
Package ‘SplicingGraphs’
October 9, 2013

Title Create, manipulate, visualize splicing graphs, and assign RNA-seq reads to them

Version 1.0.4

Author D. Bindreither, M. Carlson, M. Morgan, H. Pages

License Artistic-2.0

Description This package allows the user to create, manipulate, and visualize
splicing graphs and their bubbles based on a gene model for a given
organism. Additionally it allows the user to assign RNA-seq reads to
the edges of a set of splicing graphs, and to summarize them in different ways.

Maintainer H. Pages <hpages@fhcrc.org>

Depends BiocGenerics, IRanges (>= 1.17.43), GenomicRanges (>=
1.11.45), GenomicFeatures, Rgraphviz (>= 2.3.7)

Imports methods, utils, igraph, BiocGenerics, IRanges, Genomi-
cRanges,GenomicFeatures, graph, Rgraphviz

Suggests igraph, Gviz, Rsam-
tools, TxDb.Hsapiens.UCSC.hg19.knownGene,RNAseqData.HNRNPC.bam.chr14, RUnit

Collate utils.R igraph-utils.R SplicingGraphs-class.R
plotTranscripts-methods.R sgedgesByGene-methods.R
txpath-methods.R sgedges-methods.R sgraph-methods.R
rsgedgesByGene-methods.R bubbles-methods.R assignReads.R
countReads-methods.R toy_data.R zzz.R

biocViews
Genetics, Annotation, DataRepresentation, Visualization,Sequencing, RNAseq, GeneExpression

R topics documented:
SplicingGraphs-package . 2
assignReads . 4
bubbles-methods . 6
countReads-methods . 7

1

2 SplicingGraphs-package

plotTranscripts-methods . 11
rsgedgesByGene-methods . 12
sgedges-methods . 15
sgedgesByGene-methods . 17
sgraph-methods . 19
SplicingGraphs-class . 21
toy_data . 25
TSPCsg . 27
txpath-methods . 28

Index 32

SplicingGraphs-package

Create, manipulate, visualize splicing graphs, and assign RNA-seq
reads to them

Description

The SplicingGraphs package allows the user to create, manipulate, and visualize splicing graphs
and their bubbles based on a gene model for a given organism. Additionally it allows the user to
assign RNA-seq reads to the edges of a set of splicing graphs, and to summarize them in different
ways.

Details

See the Splicing graphs and RNA-seq data vignette in the package for a gentle introduction to its
use. To access the vignette, do browseVignettes("SplicingGraphs"), then click on the link to
the PDF version.

Note

The SplicingGraphs package is a reincarnation of an internal project, the SpliceGraph package,
originally written by D. Bindreither, M. Carlson, and M. Morgan. SpliceGraph was never released
as part of Bioconductor.

With respect to the old SpliceGraph, the scope of the new SplicingGraphs package has been re-
duced to focus only on the following functionalities: creating/manipulating/plotting splicing graphs,
computing the bubbles and AS codes, and assigning/counting reads.

In addition to this, the old SpliceGraph package also had facilities for performing some down-
stream statistical analysis. They were covered in its vignette under the following topics/sections:

• Experimental design
• Significant altered alternative splice events
• Modification of GLM employed in the DEXSeq package
• Differential edge expression analysis
• Comparison to the classic DEXSeq analysis

The SplicingGraphs vignette doesn’t cover any of this and the new package provides no facilities
for doing this type of downstream statistical analysis.

SplicingGraphs-package 3

Author(s)

Author and maintainer: H. Pages <hpages@fhcrc.org>

The SplicingGraphs package is a complete revamp (design and implementation) of the old Splice-
Graph package (see Note above).

References

Heber, S., Alekseyev, M., Sze, S., Tang, H., and Pevzner, P. A. Splicing graphs and EST assembly
problem Bioinformatics Date: Jul 2002 Vol: 18 Pages: S181-S188

Sammeth, M. (2009) Complete Alternative Splicing Events Are Bubbles in Splicing Graphs J. Com-
put. Biol. Date: Aug 2009 Vol: 16 Pages: 1117-1140

See Also

The man pages in the SplicingGraphs package are:

1. The SplicingGraphs class.

2. plotTranscripts for plotting a set of transcripts along genomic coordinates.

3. sgedgesByGene for extracting the edges and their ranges from a SplicingGraphs object.

4. txpath for extracting the transcript paths of a splicing graph.

5. sgedges for extracting the edges (and nodes) of a splicing graph.

6. sgraph for extracting a splicing graph as a plottable graph-like object.

7. rsgedgesByGene for extracting the reduced edges and their ranges from a SplicingGraphs
object.

8. bubbles for computing the bubbles of a splicing graph.

9. assignReads for assigning reads to the edges of a SplicingGraphs object.

10. countReads for summarizing the reads assigned to a SplicingGraphs object.

11. toy_genes_gff for details about the toy data included in this package.

Examples

if (interactive()) {
Access the "Splicing graphs and RNA-seq data" vignette with:
browseVignettes("SplicingGraphs")

}

4 assignReads

assignReads Assign reads to the edges of a SplicingGraphs object

Description

assignReads assigns reads to the exonic and intronic edges of a SplicingGraphs object.

removeReads removes all the reads assigned to the exonic and intronic edges of a SplicingGraphs
object.

Usage

assignReads(sg, reads, sample.name=NA)

removeReads(sg)

Arguments

sg A SplicingGraphs object.

reads A GappedAlignments, GappedAlignmentPairs, or GRangesList object, contain-
ing the reads to assign to the exons and introns in sg. It must have unique names
on it, typically the QNAME ("query name") field coming from the BAM file.
More on this in the ’About the read names’ section below.

sample.name A single string containing the name of the sample where the reads are coming
from.

Details

TODO

Value

For assignReads: the supplied SplicingGraphs object with the reads assigned to it.

For removeReads: the supplied SplicingGraphs object with all reads previously assigned with
assignReads removed from it.

About read names

The read names are typically imported from the BAM file by calling readGappedAlignments (or
readGappedAlignmentPairs) with use.names=TRUE. This extracts the "query names" from the
file (stored in the QNAME field), and makes them the names of the returned object.

The reads object must have unique names on it. The presence of duplicated names generally
indicates one (or both) of the following situations:

• (a) reads contains paired-end reads that have not been paired;

• (b) some of the reads are secondary alignments.

assignReads 5

If (a): you can find out whether reads in a BAM file are single- or paired-end with the quickCountBam
utility from the Rsamtools package. If they’re paired-end, load them with readGappedAlignmentPairs
instead of readGappedAlignments, and that will pair them.

