SomatiCA: identifying, characterizing and quantifying somatic copy number aberrations from cancer genome sequencing

User's Guide

Mengjie Chen, Hongyu Zhao
Yale University

Jan 23, 2013

1 Introduction

1.1 Scope

This guide provides a tour of the Bioconductor package SomatiCA, a R package that is capable of identifying, characterizing and quantifying somatic CNAs from cancer whole genome sequencing. It is especially designed for somatic copy number analyses taking into account: (i) an unknown fraction of normal cells (admixture rate) that are nearly always intermixed with cancer cells; and (ii) the heterogeneity of cancer cell population owing to ongoing subclonal evolution. The package implements a pipeline for characterizing somatic copy number aberrations based on different statistical methods: segmentation on Lesser Allele Frequency (LAF), Maximum Likelihood Estimation of somatic ratio (read depth ratio of tumor/ normal), admixture rate estimation by a Bayesian finite mixture model and subclonality characterization based on hypothesis testing. It is especially suitable for studies designed to understand tumor evolution. It currently works for cancer sample with control.

This guide begins with overview of each module in the pipeline, and then gives an example of fully worked case study.

1.2 Quick start

A classic SomatiCA analysis using the implemented pipeline look like the following. We assume that there are two sequencing libraries with tumor and matched control, and the LAF and read depths are stored in a tab-delimited text file, with position and zygosity annotated (see dataset glio in SomatiCAData).

```
> library(SomatiCA)
> library(SomatiCAData)
> x <- read.table("tumor_sample_with_control.txt", header=T, sep="\t")
> input <- SomatiCAFormat(x, missing = T, verbose = T)
```

```
> data(GCcontent)
> segments <- SomatiCApipe(input, ncores = 1, collapse.k = 0,
+ method = "mle", mcmc = 10000, burnin = 5000,
+ p = 0.001, GC=GCcontent)
```

Users could also apply each step in the pipeline separately which demonstrated below.

2 Overview of capabilities

2.1 Input

SomatiCAdata stored a sample data glio from whole genome sequencing, with 3458745 SNPs on 24 chromosomes (including chrX, chrM).

```
> data(glio)
> head(glio)
    chromosome pos zygosity totalReadCount LAF
1 chr1 38232 hom 3 0.33333333
2 chr1 38907 hom 11 0.36363636
3 chr1 41981 hom 7 0.14285714
4 chr1 46670 het-ref 38 0.05263158
5 chr1 47108 het-ref 21 0.00000000
6 chr147292 het-ref 51 0.21568627
totalReadCountN germlineLAF
1 2 0.5000000
2 16 0.4375000
3 10 0.5000000
4 28 0.1071429
5 22 0.1363636
6 47 0.2127660
```

We first limit our analysis on a portion of chromosome 10 to show for illustration purposes. SomatiCAFormat() will format the above data frame into input for SomatiCA pipeline, which is a GRange object.

```
> glio_sub <- glio[glio[, 1]%in%c("chr10"), ]
> colnames(glio_sub) <- c("seqnames", "start", "zygosity", "tCount",
+ "LAF", "tCountN", "germLAF")
> input <- SomatiCAFormat(glio_sub, missing = T, verbose = T)
```

If the data frame is big, removing missing values may take a while. If missing values have been removed in previous pre-processing steps, use missing $=\mathrm{F}$ instead to reduce time for computing.

2.2 Segmentation

Given input in the format of a GRanges object, larsCBSsegment() segments each chromosome with LAF of heterozygous sites on that chromosomes. larsCBSsegment() extracts hetergozygous sites by 'grep' any site with 'het' in the column of zygosity. For Complete Genomic data, sites with zygosity of 'het-ref' and 'het-alt' will be extracted. If genotype calling results are obtained from other platforms, a transformation is needed. For example, the ' $0 / 1 / 2$ ' coding from VCF file will be needed to transform to 'het'/'hom' coding. Users can name 'zygosity' in their own way but keep in mind that only names containing 'het' will be used as heterozygous sites for segmentations in SomatiCA, such as 'het', 'het-ref', 'heter', 'heter1' etc.
larsCBSsegment() firstly calls a function denoise() to smooth the outliers. Then it segment each chromosome with CBS followed by a model selection procedure. The default model selection criteria is Bayesian Information Criterion (BIC) plus a minimum cut-off for change in residue sum of squares (RSS) between neighboring change points. Users can set $\mathrm{rss}=\mathrm{F}$ to apply BIC only. collapse. k is an option to average LAF on each k SNPs.

```
> seg <- larsCBSsegment(input, collapse.k = 0, ncores = 1, verbose = T,
+ rss=T, S=0.5)
```

Output of larsCBSsegment () includes two part: segmentation results and heterozygous sites used for segmentation (denoised).

