Package 'GraphPAC'

October 9, 2013

Type Package

Title Identification of Mutational Clusters in Proteins via a Graph Theoretical Approach.				
Version 1.2.2				
Date 2012-12-9				
Author Gregory Ryslik, Hongyu Zhao				
Maintainer Gregory Ryslik <gregory.ryslik@yale.edu></gregory.ryslik@yale.edu>				
Description Identifies mutational clusters of amino acids in a protein while utilizing the proteins tertiary structure via a graph theoretical model.				
biocViews Bioinformatics, Clustering, BiologicalDomains, Proteomics				
License GPL-2				
Depends R(>= 2.15),iPAC, igraph, TSP, RMallow				
Suggests RUnit, BiocGenerics				
Repository Bioconductor				
R topics documented:				
GraphPAC-package				
Find.TSP.Path				
Plot.Protein				
Index				

2 GraphPAC-package

GraphPAC-package

Using Graph Theory to Identify Mutational Clusters of Amino Acids.

Description

The *GraphPAC* package identifies statistically significant clusters of non-synonomous amino acid mutations and is a sister package to *iPAC*. *GraphPAC* reorders the protein into a one dimensional space via a graph theoretrical approach. Specifically, the traveling salesman problem (TSP) is solved heuristically via the *TSP* package. Once solved, the mutational data is reordered to follow the hamiltonian path and the nmc algorithm is run to find the mutational clusters on the remapped protein. Unlike the MDS remapping approach that is used in *iPAC*, distant amino acids no longer have an effect on each other's position in one dimensional space allowing for a closer representation of the underlying biology.

Details

Please see the documentation for "get.Positions", "get.AlignedPositions", and "Plot.Protein.Linear" in the iPAC package. There you will find information on getting basic positional data and plotting functions.

Author(s)

Gregory Ryslik Hongyu Zhao

Maintainer: Gregory A. Ryslik <gregory.ryslik@yale.edu>

References

Ye et. al., Statistical method on nonrandom clustering with application to somatic mutations in cancer. *BMC Bioinformatics*. 2010. doi:10.1186/1471-2105-11-11.

Michael Hahsler and Kurt Hornik (2011). Traveling Salesperson Problem (TSP) R package version 1.0-7. http://CRAN.R-project.org/.

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.

Bioconductor: Open software development for computational biology and bioinformatics R. Gentleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and others 2004, Genome Biology, Vol. 5, R80

Examples

```
## Not run:
#Load the positional and mutatioanl data
CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"
Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")</pre>
```

Find.TSP.Path 3

```
data(KRAS.Mutations)

#Calculate the required clusters
GraphClust(KRAS.Mutations,KRAS.Positions$Positions,insertion.type = "cheapest_insertion",
    alpha = 0.05, MultComp = "Bonferroni")

## End(Not run)
```

Find.TSP.Path

Find.TSP.Path

Description

Employs a heuristic approach to solve the traveling salesman problem.

Usage

```
Find.TSP.Path(PositionList, mutation.matrix, insertion.type = "cheapest_insertion",
  fix.start.pos = "Y")
```

Arguments

PositionList

A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-coordinate. Please see *get.Positions* and *get.AlignedPositions* in the *iPAC* package for further information on how to construct this matrix.

mutation.matrix

A matrix of 0's (no mutation) and 1's (mutation) where each column represents an amino acid in the protein and each row represents an individual sample (test subject, cell line, etc). Thus if column i in row j had a 1, that would mean that the ith amino acid for person j had a nonsynonomous mutation.

insertion.type Specifies the type of insertion method used. Please see the *TSP* package for more details.

fix.start.pos

The TSP package starts the path at a random amino acid. Such that the results are easily reproducible, the default starts the path on the first amino acid in the protein.

Value

candidate.path A numeric vector of the sequence found through the protein.

candidate.path.distance

The distance traveled along the candidate path.

dist.matrix The distance matrix between any two pairwise amino acids.

linear.path.distance

The distance traveled if one were to visit the amino acids in the original sequence (1 -> 2 -> 3 -> ... -> N

4 GraphClust

References

Michael Hahsler and Kurt Hornik (2011). Traveling Salesperson Problem (TSP) R package version 1.0-7. http://CRAN.R-project.org/.

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.

Examples

```
#Load the position and mutational data
CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"
Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

#Save all the results to path.results
path.results <- Find.TSP.Path(KRAS.Positions$Positions, KRAS.Mutations)</pre>
```

GraphClust

GraphClust

Description

Finds mutational clusters after reordering the protein using the traveling salesman approach.