If (b): you can filter out secondary alignments by passing ’isNotPrimaryRead=FALSE’ to scanBamFlag
when preparing the ScanBamParam object used to load the reads. For example:

library(Rsamtools)
flag0 <- scanBamFlag(isNotPrimaryRead=FALSE,

isNotPassingQualityControls=FALSE,
isDuplicate=FALSE)

param0 <- ScanBamParam(flag=flag0)
reads <- readGappedAlignments("path/to/BAM/file", use.names=TRUE,

param=param0)

This will filter out records that have flag 0x100 (secondary alignment) set to 1. See ?scanBamFlag
in the Rsamtools package for more information. See the SAM Specs on the SAMtools project page
at http://samtools.sourceforge.net/ for a description of the SAM/BAM flags.

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Other topics related to this man page and documented in other packages:

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes in the Genomi-
cRanges package.

• The quickCountBam and ScanBamParam functions in the Rsamtools package.

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model (see
’?SplicingGraphs’)

example(SplicingGraphs)
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

2. Load toy reads

Load toy reads (single-end) from a BAM file. We filter out secondary
alignments, reads not passing quality controls, and PCR or optical

http://samtools.sourceforge.net/

6 bubbles-methods

duplicates (see ?scanBamFlag in the Rsamtools package for more
information):
library(Rsamtools)
flag0 <- scanBamFlag(isNotPrimaryRead=FALSE,

isNotPassingQualityControls=FALSE,
isDuplicate=FALSE)

param0 <- ScanBamParam(flag=flag0)
gal <- readGappedAlignments(toy_reads_bam(), use.names=TRUE, param=param0)
gal

3. Assign the reads to the exons and introns in ’sg’

The same read can be assigned to more than 1 exon or intron (e.g. a
junction read with 1 gap can be assigned to 2 exons and 1 intron).
sg <- assignReads(sg, gal, sample.name="TOYREADS")

See the assignments to the splicing graph edges.
edge_by_tx <- sgedgesByTranscript(sg, with.hits.mcols=TRUE)
edge_data <- mcols(unlist(edge_by_tx))
colnames(edge_data)
head(edge_data)
edge_data[, c("sgedge_id", "TOYREADS.hits")]

edge_by_gene <- sgedgesByGene(sg, with.hits.mcols=TRUE)
mcols(unlist(edge_by_gene))

See the assignments to the reduced splicing graph edges.
redge_by_gene <- rsgedgesByGene(sg, with.hits.mcols=TRUE)
mcols(unlist(redge_by_gene))

4. Summarize the reads assigned to ’sg’ and eventually remove them

See ’?countReads’.

bubbles-methods Compute the bubbles of a splicing graph

Description

bubbles computes the bubbles of the splicing graph of a given gene from a SplicingGraphs object.

Usage

bubbles(x)

ASCODE2DESC

countReads-methods 7

Arguments

x A SplicingGraphs object of length 1.

Details

TODO

Value

TODO

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Examples

example(SplicingGraphs) # create SplicingGraphs object ’sg’
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

plot(sgraph(sg["geneA"], tx_id.as.edge.label=TRUE))
bubbles(sg["geneA"])

plot(sgraph(sg["geneB"], tx_id.as.edge.label=TRUE))
bubbles(sg["geneB"])

plot(sgraph(sg["geneD"], tx_id.as.edge.label=TRUE))
bubbles(sg["geneD"])

countReads-methods Summarize the reads assigned to a SplicingGraphs object

Description

countReads counts the reads assigned to a SplicingGraphs object. The counting can be done by
splicing graph edge, reduced splicing graph edge, transcript, or gene.

reportReads is similar to countReads but returns right before the final counting step, that is, the
returned DataFrame contains the reads instead of their counts.

8 countReads-methods

Usage

countReads(x, by=c("sgedge", "rsgedge", "tx", "gene"))
reportReads(x, by=c("sgedge", "rsgedge", "tx", "gene"))

Arguments

x A SplicingGraphs object.

by Can be "sgedge", "rsgedge", "tx", or "gene". Specifies the level of resolution
that summarization should be performed at. See Details section below.

Details

Levels of resolution: countReads and reportReads allow summarization of the reads at dif-
ferent levels of resolution. The level of resolution is determined by the type of feature that one
chooses via the by argument. The supported resolutions are (from highest to lowest resolution):

1. by="sgedge" for summarization at the splicing graph edge level (i.e. at the exons/intron
level);

2. by="rsgedge" for summarization at the reduced splicing graph edge level;
3. by="tx" for summarization at the transcript level;
4. by="gene" for summarization at the gene level.

Relationship between levels of resolution: There is a parent-child relationship between the
features corresponding to a given level of resolution (the parent features) and those corresponding
to a higher level of resolution (the child features).
For example, in the case of the 2 first levels of resolution listed above, the parent-child relationship
is the following: the parent features are the reduced splicing graph edges, the child features are the
splicing graph edges, and each parent feature is obtained by merging one or more child features
together. Similarly, transcripts can be seen as parent features of reduced splicing graph edges, and
genes as parent features of transcripts. Note that, the rsgedge/sgedge and gene/tx relationships are
one-to-many, but the tx/rsgedge relationship is many-to-many because a given edge can belong to
more than one transcript.
Finally the parent-child relationships between 2 arbitrary levels of resolution is defined by com-
bining the relationships between consecutive levels. All possible parent-child relationships are
summarized in the following table:

| to: sgedge | to: rsgedge | to: tx
--------------+--------------+--------------+------------
from: rsgedge | one-to-many | |
from: tx | many-to-many | many-to-many |
from: gene | one-to-many | one-to-many | one-to-many

Multiple hits and ambiguous reads: An important distinction needs to be made between a read
that hits a given feature multiple times and a read that hits more than one feature.
If the former, the read is counted/reported only once for that feature. For example, when summa-
rizing at the transcript level, a read is counted/reported only once for a given transcript, even if
that read hits more than one splicing graph edge (or reduced splicing graph edge) associated with
that transcript.

countReads-methods 9

If the latter, the read is said to be ambiguous. An ambiguous read is currently counted/reported
for each feature where it has a hit. This is a temporary situation: in the near future the user will
be offered options to handle ambiguous reads in different ways.

Ambiguous reads and levels of resolution: A read might be ambiguous at one level of resolution
but not at the other. Also the number of ambiguous reads is typically affected by the level of
resolution. However, even though higher resolution generally means more ambiguous reads, this
is only true when the switch from one level of resolution to the other implies a parent-child
relationship between features that is one-to-many. So, based on the above table, this is always
true, except when switching from using by="tx" to using by="sgedge" or by="rsgedge". In
those cases, the switch can produce more ambiguities but it can also produce less.

Value

A DataFrame object with one row per:

• unique splicing graph edge, if by="sgedge";

• unique reduced splicing graph edge, if by="rsgedge";

• transcript if by="tx";

• gene if by="gene".

