The RTopper package: perform run Gene Set Enrichment across genomic platforms

Luigi Marchionni Department of Oncology Johns Hopkins University email: marchion@jhu.edu

April 4, 2013

Contents

1	Overview	1
2	RTopper data structure	2
	2.1 Creation of Functional Gene Sets	4
3	Data analysis with RTopper	9
	3.1 Integrated Gene-to-Phenotype score computation	10
	3.2 Separate Gene-to-Phenotype score computation	10
	3.3 Gene Set Enrichment using integrated and separate score	11
	3.4 INTEGRATION + GSE	12
	3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics	12
	3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics	12
	3.4.3 Performing a simulation-based GSE test	12
	3.4.4 Passing alternative enrichment functions to runBatchGSE	13
	3.5 GSE + INTEGRATION \ldots	15
	3.6 Multiple testing correction	16
4	System Information	17
5	References	19

1 Overview

Gene Set Enrichment (GSE) analysis has been widely use to assist the interpretation of gene expression data. We propose here to apply GSE for the integration of genomic data obtained from distinct analytical platform.

In the present implementation of the **RTopper** GSE analysis is performed using the **geneSetTest** function from the limma package [6, 5, 7]. This function enables testing the hypothesis that a specific set of genes (a Functional Gene Set, FGS) is more highly ranked on a given statistics. In

particular this functions computes a p-value for each FGS by one or two-sided Wilcoxon rank-sum test. Alternative user-defined functions can also be used.

Furthermore multiple hypothesis testing correction is achieved by applying the Benjamini and Hochberg method [2] as implemented in the multtest R/Bioconductor package. Overall, this approach is conceptually analogous to Gene Set Enrichment Analysis (GSEA), as proposed by Mootha and colleagues [4, 8].

The integration can be achieved through two distinct approaches:

- 1. **GSE** + **INTEGRATION**: Separate GSE analysism on the individual genomic platforms followed by GSE results integration;
- 2. **INTEGRATION + GSE**: Integration of genomic data measurement using a logistic model followed by GSE analysis;

2 RTopper data structure

In this tutorial we demonstrate the functionality of **RTopper** package. To this end we will make use of simplified data generated within The Cancer Genome Atlas (TCGA) project, using Glioblastoma Multiforme (GBM) genomics data obtained from the same patients' cohort using distinct platforms, including Differential Gene Expression (DGE), Copy Number Variation (CNV), and Differential Methylation (DM). This data is included with the **RTopper** package as the dataset exampleData, which consists of genomic measurements (the list dat) for 500 genes (in rows) and 95 patients (in columns) from 4 distinct platforms:

- 1. DGE obtained using Affymetrix;
- 2. DGE obtained using Agilent;
- 3. CNV data generated ad Harvard;
- 4. CNV data generated ad the MSKCC;

The phenotypic class for each patient is defined in the a data.frame **pheno** consisting of 95 rows (patients, *pheno\$Sample*) and 2 columns, the first being patients identifiers, and the second variable giving the group indicator (*pheno\$Class*).

To load the data set type data(exampleData), and to view a description of this data type ?exampleData. The structure of the data is shown below:

```
> library(RTopper)
> data(exampleData)
> ls()
[1] "dat" "pheno"
> class(dat)
[1] "list"
> names(dat)
[1] "dat.affy" "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"
```

```
> sapply(dat,class)
      dat.affy
                  dat.agilent dat.cnvHarvard
  "data.frame"
                 "data.frame"
                                 "data.frame"
  dat.cnvMskcc
  "data.frame"
> sapply(dat,dim)
     dat.affy dat.agilent dat.cnvHarvard
                       500
[1,]
          500
                                       500
[2,]
           95
                        95
                                       95
     dat.cnvMskcc
[1,]
              500
[2,]
               95
> dim(pheno)
[1] 95 2
> str(pheno)
'data.frame':
                      95 obs. of 2 variables:
                "TCGA.02.0003" "TCGA.02.0007" "TCGA.02.0011" "TCGA.02.0021" ...
 $ Sample: chr
                0 0 1 1 0 0 0 0 0 0 ...
 $ Class : int
```

In summary to perform the analysis with functions from **RTopper** the genomic data used as input must be in the following format:

- 1. Genomic measurements: a list of data.frames, in which each list item corresponds to a genomic platform, and comprises a data.frame with rows being genes and columns patients;
- 2. Phenotype data: a data.frame with 2 columns: patients and their phenotypes;
- 3. The number of columns of the *Genomic measurements* data.frames must match the number of rows of the *Phenotype data*;
- 4. The same set of genes must be measured in each platform and gene labels must be stored as rownames;