$\left.\begin{array}{cccccc}\text { [31] } & \begin{array}{c}\text { chr10 [135421344, 135506780] } \\ \text { medgLAF }\end{array} & * & & 0.1972 \\ \text { <numeric> }\end{array}\right]$
seqlengths: chr10 NA
\$hetsites
GRanges with 71887 ranges and 5 elementMetadata values:

seqnames		ranges strand	
	<Rle>	<IRanges>	<Rle>
[1]	chr10	[81245, 81245]	*
[2]	chr10	[110655, 110655]	*
[3]	chr10	[118119, 118119]	*
[4]	chr10	[124381, 124381]	*
[5]	chr10	[132768, 132768]	*
[6]	chr10	[133341, 133341]	*
[7]	chr10	[133803, 133803]	*
[8]	chr10	[135656, 135656]	*
[9]	chr10	[141909, 141909]	*
[71879]	chr10	[135434551, 135434551]	*
[71880]	chr10	[135437185, 135437185]	*
[71881]	chr10	[135499455, 135499455]	*
[71882]	chr10	[135499729, 135499729]	*

[71883]	chr10 [1	[135499771,	135499771]	*
[71884]	chr10 [1	[135499781,	135499781]	*
[71885]	chr10 [1	[135506185,	135506185]	*
[71886]	chr10 [1	[135506687,	135506687]	* \|
[71887]	chr10 [1	[135506780,	135506780]	* \|
	zygosity	ty tCount	t LAF	tCountN
	<character>	r> <integer>	> <numeric>	<integer>
[1]	het-ref	f 62	20.3387097	75
[2]	het-ref	f 68	80.2205882	94
[3]	het-ref		70.1228070	55
[4]	het-ref		30.1807229	103
[5]	het-ref		10.1126761	81
[6]	het-ref		0.1428571	50
[7]	het-ref	f 25	0.1200000	27
[8]	het-ref		10.1290323	74
[9]	het-ref	f 69	0.1594203	100
[71879]	het-ref	60	0.2000000	116
[71880]	het-ref		0.3500000	33
[71881]	het-ref		0.3750000	22
[71882]	het-ref		90.4210526	19
[71883]	het-ref		30.3076923	9
[71884]	het-ref		90.4444444	11
[71885]	het-ref		0.4687500	97
[71886]	het-ref		80.4375000	68
[71887]	het-ref	f 62	20.3548387	104
	germLAF			
	<numeric>			
[1]	0.3600000			
[2]	0.5000000			
[3]	0.4727273			
[4]	0.4951456			
[5]	0.4444444			
[6]	0.4800000			
[7]	0.4444444			
[8]	0.4729730			
[9]	0.4200000			

[71879] 0.4310345
[71880] 0.3030303
[71881] 0.2727273
[71882] 0.4210526
[71883] 0.3333333
[71884] 0.4545455
[71885] 0.4020619

Figure 1: Segmentation on chr10 based on LAF (denoised data).

```
[71886] 0.4558824
[71887] 0.1923077
---
seqlengths:
chr10
NA
```

The segmentation result can be examined by plotSegment (). If multiple chromosomes are segmented, use k to plot segmentation on each chromosome respectively by their orders in the input. Use use smooth $=\mathrm{T}$ to visualize denoised data. This segmentation is not final. It will be refined based on somatic ratio.

```
> plotSegment(seg$segment, input, k = 1, smooth = T)
```

larsCBSsegment() supports multi-thread parallel computing through package foreach and doMC. The number of cores used in computing could be specified by argument ncores. Before parallel computing, we recommend to check the usable cores and register for multiple cores as the following example.

```
> require(doMC)
> registerDoMC(4)
> k <- getDoParWorkers()
>k
> seg <- larsCBSsegment(input, collapse.k = 0, ncores = k, verbose = T,
+ rss=T, S=0.5)
```