And with one column per sample (containing the counts for that sample for countReads, and the
reads for that sample for reportReads), plus the two following left columns:

• if by="sgedge": "sgedge_id", containing the global splicing graph edge ids, and "ex_or_in",
containing the type of edge (exon or intron);

• if by="rsgedge": "rsgedge_id", containing the global reduced splicing graph edge ids, and
"ex_or_in", containing the type of edge (exon, intron, or mixed);

• if by="tx": "tx_id" and "gene_id";

• if by="gene": "gene_id" and "tx_id".

For countReads, each column of counts is of type integer and is named after the corresponding
sample. For reportReads, each column of reads is a CharacterList object and its name is the name
of the corresponding sample with the ".hits" suffix added to it. In both cases, the name of the
sample is the name that was passed to assignReads when the reads of a given sample were initially
assigned. See ?assignReads for more information.

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

10 countReads-methods

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model and assign toy
reads to it (see ’?assignReads’)

example(assignReads)

2. Summarize the reads by splicing graph edge

countReads(sg)
reportReads(sg)

3. Summarize the reads by reduced splicing graph edge

countReads(sg, by="rsgedge")
reportReads(sg, by="rsgedge")

4. Summarize the reads by transcript

countReads(sg, by="tx")
reportReads(sg, by="tx")

5. Summarize the reads by gene

countReads(sg, by="gene")
reportReads(sg, by="gene")

6. A close look at ambiguous reads

resolutions <- c("sgedge", "rsgedge", "tx", "gene")

reported_reads <- lapply(resolutions,
function(by) {

reported_reads <- reportReads(sg, by=by)
unlist(reported_reads$TOYREADS.hits)

})

The set of reported reads is the same at all levels of resolution:
unique_reported_reads <- lapply(reported_reads, unique)
stopifnot(identical(unique_reported_reads,

rep(unique_reported_reads[1], 4)))

Extract ambigous reads for each level of resolution:
ambiguous_reads <- lapply(reported_reads,

function(x) unique(x[duplicated(x)]))
names(ambiguous_reads) <- resolutions
ambiguous_reads

plotTranscripts-methods 11

Reads that are ambiguous at the "rsgedge" level must also be
ambiguous at the "sgedge" level:
stopifnot(all(ambiguous_reads$rsgedge %in% ambiguous_reads$sgedge))

However, there is no reason why reads that are ambiguous at the
"tx" level should also be ambiguous at the "sgedge" or "rsgedge"
level!

7. Remove the reads from ’sg’.

sg <- removeReads(sg)
countReads(sg)

plotTranscripts-methods

Plot a set of transcripts along genomic coordinates.

Description

plotTranscripts uses the Gviz package to plot the exon structure of a set of transcripts along
genomic coordinates.

Usage

plotTranscripts(x, reads=NULL, from=NA, to=NA, max.plot.reads=200)

Arguments

x A GRangesList object containing the genomic ranges of a set of exons grouped
by transcript. Alternatively, x can be a TranscriptDb object, or a SplicingGraphs
object of length 1.

reads A GappedAlignments or GappedAlignmentPairs object containing single-end or
paired-end reads.

from, to Single numeric values, giving the range of genomic coordinates to plot the tracks
in. By default (i.e. from=NA and to=NA), the plot covers the range spanned by the
transcripts. If from=NULL and to=NULL, then the plot covers the range spanned
by the transcripts and the reads.

max.plot.reads The maximum number of reads that will be plotted. When the number of reads
that fall in the region being plotted is very large, plotting them all would take a
long time and result in a plot that is not very useful. If that number is greater
than max.plot.reads, then only max.plot.reads randomly chosen reads are
plotted.

Author(s)

H. Pages

12 rsgedgesByGene-methods

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Other topics related to this man page and documented in other packages:

• The plotTracks function in the Gviz package that plotTranscripts is based on.

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes in the Genomi-
cRanges package.

• The TranscriptDb class in the GenomicFeatures package.

Examples

A. PLOT TRANSCRIPTS

example(SplicingGraphs) # create SplicingGraphs object ’sg’
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

The transcripts of a given gene can be extracted with [[. The result
is an *unnamed* GRangesList object containing the exons grouped by
transcript:
sg[["geneD"]]
plotTranscripts(sg[["geneD"]]) # requires the Gviz package

The transcripts of all the genes can be extracted with unlist(). The
result is a *named* GRangesList object containing the exons grouped
by transcript. The names on the object are the gene ids:
ex_by_tx <- unlist(sg)
ex_by_tx
plotTranscripts(ex_by_tx)

B. PLOT TRANSCRIPTS AND READS

gal <- readGappedAlignments(toy_reads_bam(), use.names=TRUE)
plotTranscripts(sg[["geneA"]], reads=gal)
plotTranscripts(ex_by_tx, reads=gal)
plotTranscripts(ex_by_tx, reads=gal, from=1, to=320)
plotTranscripts(ex_by_tx, reads=gal[21:26], from=1, to=320)

rsgedgesByGene-methods

Extract the reduced edges and their ranges from a SplicingGraphs ob-
ject

rsgedgesByGene-methods 13

Description

rsgedgesByGene and rsgedgesByTranscript are analog to sgedgesByGene and sgedgesByTranscript,
but operate on the reduced splicing graphs, that is, the graphs in SplicingGraphs object x are re-
duced before the edges and their ranges are extracted. The reduced graphs are obtained by removing
the uninformative nodes from it. See Details section below.

rsgedges extracts the edges of the reduced splicing graph of a given gene from a SplicingGraphs
object.

rsgraph extracts the reduced splicing graph for a given gene from a SplicingGraphs object, and
returns it as a plottable graph-like object.

Usage

rsgedgesByGene(x, with.hits.mcols=FALSE, keep.dup.edges=FALSE)

rsgedgesByTranscript(x, with.hits.mcols=FALSE)

rsgedges(x)

rsgraph(x, tx_id.as.edge.label=FALSE, as.igraph=FALSE)

Related utility:
uninformativeSSids(x)

Arguments

x A SplicingGraphs object. Must be of length 1 for rsgedges, rsgraph, and
uninformativeSSids.

with.hits.mcols

Whether or not to include the hits metadata columns in the returned object. See
?countReads for more information.

keep.dup.edges Not supported yet.
tx_id.as.edge.label

Whether or not to use the transcript ids as edge labels.
as.igraph TODO

Details

TODO: Explain graph reduction.

Value

For rsgedgesByGene: A GRangesList object named with the gene ids and where the reduced splic-
ing graph edges are grouped by gene.

TODO: Explain values returned by the other function.

Author(s)

H. Pages

14 rsgedgesByGene-methods

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model (see
’?SplicingGraphs’)

example(SplicingGraphs)
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

2. rsgedgesByGene()

edges_by_gene <- rsgedgesByGene(sg)
edges_by_gene
’edges_by_gene’ has the length and names of ’sg’, that is, the names
on it are the gene ids and are guaranteed to be unique.