Below are shown the first 6 rows and 4 columns of each data.frame contained in dat, which share the same genes (shown for some of the possible combinations). Similarly column names in the dat data.frames correspond to rownames of pheno.

```
> ###data structure
```

```
> lapply(dat,function(x) head(x)[,1:3])
```

\$dat.affy			
	TCGA.02.0003	TCGA.02.0007	TCGA.02.0011
AACS	7.747995	7.685409	7.535661
AARS	9.381544	9.930156	10.197194
ABI1	8.173255	8.962803	9.895811
ACHE	5.127197	4.547297	5.146552
ACTC1	6.612645	5.825879	8.067945
ACTN2	6.257383	5.330557	5.842319

\$dat.agilent

	TCGA.02.0003	TCGA.02.0007	TCGA.02.0011
AACS	-1.0070000	-1.1164000	-0.913000
AARS	-1.2665000	-0.8981250	0.263500
ABI1	-0.2765000	0.3356250	1.027250
ACHE	0.4403750	-0.0222500	0.115000
ACTC1	0.3641538	0.1234615	1.046692
ACTN2	4.3348000	2.2278000	3.330600

\$dat.cnvHarvard

	TCGA.02.0003	TCGA.02.0007	TCGA.02.0011
AACS	-0.08273213	-0.08917331	-0.02075644
AARS	-0.10233281	-0.20620608	-0.05157664
ABI1	-0.86886659	-0.01214599	0.59307754
ACHE	0.31560002	-1.00166150	-0.14519639
ACTC1	-1.17495078	-0.26698279	-0.95662761
ACTN2	-0.11319016	-0.09657971	0.02582138

\$dat.cnvMskcc

	TCGA.02.0003	TCGA.02.0007	TCGA.02.0011
AACS	-0.0383875	-0.09140000	0.008233333
AARS	0.0075600	0.02801667	0.104850000
ABI1	-0.7006900	0.21270000	0.499472727
ACHE	0.8676000	-0.23970000	0.075000000
ACTC1	-0.9779500	-0.11625000	-0.692950000
ACTN2	-0.1258571	-0.05394444	0.010200000

```
> sum(rownames(dat[[1]])%in%rownames(dat[[2]]))
```

[1] 500

```
> sum(rownames(dat[[2]])%in%rownames(dat[[3]]))
```

[1] 500

2.1 Creation of Functional Gene Sets

Functional Gene Sets (FGS) are list of genes that share a specific biological function. Examples of FGS are genes that operate in the same signaling pathway (*i.e.* Notch signaling genes), or that share the same biological function (*i.e.* Cell adhesion genes). FGS can be retrieved from various database, or can be constructed *ad hoc*. A convenient source of FGS are the R-Bioconductor metaData packages, and S4 classes and methods for handling FGS are provided by the GSEABase package. Below is shown a simple way to extract FGS from the human genome metaData package org.Hs.eg.db. As a general rule the name of the metaData package, without the .db extension, can be used a function to see the content of the package, as shown below:

> library(org.Hs.eg.db)
> org.Hs.eg()

Quality control information for org.Hs.eg:

This package has the following mappings:

org.Hs.egACCNUM has 28608 mapped keys (of 43827 keys) org.Hs.egACCNUM2EG has 692985 mapped keys (of 692985 keys) org.Hs.egALIAS2EG has 96484 mapped keys (of 96484 keys) org.Hs.egCHR has 43369 mapped keys (of 43827 keys) org.Hs.egCHRLENGTHS has 93 mapped keys (of 93 keys) org.Hs.egCHRLOC has 23658 mapped keys (of 43827 keys) org.Hs.egCHRLOCEND has 23658 mapped keys (of 43827 keys) org.Hs.egENSEMBL has 24274 mapped keys (of 43827 keys) org.Hs.egENSEMBL2EG has 26047 mapped keys (of 26047 keys) org.Hs.egENSEMBLPROT has 19686 mapped keys (of 43827 keys) org.Hs.egENSEMBLPROT2EG has 100661 mapped keys (of 100661 keys) org.Hs.egENSEMBLTRANS has 21268 mapped keys (of 43827 keys) org.Hs.egENSEMBLTRANS2EG has 161437 mapped keys (of 161437 keys) org.Hs.egENZYME has 2230 mapped keys (of 43827 keys) org.Hs.egENZYME2EG has 975 mapped keys (of 975 keys) org.Hs.egGENENAME has 43827 mapped keys (of 43827 keys) org.Hs.egGO has 18088 mapped keys (of 43827 keys) org.Hs.egG02ALLEGS has 17202 mapped keys (of 17202 keys) org.Hs.egGO2EG has 13385 mapped keys (of 13385 keys) org.Hs.egMAP has 35004 mapped keys (of 43827 keys) org.Hs.egMAP2EG has 2503 mapped keys (of 2503 keys) org.Hs.egOMIM has 15570 mapped keys (of 43827 keys) org.Hs.egOMIM2EG has 19134 mapped keys (of 19134 keys) org.Hs.egPATH has 5870 mapped keys (of 43827 keys) org.Hs.egPATH2EG has 229 mapped keys (of 229 keys) org.Hs.egPFAM has 20364 mapped keys (of 43827 keys) org.Hs.egPMID has 31324 mapped keys (of 43827 keys) org.Hs.egPMID2EG has 373456 mapped keys (of 373456 keys) org.Hs.egPROSITE has 20364 mapped keys (of 43827 keys) org.Hs.egREFSEQ has 27268 mapped keys (of 43827 keys) org.Hs.egREFSEQ2EG has 88756 mapped keys (of 88756 keys) org.Hs.egSYMBOL has 43827 mapped keys (of 43827 keys) org.Hs.egSYMBOL2EG has 43819 mapped keys (of 43819 keys) org.Hs.egUCSCKG has 22922 mapped keys (of 43827 keys) org.Hs.egUNIGENE has 24733 mapped keys (of 43827 keys) org.Hs.egUNIGENE2EG has 25954 mapped keys (of 25954 keys) org.Hs.egUNIPROT has 19200 mapped keys (of 43827 keys)

Additional Information about this package:

DB schema: HUMAN_DB DB schema version: 2.1 Organism: Homo sapiens Date for NCBI data: 2013-Mar5 Date for GO data: 20130302 Date for KEGG data: 2011-Mar15 Date for Golden Path data: 2010-Mar22 Date for Ensembl data: 2013-Jan16

For instance the org.Hs.egG02ALLEGS environment contains the mapping of all ENTREZ Gene identifiers to the **Gene Ontology Terms** [1], while org.Hs.egPATH2EG maps the identifiers to **KEGG** pathways [3]. The corresponding lists of FGS can be retrieve from the corresponding environments using the the R command as.list(), as shown below for KEGG and GO:

```
> kegg <- as.list(org.Hs.egPATH2EG)</pre>
> go <- as.list(org.Hs.egG02ALLEGS)</pre>
> length(kegg)
[1] 229
> length(go)
[1] 17202
> str(kegg[1:5])
List of 5
$ 04610: chr [1:69] "2" "462" "623" "624" ...
 $ 00232: chr [1:7] "9" "10" "1544" "1548" ...
 $ 00983: chr [1:52] "9" "10" "978" "1066" ...
 $ 01100: chr [1:1130] "9" "10" "15" "18" ...
 $ 00380: chr [1:42] "15" "26" "38" "39" ...
> names(kegg)[1:5]
[1] "04610" "00232" "00983" "01100" "00380"
> str(go[1:5])
List of 5
$ GD:0000002: Named chr [1:18] "291" "1763" "1890" "3980" ...
  ..- attr(*, "names")= chr [1:18] "TAS" "IDA" "TAS" "IEA" ...
 $ GD:0000003: Named chr [1:1855] "18" "49" "49" "49" ...
  ..- attr(*, "names")= chr [1:1855] "IEA" "IEA" "IMP" "ISS" ...
 $ G0:0000012: Named chr [1:9] "3981" "7141" "7515" "23411" ...
  ..- attr(*, "names")= chr [1:9] "IDA" "IDA" "IEA" "IMP" ...
 $ GD:0000018: Named chr [1:45] "604" "641" "641" "940" ...
  ..- attr(*, "names")= chr [1:45] "IEA" "IEA" "IMP" "IEA" ...
 $ GD:0000019: Named chr [1:4] "641" "4292" "4361" "10111"
  ..- attr(*, "names")= chr [1:4] "IEA" "IEA" "TAS" "IDA"
> names(go)[1:5]
[1] "GD:000002" "GD:000003" "GD:0000012"
[4] "GD:000018" "GD:0000019"
```

