Single-Channel Array Normalization (SCAN)

Stephen R. Piccolo

August 17, 2013

Contents

1	Background	1
2	How to use SCAN	2

1 Background

This vignette describes how to normalize samples with the *Single-Channel Array Normalization (SCAN)* method. This new approach has been described in detail in a recent paper (Piccolo et al., 2012). Individuals interested in understanding the motivations and methodology behind this method can read this paper for extensive details.

Briefly, SCAN is a single-sample approach for gene-expression microarrays. This means that the output for a given microarray sample will be the same whether that sample is processed in isolation or jointly with other samples. The probe-sequence content within each microarray is used to correct for binding-affinity biases that can arise during processing and to standardize variances across the probes. Because samples can be processed individually, the user can process extremely large batches of files with a modest computer-memory footprint. Unlike many normalization methods, SCAN can be applied to any Affymetrix microarray for which an annotation package (that has been constructed using the pdInfoBuilder package) exists in Bioconductor. In the paper mentioned above, we demonstrate that SCAN performs as well as or better than several popular normalization methods on simulated and "real-world" data sets.

2 How to use SCAN

This section demonstrates how to normalize an Affymetrix microarray file. In the examples below, an example CEL file is downloaded from Gene Expression Omnibus, saved to a temporary file, and then normalized using SCAN. Various optional parameters are also demonstrated.

The first step is to download an example CEL file (which was obtained via Gene Expression Omnibus).

```
> celFilePath = "Vignette_Example.CEL.gz"
> download.file("http://www.ncbi.nlm.nih.gov/geo/download/?acc=GSM555237&format=file&
```

To normalize the file, the SCAN function must be invoked. This function requires one mandatory parameter: a path specifying the location of the file to be normalized.

```
> library(SCAN.UPC)
> normalized = SCAN(celFilePath)
```

Reading in : ./Vignette_Example.CEL.gz

The SCAN function returns an *ExpressionSet* object containing a row for each probeset (transcript/gene) value. Detailed status information, including the number of iterations required for mathematical convergence of the mixture models, are printed to the console.

Multiple input files can also be specified using wildcard characters (e.g., "*.CEL"). In this case, the SCAN function returns an *ExpressionSet* object with a row for each probeset and a column for each input file.

Using the optional outFilePath parameter, the normalized values also can be saved to a text file. The example below demonstrates this option. (The optional verbose parameter can also be used. When set to FALSE, SCAN outputs only minimal status information while processing.)

```
> normalized = SCAN(celFilePath, outFilePath="output_file.txt")
```

```
Reading in : ./Vignette_Example.CEL.gz
```

By default, SCAN uses the default mappings between probes and genes that have been provided by the manufacturer. However, these mappings may be outdated or may include

problematic probes (for example, those that cross hybridize). The default mappings also may produce multiple summary values per gene. Alternative mappings, such as those provided by the BrainArray resource (see http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp), allow SCAN to produce a single value per gene and to use updated gene definitions. Users can specify alternative mappings using the probeSummaryPackage parameter. If specified, this package must conform to the standards of the AnnotationDbi package. The BrainArray packages can be downloaded from http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp. When using BrainArray, be sure to download the R source package for probe-level mappings (example below).