Extract the reduced edges and their ranges for a given gene:
edges_by_gene[["geneA"]]
Note that edge with global reduced edge id "geneA:1,2,4,5" is a mixed
edge obtained by combining together edges "geneA:1,2" (exon),
"geneA:2,4" (intron), and "geneA:4,5" (exon), during the graph
reduction.

stopifnot(identical(edges_by_gene["geneB"], rsgedgesByGene(sg["geneB"])))

3. sgedgesByTranscript()

#edges_by_tx <- rsgedgesByTranscript(sg) # not ready yet!
#edges_by_tx

4. rsgedges(), rsgraph(), uninformativeSSids()

plot(sgraph(sg["geneB"]))
uninformativeSSids(sg["geneB"])

plot(rsgraph(sg["geneB"]))
rsgedges(sg["geneB"])

5. Sanity checks

TODO: Do the same kind of sanity checks that are done for sgedges()

sgedges-methods 15

vs sgedgesByGene() vs sgedgesByTranscript() (in man page for sgedges).

sgedges-methods Extract the edges (and nodes) of a splicing graph

Description

sgedges (resp. sgnodes) extracts the edges (resp. the nodes) of the splicing graph of a given gene
from a SplicingGraphs object.

Usage

sgedges(x, txweight=NULL, keep.dup.edges=FALSE)
sgnodes(x)
outdeg(x)
indeg(x)

Arguments

x A SplicingGraphs object of length 1.

txweight TODO

keep.dup.edges If FALSE (the default), then edges with the same global edge id are merged
into a single row. Use keep.dup.edges=TRUE if this merging should not be
performed.

Details

TODO

Value

TODO

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

16 sgedges-methods

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model (see
’?SplicingGraphs’)

example(SplicingGraphs) # create SplicingGraphs object ’sg’
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

2. Basic usage

sgedges(sg["geneD"])
sgnodes(sg["geneD"])
outdeg(sg["geneD"])
indeg(sg["geneD"])

3. Sanity checks

check_way1_vs_way2 <- function(res1, res2)
{

edges1 <- res1[res1$ex_or_in != "",] # remove artificial edges
edges2 <- mcols(unlist(res2, use.names=FALSE))
stopifnot(identical(edges1, edges2))

}

for (i in seq_along(sg)) {
sgi <- sg[i]
After removal of the artificial edges, the edges returned
by ’sgedges()’ should be the same as those returned
by ’sgedgesByGene()’ on a SplicingGraphs object of length 1.
check_way1_vs_way2(

sgedges(sgi),
sgedgesByGene(sgi))

After removal of the artificial edges, the edges returned
by ’sgedges(, keep.dup.edges=TRUE)’ should be the same as
those returned by ’sgedgesByGene(, keep.dup.edges=TRUE)’ or by
’sgedgesByTranscript()’ on a SplicingGraphs object of length 1.
res1 <- DataFrame(sgedges(sgi, keep.dup.edges=TRUE))
check_way1_vs_way2(

res1,
sgedgesByGene(sgi, keep.dup.edges=TRUE))

check_way1_vs_way2(
res1,
sgedgesByTranscript(sgi))

}

sgedgesByGene-methods 17

sgedgesByGene-methods Extract the edges and their ranges from a SplicingGraphs object

Description

sgedgesByGene and sgedgesByTranscript both extract the edges and their ranges of all the
genes from a SplicingGraphs object. They return them in a GRangesList object named with the
gene ids, and where the items are grouped by gene (for sgedgesByGene) or by transcript (for
sgedgesByTranscript).

Alternatively, intronsByTranscript extracts the intronic edges and their ranges of all the genes
from a SplicingGraphs object. It returns them in a GRangesList object named with the gene ids,
and where the items are grouped by transcript.

Usage

sgedgesByGene(x, with.exon.mcols=FALSE, with.hits.mcols=FALSE,
keep.dup.edges=FALSE)

sgedgesByTranscript(x, with.exon.mcols=FALSE, with.hits.mcols=FALSE)

S4 method for signature ’SplicingGraphs’
intronsByTranscript(x)

Arguments

x A SplicingGraphs object.
with.exon.mcols

Whether or not to include the exon metadata columns in the returned object.
Those columns are named: exon_id, exon_name, exon_rank, start_SSid, and
end_SSid. They are set to NA for edges of type intron.

with.hits.mcols

Whether or not to include the hits metadata columns in the returned object. See
?countReads for more information.

keep.dup.edges If FALSE (the default), then within each group of the returned object, edges with
the same global edge id are merged into a single element. Use keep.dup.edges=TRUE
if this merging should not be performed.

Value

A GRangesList object named with the gene ids and where the items are grouped by gene (for
sgedgesByGene), or by transcript (for sgedgesByTranscript and intronsByTranscript). In the
latter case (i.e. grouping by transcript), the names are not unique.

The items that are being grouped are the splicing graph edges of type exon and intron (no artificial
edges) for sgedgesByGene and sgedgesByTranscript, and the introns for intronsByTranscript.

When the grouping is by transcript (i.e. for sgedgesByTranscript and intronsByTranscript,
items are ordered by their position from 5’ to 3’.

18 sgedgesByGene-methods

About duplicated edges: A given edge can typically be shared by more than 1 transcript within the
same gene, therefore sgedgesByTranscript typically returns an object where the same global edge
id shows up in more than 1 group. However, the same global edge id is never shared across genes.
By default sgedgesByGene removes duplicated edges, unless keep.dup.edges=TRUE is used.

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model (see
’?SplicingGraphs’)

example(SplicingGraphs)
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

2. sgedgesByGene()

edges_by_gene <- sgedgesByGene(sg)
edges_by_gene
’edges_by_gene’ has the length and names of ’sg’, that is, the names
on it are the gene ids and are guaranteed to be unique.

Extract the edges and their ranges for a given gene:
edges_by_gene[["geneB"]]
Note that edge with global edge id "geneB:3,4" is an intron that
belongs to transcripts B1 and B2.

edges_by_gene0 <- sgedgesByGene(sg, keep.dup.edges=TRUE)
edges_by_gene0[["geneB"]]
Note that edge "geneB:3,4" now shows up twice, once for transcript
B1, and once for transcript B2.

Keep the "exon metadata columns":
sgedgesByGene(sg, with.exon.mcols=TRUE)
Note that those cols are set to NA for intronic edges.

3. sgedgesByTranscript()

edges_by_tx <- sgedgesByTranscript(sg)

sgraph-methods 19

edges_by_tx

’edges_by_tx’ is typically longer than ’sg’.
IMPORTANT NOTE: One caveat here is that the names on ’edges_by_tx’
are the gene ids, not the transcript ids, and thus are typically NOT
unique!

Select elements of a given gene:
edges_by_tx["geneB"] # not a good idea
edges_by_tx[names(edges_by_tx) %in% "geneB"] # much better :-)
Note that edge with global edge id "geneB:3,4" is an intron that
belongs to transcripts B1 and B2.