In the kegg list genes are identified by their ENTREZ Gene identifiers, while in the dat genes are identified by their Gene Symbol. Below is an example of the code that can be used to perform the identifiers conversion, using only a subset of KEGG and GO FGS:

```
> kegg <- lapply(kegg[sample(1:length(kegg),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMB)
> go <- lapply(go[sample(1:length(go),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMBOL))))</pre>
> str(kegg)
List of 5
$ 05332: chr [1:41] "FAS" "FASLG" "CD28" "CD80" ...
 $ 00740: chr [1:11] "ACP1" "ACP2" "ACP5" "ACPP" ...
$ 00983: chr [1:52] "NAT1" "NAT2" "CDA" "CES1" ...
 $ 03060: chr [1:23] "HSPA5" "OXA1L" "SRP9" "SRP14" ...
 $ 04612: chr [1:76] "B2M" "CALR" "CANX" "CD4" ...
> str(go)
List of 5
 $ GO:2000489: chr [1:2] "LEP" "RPS6KA1"
$ GO:0060335: chr [1:4] "HPX" "MED1" "TXK" "NLRC5"
 $ GO:1900139: chr "PLA2R1"
$ GO:0010133: chr [1:3] "PRODH" "ALDH4A1" "PRODH2"
 $ GO:0061013: chr [1:6] "ZFP36" "BTG2" "GTPBP1" "PABPC1" ...
Finally, it is also possible to annotate FGS, mapping pathways identifiers to pathway names, as
shown below for KEGG, using the KEGG.db.
> library(KEGG.db)
```

```
> KEGG()
```

Quality control information for KEGG:

This package has the following mappings:

KEGGENZYMEID2GO has 3999 mapped keys (of 3999 keys) KEGGEXTID2PATHID has 75100 mapped keys (of 75100 keys) KEGGG02ENZYMEID has 4129 mapped keys (of 4129 keys) KEGGPATHID2EXTID has 3152 mapped keys (of 3152 keys) KEGGPATHID2NAME has 390 mapped keys (of 390 keys) KEGGPATHNAME2ID has 390 mapped keys (of 390 keys)

Additional Information about this package:

```
DB schema: KEGG_DB
DB schema version: 2.1
Date for KEGG data: 2011-Mar15
> names(kegg) <- paste(names(kegg),unlist(mget(names(kegg),KEGGPATHID2NAME)),sep=".")
> names(kegg)
```

"05332.Graft-versus-host disease"
 "00740.Riboflavin metabolism"
 "00983.Drug metabolism - other enzymes"
 "03060.Protein export"
 "04612.Antigen processing and presentation"

Similarly GO Terms can be retrieved from the GO.db (please refer to the vignettes of the corresponding packages for details).

> library(GO.db)
> GO()
Quality control information for GO:

This package has the following mappings:

GOBPANCESTOR has 24697 mapped keys (of 24697 keys) GOBPCHILDREN has 14173 mapped keys (of 24697 keys) GOBPOFFSPRING has 14173 mapped keys (of 24697 keys) GOBPPARENTS has 24697 mapped keys (of 24697 keys) GOCCANCESTOR has 3146 mapped keys (of 3146 keys) GOCCCHILDREN has 1041 mapped keys (of 3146 keys) GOCCOFFSPRING has 1041 mapped keys (of 3146 keys) GOCCOFFSPRING has 1041 mapped keys (of 3146 keys) GOCCOFARENTS has 3146 mapped keys (of 3146 keys) GOMFANCESTOR has 9547 mapped keys (of 9547 keys) GOMFCHILDREN has 1906 mapped keys (of 9547 keys) GOMFOFFSPRING has 1906 mapped keys (of 9547 keys) GOMFPARENTS has 9547 mapped keys (of 9547 keys) GOMFPARENTS has 9547 mapped keys (of 9547 keys) GOMFPARENTS has 37391 mapped keys (of 37391 keys)

Additional Information about this package:

DB schema: GO_DB
DB schema version: 2.1
Date for GO data: 20130302
> names(go) <- paste(names(go),Term(names(go)),sep=".")
> names(go)
[1] "GO:2000489.regulation of hepatic stellate cell activation"
[2] "GO:0060335.positive regulation of interferon-gamma-mediated signaling pathway"
[3] "GO:1900139.negative regulation of arachidonic acid secretion"
[4] "GO:0010133.proline catabolic process to glutamate"
[5] "GO:0061013.regulation of mRNA catabolic process"

Finally we can be combine the two FGS collections into a named list for further used in GSE analysis (see below).

> fgsList <- list(go=go,kegg=kegg)</pre>

3 Data analysis with RTopper

To compute gene-to-phenotype association scores the first step required is the convertion of the data into a list, where each list item corresponds to a gene, and comprises a data.frame with the rows being patients, and columns being measurements for each data type, along with the class phenotype (*the response*). Importantly each element of the list with the data should have the same genes and patients.