2.3 Estimation of somatic ratio

Somatic ratio is defined as the ratio of read depths between a tumor and its paired normal sample for a given segment. SomatiCA implements different methods to estimate somatic ratio. For the "mle" method somatic ratio is estimated by a maximum likelihood approach. For the "mean" method, somatic ratio is estimated by the ratio between mean of tumor sample and normal sample. For the "geometric", somatic ratio is estimated by geometric mean of somatic ratios of all sites in a given segment. To estimate somatic ratio, both segmentation and input with read depths are required.

```
> segmentwithRatio <- somaticRatio(seg$segment, input, method = "mle")
> segmentwithRatio
```

	seqnames		ranges	strand	\|	medLAF
	<Rle>		<IRanges>	<Rle>	I	<numeric>
[1]	chr10	0 ,	1647315]	*	\|	0.0641
[2]	chr10	[1647315,	1980728]	*	I	0.2857
[3]	chr10	[1980728,	2497863]	*	\|	0.0857
[4]	chr10	[2497863,	3339647]	*	\|	0.125
[5]	chr10	[3339647,	37807847]	*		0.0556
[6]	chr10	[37807847,	42753044]	*		0.0274
[7]	chr10	[42753044,	46153563]	*		0.0397
[8]	chr10	[46153563,	46791048]	*		0.0822
[9]	chr10	[46791048,	47148128]	*	\|	0.4272
[23]	chr10	[115430816,	115879467]	*	\|	0.0667
[24]	chr10	[115879467,	116113366]	*	\|	0.3333
[25]	chr10	[116113366,	116310102]	*	\|	0.0781
[26]	chr10	[116310102,	116775885]	*	\|	0.375
[27]	chr10	[116775885,	117577995]	*	\|	0.02
[28]	chr10	[117577995,	127540392]	*	\|	0.093
[29]	chr10	[127540392,	127616678]	*	\|	0.2203
[30]	chr10	[127616678,	135421344]	*	\|	0.1096
[31]	chr10	[135421344,	135506780]	*	I	0.1574
	medgLAF	ratio				
	<numeric>	<numeric>				
[1]	0.3793	0.895				
[2]	0.3837	0.181				
[3]	0.4	0.772				
[4]	0.0312	0.183				
[5]	0.3286	0.797				
[6]	0.017	0.757				
[7]	0.0398	0.857				
[8]	0.0801	0.744				
[9]	0.2696	0.904				

\ldots.	\ldots	\ldots
$[23]$	0.0445	0.586
$[24]$	0.4375	0.197
$[25]$	0.4067	0.866
$[26]$	0.4333	0.155
$[27]$	0.014	0.253
$[28]$	0.3623	0.529
$[29]$	0.257	0.791
$[30]$	0.3857	0.568
[31]	0.266	0.608

seqlengths:		
chr10		
NA		

2.4 Refine segments

Two adjacent segments are merged if the difference in the somatic ratios is less than "threshold2", which is tunable in the implementation with its default value being 0.05 , equivalent to 5% change in somatic copy-number without normal contamination. The MLEs of the somatic ratio for the refined segments are recalculated. This refinement procedure is applied repeatedly until no adjacent segments have somatic ratio difference less than T. "threshold1" is the threshold used to merge the segments based on median LAF.

```
> refined <- refineSegment(segmentwithRatio, input, method = "mle",
+ adjust = TRUE, threshold1 = 0 , threshold2 = 0.05)
> refined
```