Keep the "exon metadata columns":
sgedgesByTranscript(sg, with.exon.mcols=TRUE)
Note that those cols are set to NA for intronic edges.

4. intronsByTranscript()

in_by_tx <- intronsByTranscript(sg)
in_by_tx

’in_by_tx’ has the length and names of ’edges_by_tx’. The same
recommendation applies for selecting elements of a given set of
genes:
in_by_tx[c("geneB", "geneD")] # not a good idea
in_by_tx[names(in_by_tx) %in% c("geneB", "geneD")] # much better :-)

5. Comparing the outputs of unlist(), intronsByTranscript(), and
sgedgesByTranscript()

ex_by_tx <- unlist(sg)
in_by_tx <- intronsByTranscript(sg)
edges_by_tx <- sgedgesByTranscript(sg)

A sanity check:
stopifnot(identical(elementLengths(in_by_tx) + 1L,

elementLengths(ex_by_tx)))

’edges_by_tx’ combines ’ex_by_tx’ and ’in_by_tx’ in a single
GRangesList object. Sanity check:
stopifnot(identical(elementLengths(edges_by_tx),

elementLengths(ex_by_tx) + elementLengths(in_by_tx)))

sgraph-methods Extract a splicing graph as a plottable graph-like object

20 sgraph-methods

Description

Extract the splicing graph for a given gene from a SplicingGraphs object and return it as a plottable
graph-like object.

Usage

sgraph(x, keep.dup.edges=FALSE, tx_id.as.edge.label=FALSE, as.igraph=FALSE)

PLotting:

S4 method for signature ’SplicingGraphs,ANY’
plot(x, y, ...)
slideshow(x)

Arguments

x TODO

keep.dup.edges If FALSE (the default), then edges with the same global edge id are merged
together. Use keep.dup.edges=TRUE if this merging should not be performed.

tx_id.as.edge.label

Whether or not to use the transcript ids as edge labels.

as.igraph TODO

y TODO

... Additional arguments. plot passes these to plot,Ragraph,ANY-method for use
in, e.g., adding a main title to the plot.

Details

TODO

Value

TODO

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

SplicingGraphs-class 21

Examples

example(SplicingGraphs) # create SplicingGraphs object ’sg’
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

graphA <- sgraph(sg["geneA"], tx_id.as.edge.label=TRUE)

if (interactive()) {
Edges are labeled with the transcript ids (or names), in blue.
The orange arrows are edges corresponding to exons:
plot(graphA)

Note that plot() works directly on a SplicingGraphs object of
length 1:
plot(sg["geneB"])

Slideshow of the graphs:
slideshow(sg)

}

SplicingGraphs-class SplicingGraphs objects

Description

The SplicingGraphs class is a container for storing splicing graphs together with the gene model
that they are based on.

Usage

SplicingGraphs(x, grouping=NULL, min.ntx=2, max.ntx=NA, check.introns=TRUE)

SplicingGraphs basic API:

S4 method for signature ’SplicingGraphs’
length(x)

S4 method for signature ’SplicingGraphs’
names(x)

S4 method for signature ’SplicingGraphs’
seqnames(x)

S4 method for signature ’SplicingGraphs’
strand(x)

22 SplicingGraphs-class

S4 method for signature ’SplicingGraphs,ANY,ANY’
x[i, j, ... , drop=TRUE]

S4 method for signature ’SplicingGraphs,ANY,ANY’
x[[i, j, ...]]

S4 method for signature ’SplicingGraphs’
elementLengths(x)

S4 method for signature ’SplicingGraphs’
unlist(x, recursive=TRUE, use.names=TRUE)

S4 method for signature ’SplicingGraphs’
seqinfo(x)

Arguments

x For SplicingGraphs: A GRangesList object containing the exons of one or
more genes grouped by transcript. Alternatively, x can be a TranscriptDb object.
See Details section below.

For the methods in the SplicingGraphs basic API: A SplicingGraphs object.

grouping An optional object that represents the grouping by gene of the top-level elements
(i.e. the transcripts) in x. See Details section below.

min.ntx, max.ntx

Single integers (or NA for max.ntx) specifying the minimum and maximum
number of transcripts a gene must have to be considered for inclusion in the
object returned by SplicingGraphs. A value of NA for max.ntx means no max-
imum.

check.introns If TRUE, SplicingGraphs checks that, within each transcript, exons are ordered
from 5’ to 3’ with gaps of at least 1 nucleotide between them.

i, j, ..., drop

A SplicingGraphs object is a list-like object and therefore it can be subsetted
like a list. When subsetting with [, the result is another SplicingGraphs object
containing only the selected genes. When subsetting with [[, the result is an
unnamed GRangesList object containing the exons grouped by transcript. Like
for list, subsetting only accepts 1 argument (i). The drop argument is ignored
and trying to pass any additional argument (to j or in ...) will raise an error.

recursive, use.names

A SplicingGraphs object is a list-like object and therefore it can be unlisted with
unlist. The result is a GRangesList object containing the exons grouped by
transcript. By default this object has names on it, and the names are the gene
ids. Note that because each element in this object represents a transcript (and
not a gene), the names are not unique. If use.names=FALSE is used, the result
has no names on it. The recursive agument is ignored.

SplicingGraphs-class 23

Details

The Splicing graph theory only applies to genes that have all the exons of all their transcripts on the
same chromosome and strand. In particular, in its current form, the splicing graph theory cannot
describe trans-splicing events. The SplicingGraphs constructor will reject genes that do not satisfy
this.

The first argument of the SplicingGraphs constructor, x, can be either a GRangesList object or a
TranscriptDb object.

When x is a GRangesList object, it must contain the exons of one or more genes grouped by tran-
scripts. More precisely, each top-level element in x must contain the genomic ranges of the exons
for a particular transcript. Typically x will be obtained from a TranscriptDb object txdb with
exonsBy(txdb, by="tx", use.names=TRUE).

grouping is an optional argument that is only supported when x is a GRangesList object. It repre-
sents the grouping by gene of the top-level elements (i.e. the transcripts) in GRangesList object x.
It can be either:

• Missing (i.e. NULL). In that case, all the transcripts in x are considered to belong to the same
gene and the SplicingGraphs object returned by SplicingGraphs will be unnamed.

• A list of integer or character vectors, or an IntegerList, or a CharacterList object, of length
the number of genes to process, and where grouping[[i]] is a vector of valid subscripts in x
pointing to all the transcripts of the i-th gene.

• A factor, character vector, or integer vector, of the same length as x and 1 level per gene.

• A named GRangesList object containing transcripts grouped by genes i.e. each top-level ele-
ment in grouping contains the genomic ranges of the transcripts for a particular gene. In that
case, the grouping is inferred from the tx_id (or alternatively tx_name) metadata column of
unlist(grouping) and all the values in that column must be in names(x). If x was obtained
with exonsBy(txdb, by="tx", use.names=TRUE), then the GRangesList object used for
grouping would typically be obtained with transcriptsBy(txdb, by="gene").