The convertToDr function is used to make such conversion. Below is a short description of the arguments to this function:

- dataIntersection: a list of data.frames containing the same set of patients(columns) and genes (rows)
- response: a data.frame indicating patients' phenotypic class;
- nPlatforms: the number of platforms;

This can be achieved as follows using our examples data:

```
> dataDr <- convertToDr(dat, pheno, 4)</pre>
> class(dataDr)
[1] "list"
> length(dataDr)
[1] 500
> names(dataDr)[1:5]
[1] "AACS" "AARS"
                    "ABI1"
                            "ACHE"
                                     "ACTC1"
> str(dataDr[1:2])
List of 2
 $ AACS:'data.frame':
                             95 obs. of 5 variables:
  ..$ dat.affy
                    : num [1:95] 7.75 7.69 7.54 7.3 7.01 ...
                    : num [1:95] -1.007 -1.116 -0.913 -1.061 -1.775 ...
  ..$ dat.agilent
  ...$ dat.cnvHarvard: num [1:95] -0.0827 -0.0892 -0.0208 -0.1811 -0.0625 ...
  ...$ dat.cnvMskcc : num [1:95] -0.03839 -0.0914 0.00823 0.03456 0.0573 ...
  ..$ response
                    : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...
 $ AARS:'data.frame':
                             95 obs. of 5 variables:
  ..$ dat.affy
                    : num [1:95] 9.38 9.93 10.2 9.54 9.37 ...
                    : num [1:95] -1.266 -0.898 0.264 -0.599 -1.437 ...
  ..$ dat.agilent
  ...$ dat.cnvHarvard: num [1:95] -0.1023 -0.2062 -0.0516 -0.0923 -0.1199 ...
  ..$ dat.cnvMskcc
                   : num [1:95] 0.00756 0.02802 0.10485 0.0841 0.12262 ...
  ..$ response
                    : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...
```

It is now possible to compute gene-to-phenotype association scores, using as input the gene-centered list produced by convertToDr. Therefore the computeDrStat function assumes that each gene-

centered data.frame contains a column (the last one) called 'response', as created by the convertToDr. Below is a short description of the arguments to this function:

- data: a list of data.frames, one for each gene analyzed, contining the the genomic measurements from all platforms (by column) for all the patients (by row), along with the phenotypic response;
- columns: a numeric vector indicating column indexes corresponding the genomic measurements to be used for computing the gene-to-phenotype association scores; the default is columns = c(1:(ncol(data) 1)), assuming the phenotypic response to be the last column;
- method: the method used to compute the association score;
- integrate: logical, whether an integrated gene-to-phenotype score should be computed, or separate scores for each platform/data sets specified by columns;

In the current implementation of the **RTopper** there are three methods for computing gene-tophenotype association scores:

- 1. dev: this approach computes the score as the difference of deviances (as described in Tyekucheva et al, manuscript under review [9]);
- 2. aic: this approach computes the score as the Akaike information criterion for model selection;
- 3. bic: this approach computes the score as the penalized likelihood ratio;

3.1 Integrated Gene-to-Phenotype score computation

This approach first integrates genomic data across platform, and subsequently perform GSE to identify the FGS most strongly associated with the integrated score. Below is an example of application to compute the gene-to-phenotype association scores for 4 data type simultaneously:

```
> bicStatInt <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = TRUE)
> names(bicStatInt)
```

```
[1] "integrated"
```

```
> str(bicStatInt)
```

```
List of 1
```

```
$ integrated: Named num [1:500] -11.43 -15.93 -8.85 -13.52 -7.26 ...
..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...
```

3.2 Separate Gene-to-Phenotype score computation

This approach first computes computes gene-to-phenotype score separately for each platform, uses the scores to perform separate GSE analysis in each platform for identifying the FGS most strongly associated with the score, and finally integrates the results from GSE analysis, Below is an example of this approach:

```
> bicStatSep <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = FALSE)</pre>
```

```
> names(bicStatSep)
```

```
[1] "dat.affy" "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"
> str(bicStatSep)
List of 4
$ dat.affy : Named num [1:500] 0.545 -4.269 -2.334 -4.471 -3.625 ...
..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...
$ dat.agilent : Named num [1:500] -3.57 -4.5 -3.66 -4.52 -1.05 ...
..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...
$ dat.cnvHarvard: Named num [1:500] -4.49 -3.64 3.13 -3.26 -2.57 ...
..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...
$ dat.cnvMskcc : Named num [1:500] -4.53 -4.48 2.1 -2.55 -4.25 ...
..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...
```

3.3 Gene Set Enrichment using integrated and separate score

After the gene-to-phenotype scores have been obtained it is possible to perform a GSE analysis. To this end we will use the **runBatchGSE** function, as shown below. This function enables to perform GSE analysis over multiple collections of FGS, and over multiple ranking statistics. In the current implementation of the **runBatchGSE** the default is performing the enrichment analysis using the **geneSetTest** function from the limma package, and most of the arguments passed to **runBatchGSE** are indeed passed to **geneSetTest** (see the relative help for the details).