2.5 Estimation of admixture rate

The estimation of the admixture rate is accomplished by fitting the somatic copy number (somatic ratio*2) of all segments with a Bayesian finite mixture model, with components centered at the discrete levels. Each segment was assigned with a discrete level based on corresponding posterior probability. Segments with ambiguous assignments will be classified as candidate subclonal events and excluded from admixture rate inference. The admixture rate will be estimated by an optimal solution contributed by explanation of tumor copy number with all remaining segments as integer level. SomatiCA implements a Markov Chain Monte Carlo with Metropolis Hasting algorithm to estimate posterior probabilities of the Bayesian finite mixture model. Option mcmc set the number of MCMC iteration, burnin set the number of MCMC iteration for burnin and p set the cutoff of posterior probability for ambiguous integer copy number assignments.

```
> data(segwithratio)
> segmentwithRatio <- GRanges(seqnames=segwithratio$chromosome,
+ ranges=IRanges(start=segwithratio$start,
    end=segwithratio$end),
medLAF=segwithratio$medLAF,
medgLAF=segwithratio$medgermlineLAF,
ratio=segwithratio$ratio)
> x <- admixtureRate(segmentwithRatio, mcmc = 5000, burnin = 1000, p = 0.01)
> admix <- x$admix
```

copynumberCorrected could take a segmentation profile and an admixture rate to calculate the integer somatic copy number in tumor sample then characterize somatic events based on corrected somatic ratio. Each segment will be annotated with "=", "Loss", "Gain", "LOH", "neutral LOH" or "double deletion". Note that somatic copy number here is calculated from the ratio with the assumption that the control sample is diploid. This result will likely be modified in next step with the calculation of ploidy of each segment in the control sample.

```
> y <- copynumberCorrected(segmentwithRatio, admix)
>
```



```
>
```


2.6 Subclonality characterization

SomatiCA estimates subclonality for each somatic copy number abberation. To do this, it first calculates allelic copy number nB and nA (segment level allelic copy number is estimated by median in that segment) in a control sample based on GC corrected read counts. SomatiCA tests whether copy number change in corresponding tumor sample can result in a change of exactly one copy of one allele. If the somatic ratio (corrected by admixture rate) in the corresponding tumor sample is greater than 1 , SomatiCA tests for one copy gain, otherwise it tests for one copy loss. With null hypothesis that clonal copy number ratio follows a normal distribution, p -value is calculated for each segment as the probability of obtaining a copy number ratio at least as extreme as the one that was actually observed. Segments with p-value less than 0.05 are classified as subclonal.

```
> data(glio)
> colnames(glio) <- c("seqnames", "start", "zygosity", "tCount", "LAF", "tCountN", "ge
> input <- SomatiCAFormat(glio, missing = T, verbose = T)
> data(GCcontent)
> segmentGCcorrected <- segmentGCbiasRemoval(y, input, GCcontent)
> segmentClonality <- subclonality(segmentGCcorrected, admix)
> segmentClonality
```

GRanges	with 137 ranges and seqnames	elementMet ranges	tadata strand	alues: \|
	<Rle>	<IRanges>	<Rle>	\|
[1]	chr1 [0,	4364422]		\|
[2]	chr1 [4364422,	4767753]	*	\|
[3]	chr1 [4767753,	7301947]	*	\|
[4]	chr1 [7301947,	16886985]	*	I
[5]	chr1 [16886985,	18141145]	*	I
[6]	chr1 [18141145,	45869770]	*	\|
[7]	chr1 [45869770,	54958545]	*	I
[8]	chr1 [54958545,	120391484]	*	I
[9]	chr1 [120391484,	145381187]	*	I
[129]	chr17 [72633298,	81194665]	*	\|
[130]	chr18 [0,	78016752]	*	\|
[131]	chr19 [0,	59102379]	*	I
[132]	chr20 [0,	62964366]	*	\|
[133]	chr21 [0,	48097460]	*	\|
[134]	chr22 [0,	17040586]	*	\|
[135]	chr22 [17040586,	51195304]	*	\|
[136]	chrX [0,	82705277]	*	1
[137]	chrX [82705277,	155257115]	*	\|
	medLaF medgLaF	ratio	somaCN	event
	<numeric> <numeric>	<numeric>	<array>	<character>
[1]	0.44318180 .4444444	1.1833856	2	=
[2]	0.35136450 .4526316	0.8197492	2	=
[3]	0.17142860 .4482759	0.4153605	1	LOH
[4]	0.44642860 .4489796	0.9984326	2	=
[5]	0.34449760 .3529412	1.0344828	2	=
[6]	0.44921400 .4516129	1.0141066	2	=
[7]	0.44097220 .4512195	1.0235110	2	=
[8]	0.44912750 .4533333	0.9404389	2	=
[9]	0.37786530 .3697479	1.0203762	2	=
[129]	0.446808510 .4468085	1.2210031	2	=
[130]	0.450285490 .4528302	0.9749216	2	=
[131]	0.378378380 .4461538	1.2398119	2	=
[132]	0.450000000 .4523810	1.0391850	2	=
[133]	0.446834210 .4482759	0.9075235	2	=
[134]	0.211267610 .2550263	0.6175549	1	Loss
[135]	0.097560980 .4495413	1.3793103	3	Gain
[136]	0.444444440 .4473684	0.8228840	2	=
[137]	0.447214850 .4500000	0.8260188	2	=
	clonality ger	rmCN subclon	nalCN su	bpercent
	<character> <numer	ric> <nume	eric> <	<numeric>