• A data.frame or DataFrame with 2 character vector columns: a gene_id column (factor, char-
acter vector, or integer vector), and a tx_id (or alternatively tx_name) column. In that case, x
must be named and all the values in the tx_id (or tx_name) column must be in names(x).

Value

For SplicingGraphs: a SplicingGraphs object with 1 element per gene.

For length: the number of genes in x, which is also the number of splicing graphs in x.

For names: the gene ids. Note that the names on a SplicingGraphs object are always unique and
cannot be modified.

For seqnames: a named factor of the length of x containing the name of the chromosome for each
gene.

For strand: a named factor of the length of x containing the strand for each gene.

For elementLengths: the number of transcripts per gene.

For seqinfo: the seqinfo of the GRangesList or TranscriptDb object that was used to construct the
SplicingGraphs object.

24 SplicingGraphs-class

Author(s)

H. Pages

References

Heber, S., Alekseyev, M., Sze, S., Tang, H., and Pevzner, P. A. Splicing graphs and EST assembly
problem Bioinformatics Date: Jul 2002 Vol: 18 Pages: S181-S188

Sammeth, M. (2009) Complete Alternative Splicing Events Are Bubbles in Splicing Graphs J. Com-
put. Biol. Date: Aug 2009 Vol: 16 Pages: 1117-1140

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Other topics related to this man page and documented in other packages:

• The exonsBy and transcriptsBy functions, and the TranscriptDb class in the GenomicFea-
tures package.

• The GRangesList class in the GenomicRanges package.

• The IntegerList, CharacterList, and DataFrame classes in the IRanges package.

Examples

1. Load a toy gene model as a TranscriptDb object

library(GenomicFeatures)
suppressWarnings(

toy_genes_txdb <- makeTranscriptDbFromGFF(toy_genes_gff())
)

2. Compute all the splicing graphs (1 graph per gene) and return them
in a SplicingGraphs object

Extract the exons grouped by transcript:
ex_by_tx <- exonsBy(toy_genes_txdb, by="tx", use.names=TRUE)

Extract the transcripts grouped by gene:
tx_by_gn <- transcriptsBy(toy_genes_txdb, by="gene")

sg <- SplicingGraphs(ex_by_tx, tx_by_gn)
sg

Alternatively ’sg’ can be constructed directly from the TranscriptDb
object:
sg2 <- SplicingGraphs(toy_genes_txdb) # same as ’sg’
sg2

toy_data 25

Note that because SplicingGraphs objects have a slot that is an
environment (for caching the bubbles), they cannot be compared with
’identical()’ (will always return FALSE). ’all.equal()’ should be
used instead:
stopifnot(isTRUE(all.equal(sg2, sg)))

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids:
length(sg)
names(sg)

3. Basic manipulation of a SplicingGraphs object

Basic accessors:
seqnames(sg)
strand(sg)
seqinfo(sg)

Number of transcripts per gene:
elementLengths(sg)

The transcripts of a given gene can be extracted with [[. The result
is an *unnamed* GRangesList object containing the exons grouped by
transcript:
sg[["geneD"]]

See ’?plotTranscripts’ for how to plot those transcripts.

The transcripts of all the genes can be extracted with unlist(). The
result is a *named* GRangesList object containing the exons grouped
by transcript. The names on the object are the gene ids:
ex_by_tx <- unlist(sg)
ex_by_tx

toy_data Little helpers for quick access to the toy data included in the Splicing-
Graphs package

Description

TODO

Usage

toy_genes_gff()
toy_reads_sam()
toy_reads_bam()
toy_overlaps()

26 toy_data

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Other topics related to this man page and documented in other packages:

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes in the Genomi-
cRanges package.

• The makeTranscriptDbFromGFF function and the TranscriptDb class in the GenomicFea-
tures package.

Examples

A. LOAD THE TOY GENE MODEL AS A TranscriptDb OBJECT AND PLOT IT

toy_genes_gff()

Note that you can display the content of the file with:
cat(readLines(toy_genes_gff()), sep="\n")

library(GenomicFeatures)
suppressWarnings(

txdb <- makeTranscriptDbFromGFF(toy_genes_gff())
)

Plot all the transcripts in the gene model:
plotTranscripts(txdb)

B. LOAD THE TOY READS AS A GappedAlignments OBJECT AND PLOT THEM

The reads are single-end reads. They are assumed to come from an
RNA-seq experiment and to have been aligned to the exact same
reference genome that the above toy gene model is based on.
toy_reads_sam()
toy_reads_bam()
gal <- readGappedAlignments(toy_reads_bam(), use.names=TRUE)

plotTranscripts(txdb, reads=gal)
plotTranscripts(txdb, reads=gal, from=1, to=320)

C. FIND THE OVERLAPS BETWEEN THE TOY READS AND THE TOY GENE MODEL

grl <- grglist(gal, order.as.in.query=TRUE)
ex_by_tx <- exonsBy(txdb, by="tx", use.names=TRUE)

TSPCsg 27

Most of the times the RNA-seq protocol is unstranded so the strand
reported in the BAM file for each alignment is meaningless. Thus we
should call findOverlaps() with ’ignore.strand=TRUE’:
ov0 <- findOverlaps(grl, ex_by_tx, ignore.strand=TRUE)

Put the overlaps in a data.frame to make it easier to read:
df0 <- data.frame(QNAME=names(grl)[queryHits(ov0)],

tx_id=names(ex_by_tx)[subjectHits(ov0)],
stringsAsFactors=FALSE)

head(df0)

These overlaps have been manually checked and included in the
SplicingGraphs package. They can be loaded with the toy_overlaps()
helper:
toy_ov <- toy_overlaps()
head(toy_ov)
stopifnot(identical(df0, toy_ov[, 1:2]))

D. DETECT THE OVERLAPS THAT ARE COMPATIBLE WITH THE GENE MODEL

First we encode the overlaps:
ovenc0 <- encodeOverlaps(grl, ex_by_tx, hits=ov0,

flip.query.if.wrong.strand=TRUE)
ovenc0

Each encoding tells us whether the corresponding overlap is
compatible or not with the gene model:
ov0_is_comp <- isCompatibleWithSplicing(ovenc0)
head(ov0_is_comp)

Overlap compatibility has also been manually checked and included in
the table returned by toy_overlaps():
stopifnot(identical(ov0_is_comp, toy_ov[, 3]))

TSPCsg TSPC splicing graphs

Description

TODO

Examples

Load SplicingGraphs object ’TSPCsg’:
filepath <- system.file("extdata", "TSPCsg.rda", package="SplicingGraphs")
load(filepath)
TSPCsg

’TSPCsg’ has 1 element per gene and ’names(sg)’ gives the gene ids.