My O UMail		Docs	Scholar Scholar	© GEO	S SRA	O <mark>g</mark> Pubget	Bioc	My	/RA S	Entrez	S dbsni	, 📋	Python	₹ Gala	іху <table-cell></table-cell>	FSL	C Ch	ron
HOME	ABOUTUS	DATAB	ASE	DATA MI	NING	DOWNL	OAD	ME	THOD	SIT	EMAP							
Iome > Service > Cus Download <i>(Ve</i>			REZG)															
Species	Chip	Original Chip Probe Count		Custom CDF Name		Cu	Statistics of Current Version Probe % Probeset #		Statistics of Previous Version		% of Common Probes in Version # Current Previous		% of Common Probesets in Version Current Previous		% of Identical Probesets in Version Current Previous		R Packages	
Anopheles gambiae	PlasmodiumAnopheles	250758	Plasmodium/	Anopheles	Ag ENTRE	ZG 1.7	408	1.7	408	100.00	100.00	100.00	100.00	100.00	100.00	C P	C P	О
Arabidopsis_thaliana	AG	131822	AG_At_ENT	REZG		83.2	7359	83.1	7352	99.78	99.89	99.71	99.81	99.06	99.16	C P	C P	О
Arabidopsis thaliana	AGRONOMICS1	6046951	AGRONOMI	CS1 At El	NTREZG	20.0	30851	19.7	30749	98.69	99.79	99.45	99.78	92.63	92.93	C P	C P	О
Arabidopsis thaliana	ATH1121501	251078	ATH1121501	At ENTI	REZG	84.9	21236	84.9	21225	99.77	99.84	99.69	99.74	99.16	99.21	C P	C P	О
rabidopsis thaliana	aragene l 0st	628424	aragene 10st	At ENTRI	EZG	93.3	27602									C P	C P	0
Arabidopsis thaliana	aragene l l st	628424	aragene l l st	At ENTRI	EZG	93.3	27602									CP	C P	О
Bos taurus	Bovine	265627	Bovine Bt I	ENTREZG		43.1	9409	43.0	9403	99.83	100.00	99.94	100.00	98.35	98.42	(PI	CPA	O
aenorhabditis elegans	Celegans	249165	Celegans Ce	ENTREZ	G	78.8	17165	78.9	17198	99.83	99.68	99.84	99.65	97.08	96.89	CPA	CPA	О
Canis familiaris	Canine2	473162	Canine2 Cf	ENTREZO	}	53.1	16755	50.1	15664	88.21	93.44	89.33	95.56	70.34	75.24	CPA	CPA	0
Canis_familiaris	Canine2PM	486081	Canine2PM_	Cf_ENTRI	EZG	51.7	16755	48.8	15664	88.21	93.44	89.33	95.56	70.34	75.24	CPA	CPA	O
Canis_familiaris	cangenel1st	621953	cangenel1st_	Cf_ENTR	EZG	66.6	17768									CPA	CPA	0
Danio_rerio	Zebrafish	249752	Zebrafish_Dr	ENTREZ	G	53.1	8548	47.0	7696	84.62	95.52	84.45	93.80	75.96	84.37	CPA	CPA	O
Danio_rerio	zebgene10st	1245559	zebgene10st_	Dr_ENTR	EZG	41.8	23877									CPA	CPA	O
Danio_rerio	zebgene l 1 st	1245558	zebgenellst_	Dr_ENTR	EZG	41.8	23877									CPA	CPA	O
Drosophila_melanogaster	DrosGenome1	195994	DrosGenome	l_Dm_EN	TREZG	91.0	11719	91.2	11788	99.78	99.54	99.69	99.11	98.99	98.41	CPA	CPA	0
Prosophila_melanogaster	Drosophila2	265400	Drosophila2_	Dm_ENTF	REZG	70.6	12746	71.0	12847	99.55	99.00	99.36	98.58	97.97	97.20	CPA	C P A	O
equus_caballus	equgene10st	537520	equgene10st	EQca_EN	TREZG	69.1	17624									C P	C P	О
allus_gallus	Chicken	424097	Chicken_Gg	ENTREZO	3	43.3	12492	43.3	12492	100.00	100.00	100.00	100.00	100.00	100.00	CPA	CPA	0
allus_gallus	chigene10st	464100	chigene10st_	Gg_ENTR	EZG	69.6	13310									CPA	CPA	0
allus_gallus	chigenel 1st	464100	chigenellst_	Gg_ENTR	EZG	69.6	13310									CPA	CPA	0
Iomo_sapiens	HCG110	30313	HCG110_Hs	ENTREZO	3	72.2	1292	72.3	1295	99.70	99.62	99.85	99.61	98.84	98.61	CPA	CPA	0
lomo_sapiens	HGFocus	98149	HGFocus_Hs	ENTREZ	G	78.9	7820	79.2	7856	99.59	99.17	99.65	99.20	98.82	98.37	CPA	CPA	. 0
Iomo_sapiens	HGU133A	247965	HGU133A_H	s_ENTRE	ZG	69.0	12012	69.2	12078	99.28	99.07	99.55	99.01	98.04	97.50	CPA	CPA	0
Homo sapiens	HGU133A2	247899	HGU133A2	II. ENTEDI	70	69.0	12012	69.2	12078	99.28	99.07	99.55	99.01	98.04	97.50	CPA	CDA	O

Once such a probe-summary has been downloaded, it must be installed in R using code such as the following.

- > download.file("http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/1
- > install.packages("hgu95ahsentrezgprobe_15.0.0.tar.gz", repos=NULL, type="source")
- > library(hgu95ahsentrezgprobe)

Then the mappings can be applied to a CEL file using code such as the following.

> normalized = SCAN(celFilePath, probeSummaryPackage=hgu95ahsentrezgprobe)

Finally, we clean up files that were created in this demo.

> unlink(c(celFilePath, "output_file.txt", "hgu95ahsentrezgprobe_15.0.0.tar.gz"))

References

Stephen R. Piccolo, Ying Sun, Joshua D. Campbell, Marc E. Lenburg, Andrea H. Bild, and W. Evan Johnson. A single-sample microarray normalization method to facilitate personalized-medicine workflows. Genomics, 100(6):337-344, 2012. doi: http://dx.doi.org/10.1016/j.ygeno.2012.08.003".