Users can further merge neighboring segments with same somatic copy number and events together.

```
> merged <- MergeSegment(segmentClonality)
> merged
```

GRanges with 93 ranges and 6 elementMetadata values:

seqnames			ranges strand	
	<Rle>		<IRanges>	<Rle>
[1]	chr1	[0,	4364422]	*
[2]	chr1	[4364422,	4767753]	*
[3]	chr1	[4767753,	7301947]	*
[4]	chr1	[7301947,	120391484]	*
[5]	chr1	[120391484,	145381187]	*
[6]	chr1	[145381187,	249239305]	*
[7]	chr2		133037397]	*
[8]	chr2	[133037397,	133100540]	*
[9]	chr2	[133100540,	230315858]	*
[85]	chr17	[27292044,	29539325]	*
[86]	chr17	[29539325,	81194665]	*
[87]	chr18	[0,	78016752]	*

Figure 2: An example of subclonality.

[91]	1	1.0
[92]	3	1.0
[93]	<NA>	0.0

seqlengths:
chr1 chr10 chr11 chr12 chr13... chr7 chr8 chr9 chrX
NA NA NA NA NA ... NA NA NA NA
The subclonality and somatic copy number for a sample can be visualized by plotSubclonality.

```
> plotSubclonality(merged)
```

Then you can output all the clonal events.
> merged[elementMetadata(merged)[, "clonality"]=="clonal",]


```
\begin{tabular}{rrr}
\(\ldots\) & \(\cdots\) & \(\cdots\) \\
{\([26]\)} & 1 & 1 \\
{\([27]\)} & 1 & 1 \\
{\([28]\)} & 1 & 1 \\
{\([29]\)} & 1 & 1 \\
{\([30]\)} & 3 & 1 \\
{\([31]\)} & 6 & 1 \\
{\([32]\)} & 1 & 1 \\
{\([33]\)} & 1 & 1 \\
{\([34]\)} & 3 & 1
\end{tabular}
```

```
---
```

seqlengths:
chr1 chr10 chr11 chr12 chr13 ... chr7 chr8 chr9 chrX
NA NA NA NA NA ... NA NA NA NA

```

Or output the subclonal events with high proportion of aberration.



\section*{3 SomatiCA pipeline}

Already get familiar with how SomatiCA works? If so, call SomatiCApipe directly to run all the steps described above automatically. Multithread computing is still supported through ncores. We recommend to use verbose=T to print working messages and track the working progress.
```

> data(GCcontent)
> x <- SomatiCApipe(input, ncores = 1, collapse.k = O, method = "mle",

+ mcmc = 50000, burnin = 10000, p = 0.001, GC = GCcontent)
> merged <- MergeSegment(x\$segment)

```

\section*{4 Others}

\subsection*{4.1 GC content}

In case the precalculated GC content will be out of date or users may want to use smaller window size, we provide a function first downloading the .fa.gz of a given chromosome from UCSC genome browser and then calculating the GC content for a given window size (10,000 bp in the following example).
```

> chr <- paste("chr", c(1:22, "X"), sep="")
> url <- "http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/"
> GC <- foreach(i=chr, .combine=rbind)%dopar%{

+ return(GCcount(i, 10000, url))
+ }

```
```