28 txpath-methods

names(TSPCsg)

1 splicing graph per gene. (Note that gene MUC16 was dropped
because transcripts T-4 and T-5 in this gene both have their
2nd exon *inside* their 3rd exon. Splicing graph theory doesn’t
apply in that case.)

Extract the edges of a given graph:
TSPCsgedges <- sgedges(TSPCsg["LGSN"])
TSPCsgedges

Plot the graph for a given gene:
plot(TSPCsg["LGSN"]) # or ’plot(sgraph(TSPCsgedges))’

The reads from all samples have been assigned to ’TSPCsg’.
Use countReads() to summarize by splicing graph edge:
counts <- countReads(TSPCsg)
dim(counts)
counts[, 1:5]

You can subset ’TSPCsg’ by 1 or more gene ids before calling
countReads() in order to summarize only for those genes:
DAPL1counts <- countReads(TSPCsg["DAPL1"])
dim(DAPL1counts)
DAPL1counts[, 1:5]

Use ’by="rsgedge"’ to summarize by *reduced* splicing graph edge:
DAPL1counts2 <- countReads(TSPCsg["DAPL1"], by="rsgedge")
dim(DAPL1counts2)
DAPL1counts2[, 1:5]

No reads assigned to genes KIAA0319L or TREM2 because no
BAM files were provided for those genes:
KIAA0319Lcounts <- countReads(TSPCsg["KIAA0319L"])
KIAA0319Lcountsums <- sapply(KIAA0319Lcounts[, -(1:2)], sum)
stopifnot(all(KIAA0319Lcountsums == 0))

TREM2counts <- countReads(TSPCsg["TREM2"])
TREM2countsums <- sapply(TREM2counts[, -(1:2)], sum)
stopifnot(all(TREM2countsums == 0))

Plot all the splicing graphs:
slideshow(TSPCsg)

txpath-methods Extract the transcript paths of a splicing graph

Description

txpath extracts the transcript paths of the splicing graph of a given gene from a SplicingGraphs
object.

txpath-methods 29

Usage

txpath(x, as.matrix=FALSE)

Related utility:
txweight(x)
txweight(x) <- value

Arguments

x A SplicingGraphs object of length 1 or a GRangesList object for txpath.
A SplicingGraphs object for txweight.

as.matrix TODO

value A numeric vector containing the weights to assign to each transcript in x.

Details

TODO

Value

A named list-like object with one list element per transcript in the gene. Each list element is an
integer vector that describes the path of the transcript i.e. the Splicing Site ids that it goes thru.

Author(s)

H. Pages

See Also

This man page is part of the SplicingGraphs package. Please see ?‘SplicingGraphs-package‘
for an overview of the package and for an index of its man pages.

Other topics related to this man page and documented in other packages:

• The GRangesList, GappedAlignments, and GappedAlignmentPairs classes in the Genomi-
cRanges package.

• findOverlaps-methods and encodeOverlaps-methods in the GenomicRanges package.

• The ScanBamParam function in the Rsamtools package.

Examples

1. Make SplicingGraphs object ’sg’ from toy gene model (see
’?SplicingGraphs’)

example(SplicingGraphs)
sg

’sg’ has 1 element per gene and ’names(sg)’ gives the gene ids.
names(sg)

30 txpath-methods

2. txpath()

Note that the list elements in the returned IntegerList object
always consist of an even number of Splicing Site ids in ascending
order.
txpath(sg["geneB"])
txpath(sg["geneD"])
strand(sg)

txpath(sg["geneD"], as.matrix=TRUE) # splicing matrix

3. txweight()

txweight(sg)
plot(sg["geneD"])

txweight(sg) <- 5
txweight(sg)
plot(sg["geneD"]) # FIXME: Edges not rendered with correct width!
plot(sgraph(sg["geneD"], as.igraph=TRUE)) # need to use this for now

txweight(sg)[8:11] <- 5 * (4:1)
txweight(sg)
plot(sgraph(sg["geneD"], tx_id.as.edge.label=TRUE, as.igraph=TRUE))

4. An advanced example

[TODO: Counting "unambiguous compatible hits" per transcript should be
supported by countReads(). Simplify the code below when countReads()
supports this.]
Here we show how to find "unambiguous compatible hits" between a set
of RNA-seq reads and a set of transcripts, that is, hits that are
compatible with the splicing of exactly 1 transcript. Then we set the
transcript weights based on the number of unambiguous compatible hits
they received and we finally plot some splicing graphs that show
the weighted transcripts.
Note that the code we use to find the unambiguous compatible hits
uses findOverlaps() and encodeOverlaps() defined in the IRanges and
GenomicRanges packages. It only requires that the transcripts are
represented as a GRangesList object and the reads as a GappedAlignments
(single-end) or GappedAlignmentPairs (paired-end) object, and therefore is
not specific to SplicingGraphs.

First we load toy reads (single-end) from a BAM file. We filter out
secondary alignments, reads not passing quality controls, and PCR or
optical duplicates (see ?scanBamFlag in the Rsamtools package for
more information):
library(Rsamtools)
flag0 <- scanBamFlag(isNotPrimaryRead=FALSE,

txpath-methods 31

isNotPassingQualityControls=FALSE,
isDuplicate=FALSE)

param0 <- ScanBamParam(flag=flag0)
gal <- readGappedAlignments(toy_reads_bam(), use.names=TRUE, param=param0)
gal

Put the reads in a GRangesList object:
grl <- grglist(gal, order.as.in.query=TRUE)

Put the transcripts in a GRangesList object (made of exons grouped
by transcript):
ex_by_tx <- unlist(sg)

Most of the times the RNA-seq protocol is unstranded so the strand
reported in the BAM file (and propagated to ’grl’) for each alignment
is meaningless. Thus we should call findOverlaps() with
’ignore.strand=TRUE’:
ov0 <- findOverlaps(grl, ex_by_tx, ignore.strand=TRUE)

Encode the overlaps (this compare the fragmentation of the reads with
the splicing of the transcripts):
ovenc0 <- encodeOverlaps(grl, ex_by_tx, hits=ov0,

flip.query.if.wrong.strand=TRUE)
ov0_is_compat <- isCompatibleWithSplicing(ovenc0)

Keep compatible overlaps only:
ov1 <- ov0[ov0_is_compat]

Only keep overlaps that are compatible with exactly 1 transcript:
ov2 <- ov1[queryHits(ov1) %in% which(countQueryHits(ov1) == 1L)]
nhit_per_tx <- countSubjectHits(ov2)
names(nhit_per_tx) <- names(txweight(sg))
nhit_per_tx

txweight(sg) <- 2 * nhit_per_tx
plot(sgraph(sg["geneA"], tx_id.as.edge.label=TRUE, as.igraph=TRUE))
plot(sgraph(sg["geneB"], tx_id.as.edge.label=TRUE, as.igraph=TRUE))