As an alternative the user can also define his own function to test for FGS enrichment, passing the selection of genes within the FGS and the ranking ranking statistics in the same way as done for geneSetTest. In this tutorial we apply geneSetTest in order to perform a Wilcoxon rank-sum test, using the absolute value of the gene-to-phenotype scores as the ranking statistics.

```
> args(runBatchGSE)
```

```
function (dataList, fgsList, ...)
NULL
```

Below a short description of the arguments that can be passed to this function:

- dataList: a list containing gene-to-phenotype scores to be used as ranking statistics in the GSE analysis;
- fgsList: a list of FGS collection, in which each element is a list of character vectors, one for each gene set;
- ...: any other argument to be passed to lower level functions, including the lower level enrichment function to be used (like the geneSetTest function from the limma package, which is used as the default);
- absolute: logical specifying whether the absolute values of the ranking statistics should be used in the test (the default being TRUE);
- gseFunc: a function to perform GSE analysis, when not specified (the default) the gene-SetTest from the limma package is used. When a function is specified, the membership of the analyzed genes to a FGS, and the ranking statistics must be defined in the same way this

is done for geneSetTest, and the new function must return an integer (usually a p-value) (see the help for geneSetTest in the limma package)

Below are few examples to perform Wilcoxon rank-sum test over multiple FGS collections, and over multiple ranking statistics, usin the runBatchGSE. To this end we will use the **KEGG** and **GO** collections created above, and the separate and integrated gene-to-phenotype scores computed using the computeDrStat. The output of this function is a named list of lists, containing an element for each ranking statistics considered in the input. Each one of these elements, in turn, is another list, containing the GSE results for each collection sets. In the examples below we will therefore obtain a list of length one in the case of the integrated gene-to-phenotype score, and a list of length four (on element for each genomic platform) in the case of the separate scores. For all the rankings we will obtain GSE result for both the collections of FGS.

3.4 INTEGRATION + GSE

The integrated gene-to-phenotype scores we have computed can be used to perform a GSE analysis. Below are reported few examples, using the default options, as well as passing several specific arguments to geneSetTest (see the relative help for details).

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics

This can be accomplished by calling the **runBatchGSE** with default values, or by specifying each argument, as shown below:

```
> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList)
> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,
+ absolute=TRUE, type="f", alternative="mixed")</pre>
```

3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics

When the signed ranking statistics has a sign, it is possible to perform a one-sided test assensing both tails separately, as well as a two-sided test. This can be accomplished by passing the corresponding arguments to runBatchGSE, as shown below:

3.4.3 Performing a simulation-based GSE test

It is also possible to perform an enrichment analysis comparing each FGS to randomly selected gene lists of the same size of the FGS. In this case the p-value is computed by simulation as the proportion of times the mean of the statistics in the FGS is smaller (or larger) than in the nsim random simulated sets of genes.

Results from this analysis are named lists of lists, as shown below:

```
> str(gseUP.int)
List of 1
 $ integrated:List of 2
  ..$ go : Named num [1:5] NA NA 0.958 NA NA
  ...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.391 0.574 0.509 0.37 0.6
  ....- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
> gseABSsim.int
$integrated
$integrated$go
                    GD:2000489.regulation of hepatic stellate cell activation
                                                                            NA
G0:0060335.positive regulation of interferon-gamma-mediated signaling pathway
                                                                            NA
                 GO:1900139.negative regulation of arachidonic acid secretion
                                                                   0.005994006
                            GO:0010133.proline catabolic process to glutamate
                                                                            NA
                              GO:0061013.regulation of mRNA catabolic process
                                                                            NA
$integrated$kegg
          05332.Graft-versus-host disease
                                0.5894106
              00740.Riboflavin metabolism
                                0.4505495
    00983.Drug metabolism - other enzymes
                                0.6013986
                     03060.Protein export
                                0.5964036
04612. Antigen processing and presentation
                                0.3906094
```

3.4.4 Passsing alternative enrichment functions to runBatchGSE

Below is show how to define and pass alternative enrichment functions to runBatchGSE. We will first show how to use the limma wilcoxGST function, which is a synonym for geneSetTest using ranks.only=TRUE and type="t".

```
> library(limma)
> gseUP.int.2 <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,
+ absolute=FALSE, gseFunc=wilcoxGST, alternative="up")</pre>
```

As shown below this approach will return the same results obtained with geneSetTest passing appropriate arguments.

```
> str(gseUP.int.2)
List of 1
$ integrated:List of 2
...$ go : Named num [1:5] NA NA 0.958 NA NA
...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
...$ kegg: Named num [1:5] 0.391 0.574 0.509 0.37 0.6
...- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabole
...]
```

```
> all(gseUP.int.2$go==gseUP.int$go)
```

[1] TRUE

We can finally also pass any new user-defined enrichment function, provided that the arguments are passed in the same way as with geneSetTest, as shown below using the Fisher's exact test, and a threshold for defining the list of differentially expressed genes.

