >3 or <-3 are indicated in green.

Skew or shifts in the z-score distribution can cause random sets of genes to receive high similarity
scores. As a consequence, such reference experiments tend to be reported as matches to many different
queries — spurious matches if the shift is due to failed normalization, or correct but hard to interpret
matches if the treatment in the reference experience has caused significant changes to thousands of genes.

> par(mfrow=c(1,2))

> plot( density( assayDataElement( GEOD5258.cmap, "z")[,89]),

+ main="Monorden, MCF7 cells", xlim=c(-5,5))

> plot( density( assayDataElement( GEOD5258.cmap, "z")[,90]),

+ main="Monorden, SKMEL5 cells", xlim=c(-5,5))

> par(mfrow=c(1,1))

By default, the generate_gCMAP_NChannelSet function attempts to correct small global shifts in the
z-score distribution by centering on zero. This is not sufficient, however, to address major normalization
failures. (Please consult the man page for more details.) To identify problematic reference instances and
flag them for removal, we routinely record the mode (before centering) and median absolute deviation
(MAD) of the per-gene z-scores for each CMAP experiment. (Setting the report.center parameter
of the generate_gCMAP_NChannelSet function to TRUE will report the z.shift and z.mad for each
experiment in the phenoData slot of the returned NChannelSet.)

For example, experiment 26, treatment of MCF7 cells with allylamino-geldanamycin, received a
score of 5 or above for nearly 60 percent of all queries. Inspection of the MA plot for this experiment
(figure 22, left) shows that the majority of genes appears to be down-regulated (log2 fold change <0). In
addition, the accumulation of points at low intensities may indicate additional technical problems, e.g.,
high background or low fluorescence intensities on the arrays.
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Figure 21: Distribution of z-scores for all assayed genes after Monorden treatment of MCF7 (left) and SKMEL5
cells (right).

The z-score distribution for this experiment is bi-modal, with the tallest peak shifted to the right of
0 by >2 units (figure 22, right) and a median-absolute deviation >1.4, due to a large numbers of genes
with strongly negative z-scores. We typically remove instances whose z-score distribution mode is >0.8
units away from zero and/or displays a median absolute deviation >1.2. (These thresholds have been
determined empirically and may need to be adjusted for other reference databases.)

> par(mfrow=c(1,2))

> smoothScatter(assayDataElement( GEOD5258.cmap, "exprs")[,"Exp26"],

+ assayDataElement( GEOD5258.cmap, "log_fc")[,"Exp26"],

+ xlab="Average expression", main="",

+ ylab="Fold change (log2)",

+ ylim=c(-2,2))

> z.distribution <- density( assayDataElement( GEOD5258.cmap, "z")[,"Exp26"])

> plot( z.distribution, main="")

> par(mfrow=c(1,1))

> title( "17-allylamino-geldanamycin\n MCF7 cells")

z.center <- z.distribution$x[which.max(z.distribution$y)]

z.center

[1] 2.145028

z.mad <- mad( assayDataElement( GEOD5258.cmap, "z")[,"Exp26"])

z.mad

[1] 1.422537
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Figure 22: MA plot (left) and z-score distribution (right) showing the gene expression changes observed in
MCF7 cells treated with allylamino-geldanamycin.
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