Index

∗Topic package
SplicingGraphs-package, 2

[,SplicingGraphs,ANY,ANY-method
(SplicingGraphs-class), 21

[[,SplicingGraphs,ANY,ANY-method
(SplicingGraphs-class), 21

ASCODE2DESC (bubbles-methods), 6
assignReads, 3, 4, 9

bubbles, 3
bubbles (bubbles-methods), 6
bubbles,ANY-method (bubbles-methods), 6
bubbles,IntegerList-method

(bubbles-methods), 6
bubbles,SplicingGraphs-method

(bubbles-methods), 6
bubbles-methods, 6

CharacterList, 23, 24
class:GeneModel (SplicingGraphs-class),

21
class:SplicingGraphs

(SplicingGraphs-class), 21
countReads, 3, 13, 17
countReads (countReads-methods), 7
countReads,SplicingGraphs-method

(countReads-methods), 7
countReads-methods, 7

DataFrame, 9, 23, 24

elementLengths,SplicingGraphs-method
(SplicingGraphs-class), 21

encodeOverlaps-methods, 29
exonsBy, 23, 24

findOverlaps-methods, 29

GappedAlignmentPairs, 4, 5, 11, 12, 26, 29
GappedAlignments, 4, 5, 11, 12, 26, 29

GeneModel-class (SplicingGraphs-class),
21

GRangesList, 4, 5, 11–13, 17, 22–24, 26, 29

indeg (sgedges-methods), 15
indeg,ANY-method (sgedges-methods), 15
indeg,DataFrame-method

(sgedges-methods), 15
IntegerList, 23, 24
intronsByTranscript,SplicingGraphs-method

(sgedgesByGene-methods), 17

length,SplicingGraphs-method
(SplicingGraphs-class), 21

makeTranscriptDbFromGFF, 26

names,SplicingGraphs-method
(SplicingGraphs-class), 21

outdeg (sgedges-methods), 15
outdeg,ANY-method (sgedges-methods), 15
outdeg,DataFrame-method

(sgedges-methods), 15

plot,SplicingGraphs,ANY-method
(sgraph-methods), 19

plotTracks, 12
plotTranscripts, 3
plotTranscripts

(plotTranscripts-methods), 11
plotTranscripts,GRangesList-method

(plotTranscripts-methods), 11
plotTranscripts,SplicingGraphs-method

(plotTranscripts-methods), 11
plotTranscripts,TranscriptDb-method

(plotTranscripts-methods), 11
plotTranscripts-methods, 11

quickCountBam, 5

32

INDEX 33

readGappedAlignmentPairs, 4, 5
readGappedAlignments, 4, 5
removeReads (assignReads), 4
rsgedges (rsgedgesByGene-methods), 12
rsgedgesByGene, 3
rsgedgesByGene

(rsgedgesByGene-methods), 12
rsgedgesByGene,SplicingGraphs-method

(rsgedgesByGene-methods), 12
rsgedgesByGene-methods, 12
rsgedgesByTranscript

(rsgedgesByGene-methods), 12
rsgedgesByTranscript,SplicingGraphs-method

(rsgedgesByGene-methods), 12
rsgraph (rsgedgesByGene-methods), 12

scanBamFlag, 5
ScanBamParam, 5, 29
seqinfo,GeneModel-method

(SplicingGraphs-class), 21
seqinfo,SplicingGraphs-method

(SplicingGraphs-class), 21
seqnames,GeneModel-method

(SplicingGraphs-class), 21
seqnames,SplicingGraphs-method

(SplicingGraphs-class), 21
sgedges, 3
sgedges (sgedges-methods), 15
sgedges,SplicingGraphs-method

(sgedges-methods), 15
sgedges-methods, 15
sgedges2 (rsgedgesByGene-methods), 12
sgedgesByGene, 3, 13
sgedgesByGene (sgedgesByGene-methods),

17
sgedgesByGene,SplicingGraphs-method

(sgedgesByGene-methods), 17
sgedgesByGene-methods, 17
sgedgesByTranscript, 13
sgedgesByTranscript

(sgedgesByGene-methods), 17
sgedgesByTranscript,SplicingGraphs-method

(sgedgesByGene-methods), 17
sgnodes (sgedges-methods), 15
sgnodes,data.frame-method

(sgedges-methods), 15
sgnodes,DataFrame-method

(sgedges-methods), 15

sgnodes,IntegerList-method
(sgedges-methods), 15

sgnodes,SplicingGraphs-method
(sgedges-methods), 15

sgraph, 3
sgraph (sgraph-methods), 19
sgraph,ANY-method (sgraph-methods), 19
sgraph,data.frame-method

(sgraph-methods), 19
sgraph,DataFrame-method

(sgraph-methods), 19
sgraph,igraph-method (sgraph-methods),

19
sgraph-methods, 19
sgraph2 (rsgedgesByGene-methods), 12
show,SplicingGraphs-method

(SplicingGraphs-class), 21
slideshow (sgraph-methods), 19
SplicingGraphs, 3, 4, 6–8, 11, 13, 15, 17, 20,

28, 29
SplicingGraphs (SplicingGraphs-class),

21
SplicingGraphs,GRangesList-method

(SplicingGraphs-class), 21
SplicingGraphs,TranscriptDb-method

(SplicingGraphs-class), 21
SplicingGraphs-class, 21
SplicingGraphs-package, 2
strand,GeneModel-method

(SplicingGraphs-class), 21
strand,SplicingGraphs-method

(SplicingGraphs-class), 21

toy_data, 25
toy_genes_gff, 3
toy_genes_gff (toy_data), 25
toy_overlaps (toy_data), 25
toy_reads_bam (toy_data), 25
toy_reads_sam (toy_data), 25
TranscriptDb, 11, 12, 22–24, 26
transcriptsBy, 23, 24
TSPC (TSPCsg), 27
TSPCsg, 27
txpath, 3
txpath (txpath-methods), 28
txpath,GRangesList-method

(txpath-methods), 28
txpath,SplicingGraphs-method

(txpath-methods), 28

34 INDEX

txpath-methods, 28
txweight (txpath-methods), 28
txweight,SplicingGraphs-method

(txpath-methods), 28
txweight<- (txpath-methods), 28
txweight<-,SplicingGraphs-method

(txpath-methods), 28

uninformativeSSids
(rsgedgesByGene-methods), 12

uninformativeSSids,ANY-method
(rsgedgesByGene-methods), 12

uninformativeSSids,DataFrame-method
(rsgedgesByGene-methods), 12

unlist,SplicingGraphs-method
(SplicingGraphs-class), 21

	SplicingGraphs-package
	assignReads
	bubbles-methods
	countReads-methods
	plotTranscripts-methods
	rsgedgesByGene-methods
	sgedges-methods
	sgedgesByGene-methods
	sgraph-methods
	SplicingGraphs-class
	toy_data
	TSPCsg
	txpath-methods
	Index