As shown below this approach will test for over-represtation of the a specific gene set within the genes defined as differentially expressed (in our example the genes showing an integrated association score larger than 7.5). Results are somewhat comparable to what obtained using the Wilcoxon rank-sum test.

```
> str(gseUP.int.3)
```

```
List of 1
$ integrated:List of 2
...$ go : Named num [1:5] NA NA 1 NA NA
...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
...$ kegg: Named num [1:5] 1 1 1 1 1
...- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetabolismetaboli
```

> data.frame(fisher=gseUP.int.3\$integrated\$kegg,wilcoxon=gseUP.int\$integrated\$kegg)

	fisher
05332.Graft-versus-host disease	1
00740.Riboflavin metabolism	1
00983.Drug metabolism - other enzymes	1
03060.Protein export	1
04612.Antigen processing and presentation	1

	wilcoxon
05332.Graft-versus-host disease	0.3908406
00740.Riboflavin metabolism	0.5741939
00983.Drug metabolism - other enzymes	0.5088030
03060.Protein export	0.3697353
04612.Antigen processing and presentation	0.5996754

3.5 GSE + INTEGRATION

The individual gene-to-phenotype scores computed for each platform can be similarly used to perform separate GSE analyses for each considered genomic platform, applying the same code and functions used to perform GSE analysis in the **INTEGRATION** + **GSE** approach above.

```
> gseABS.sep <- runBatchGSE(dataList=bicStatSep, fgsList=fgsList)</pre>
```

This step of GSE analysis on separate platform is then followed by GSE results integration, which is achieved using the **combineGSE** function, which summarizes the individual p-values from the tests. To this end different methods are available, including the computation of the geometric or arithmetic means, the use of the median, the selection of the minimum or the maximum p-value, and the random selection (respectively geometricMean, mean, median, min, max, and random). Few examples are shown below:

```
> gseABS.geoMean.sep <- combineGSE(gseABS.sep, method="geometricMean")
> gseABS.max.sep <- combineGSE(gseABS.sep, method="max")</pre>
```

Also in this case the results from the combination are named lists of lists, as shown below:

```
> names(gseABS.sep)
[1] "dat.affy"
                     "dat.agilent"
[3] "dat.cnvHarvard" "dat.cnvMskcc"
> str(gseABS.sep)
List of 4
 $ dat.affy
                 :List of 2
  ..$ go : Named num [1:5] NA NA 0.191 NA NA
  ....- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.2619 0.0587 0.6444 0.9024 0.0723
  ....- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
 $ dat.agilent
                 :List of 2
  ..$ go : Named num [1:5] NA NA 0.207 NA NA
  ...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.957 0.754 0.433 0.944 0.559
  ....- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
 $ dat.cnvHarvard:List of 2
  ..$ go : Named num [1:5] NA NA 0.0691 NA NA
  ....- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.357 0.803 0.26 0.574 0.713
  ...- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
 $ dat.cnvMskcc :List of 2
```

```
..$ go : Named num [1:5] NA NA 0.0579 NA NA
  ...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.5715 0.6688 0.0703 0.2619 0.581
  ....- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
> str(gseABS.geoMean.sep)
List of 1
 $ combinedScore:List of 2
  ..$ go : Named num [1:5] NA NA 0.112 NA NA
  ...- attr(*, "names")= chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation
  ..$ kegg: Named num [1:5] 0.475 0.393 0.267 0.598 0.36
  ....- attr(*, "names")= chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabo
> gseABS.geoMean.sep
$combinedScore
$combinedScore$go
                    GD:2000489.regulation of hepatic stellate cell activation
                                                                           NΑ
G0:0060335.positive regulation of interferon-gamma-mediated signaling pathway
                                                                           NA
                 GD:1900139.negative regulation of arachidonic acid secretion
                                                                     0.1121636
                            GO:0010133.proline catabolic process to glutamate
                                                                           NΑ
                              GO:0061013.regulation of mRNA catabolic process
                                                                           NΑ
$combinedScore$kegg
          05332.Graft-versus-host disease
                                0.4754729
              00740.Riboflavin metabolism
                                0.3925857
    00983.Drug metabolism - other enzymes
```

```
0.2670733
03060.Protein export
0.5982390
04612.Antigen processing and presentation
0.3596455
```

3.6 Multiple testing correction

Finally the adjustPvalGSE enables to adjust the p-values computed by the runBatchGSE. This functions is an interface to the mt.rawp2adjp function from the multtest package.

```
> gseABS.int.BH <- adjustPvalGSE(gseABS.int)
> gseABS.int.holm <- adjustPvalGSE(gseABS.int, proc = "Holm")</pre>
```

Also in this case the results after the adjustment are named lists of lists, as shown below:

```
> names(gseABS.int.BH)
[1] "integrated"
> names(gseABS.int.holm)
[1] "integrated"
> str(gseABS.int.BH)
List of 1
 $ integrated:List of 2
  ..$ go : num [1:5, 1:2] NA NA 0.0423 NA NA ...
  ... - attr(*, "dimnames")=List of 2
  .....$ : chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation" "GO:006033
  ....$ : chr [1:2] "rawp" "BH"
  ..$ kegg: num [1:5, 1:2] 0.614 0.431 0.499 0.635 0.405 ...
  ... - attr(*, "dimnames")=List of 2
  .....$ : chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabolism" "00983
  ....$ : chr [1:2] "rawp" "BH"
> str(gseABS.int.holm)
List of 1
 $ integrated:List of 2
  ..$ go : num [1:5, 1:2] NA NA 0.0423 NA NA ...
  ....- attr(*, "dimnames")=List of 2
  .....$ : chr [1:5] "GO:2000489.regulation of hepatic stellate cell activation" "GO:006033
  ....$ : chr [1:2] "rawp" "Holm"
  ..$ kegg: num [1:5, 1:2] 0.614 0.431 0.499 0.635 0.405 ...
  ....- attr(*, "dimnames")=List of 2
  .....$ : chr [1:5] "05332.Graft-versus-host disease" "00740.Riboflavin metabolism" "00983
  ....$ : chr [1:2] "rawp" "Holm"
```

4 System Information

Session information:

> sessionInfo()

R version 3.0.0 (2013-04-03) Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

- [1] LC_CTYPE=en_US.UTF-8
- [2] LC_NUMERIC=C
- [3] LC_TIME=en_US.UTF-8
- [4] LC_COLLATE=C
- [5] LC_MONETARY=en_US.UTF-8
- [6] LC_MESSAGES=en_US.UTF-8
- [7] LC_PAPER=C

```
[8] LC_NAME=C
 [9] LC_ADDRESS=C
[10] LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8
[12] LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats
                        graphics grDevices
[5] utils
              datasets methods
                                  base
other attached packages:
 [1] limma_3.16.0
                          GO.db_2.9.0
 [3] KEGG.db_2.9.0
                          org.Hs.eg.db_2.9.0
                          DBI_0.2-5
 [5] RSQLite_0.11.2
 [7] AnnotationDbi_1.22.0 RTopper_1.6.0
 [9] Biobase_2.20.0
                          BiocGenerics_0.6.0
loaded via a namespace (and not attached):
[1] IRanges_1.18.0 MASS_7.3-26
[3] multtest_2.16.0 splines_3.0.0
[5] stats4_3.0.0
                    survival_2.37-4
[7] tools_3.0.0
```

5 References

References

- M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet*, 25(1):25–9, 2000. 1061-4036 (Print) Journal Article.
- [2] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B*, 57:289–300, 1995.
- [3] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for deciphering the genome. *Nucleic Acids Res*, 32(Database issue):D277–80, 2004. 1362-4962 (Electronic) Journal Article.
- [4] V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, and L. C. Groop. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet*, 34(3):267–273, 2003. 1061-4036 (Print) Journal Article.
- [5] G. K. Smyth. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology*, 3(Article 3), 2004.
- [6] G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, R. V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors, *Bioinformatics and Computational Biology Solutions* using R and Bioconductor, pages 397–420. Springer, New York, 2005.
- [7] G. K. Smyth, J. Michaud, and H. S. Scott. Use of within-array replicate spots for assessing differential expression in microarray experiments. *Bioinformatics*, 21(9):2067–75, 2005. 1367-4803 (Print) Evaluation Studies Journal Article Validation Studies.
- [8] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, and Jill P Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545–15550, Oct 2005.
- [9] Svitlana Tyekucheva, Luigi Marchionni, Rachel Karchin, and Giovanni Parmigiani. Integrating diverse genomic data using gene sets. *Genome Biology (in press)*, 2011.