Usage

```
GraphClust(mutation.data, position.data, insertion.type = "cheapest_insertion", alpha = 0.05,
   MultComp = "Bonferroni", fix.start.pos = "Y", Include.Culled = "Y",
   Include.Full = "Y")
```

Arguments

mutation.data	A matrix of 0's (no mutation) and 1's (mutation) where each column represents an amino acid in the protein and each row represents an individual sample (test subject, cell line, etc). Thus if column i in row j had a 1, that would mean that the ith amino acid for person j had a nonsynonomous mutation.
position.data	A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-coordinate. Please see <i>get.Positions</i> and <i>get.AlignedPositions</i> in the <i>iPAC</i> package for further information on how to construct this matrix.
insertion.type	Specifies the type of insertion method used. Please see the TSP package for more details.
alpha	The significance level required in order to find a mutational cluster significance. Please see the NMC package for further information.

GraphClust 5

MultComp The multiple comparison adjustment required as all pairwise mutations are considered. Options are: "Bonferroni", "BH", or "None".

fix.start.pos The TSP package starts the path at a random amino acid. Such that the results are easily reproducible, the default starts the path on the first amino acid in the protein.

Include.Culled If "Y", the standard NMC algorithm will be run on the protein after removing the amino acids for which there is no positional data.

Include.Full If "Y", the standard NMC algorithm will be run on the full protein sequence.

Details

The protein reordering is done using the *TSP* package available on CRAN. This hamiltonian path then serves as the new protein ordering.

The position data can be created via the "get.AlignedPositions" or the "get.Positions" functions available via the imported *iPAC* package.

The mutation matrix must have the default R column headings "V1", "V2",...,"VN", where N is the last amino acid in the protein. No positions should be skipped in the mutaion matrix.

When unmapping back to the original space, the end points of the cluster in the mapped space are used as the endpoints of the cluster in the unmapped space.

Value

lue			
	Remapped	This shows the clusters found while taking the 3D structure into account and remapping the protein using a traveling salesman approach.	
	OriginalCulled	This shows the clusters found if you run the NMC algorithm on the canonical linear protein, but with the amino acids for which we don't have 3D positional data removed.	
	Original	This shows the clusters found if you run the NMC algorithn on the canonical linear protein with all the amino acids.	
	candidate.path	This shows the path found by the TSP package that heuristically minimizes the total distance through the protein.	
	path.distance	The length of the candidate path if traveled from start to finish.	
linear.path.distance			
		The length of the sequential path $1,2,3,N$ (where N is the total number of amino acids in the protein).	
	protein.graph	A graph object created by the <i>igraph</i> package that has edges between amino acids on the candidate.path. This can be passed to plotting functions to create visual representations.	
	missing positions		

missing.positions

This shows which amino acids are present in the mutation matrix but for which we do not have positions. These amino acids are cut from the protein when calculating the *Remapped* and *OriginalCulled* results.

Plot.Protein

References

Ye et. al., Statistical method on nonrandom clustering with application to somatic mutations in cancer. *BMC Bioinformatics*. 2010. doi:10.1186/1471-2105-11-11.

Michael Hahsler and Kurt Hornik (2011). Traveling Salesperson Problem (TSP) R package version 1.0-7. http://CRAN.R-project.org/.

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.

Examples

```
## Not run:
#Load the positional and mutatioanl data
CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"
Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

#Calculate the required clusters
GraphClust(KRAS.Mutations,KRAS.Positions$Positions,insertion.type = "cheapest_insertion",
    alpha = 0.05, MultComp = "Bonferroni")

## End(Not run)</pre>
```

Plot.Protein

Plot.Protein

Description

Creates a circular interactive plot of the path through the protein.

Usage

```
Plot.Protein(graph, path, vertex.size = 5, color.palette = "heat")
```

Arguments

graph The graph object returned by GraphClust (\$protein.graph).

The path returned by GraphClust (\$candidate.path).

vertex.size How large you want each vertex to be.

color.palette Possible options are: "heat", "gray", "topo", "cm".

Plot.Protein 7

Details

This will plot the amino acids in a circular directed graph. The vertices can be dragged around to enhance the visual representation. This is meant to complement the *Plot.Protein.Linear* function in *iPAC* which is also applicable in this package.

Note

This function is based on the "tkplot" function in *igraph*. Please see the documentation for that package for the necessary requirements. Special thanks to Dr. G\'abor Cs\'ardi (creator of the *igraph* package) for his help.

References

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net.

Examples

```
## Not run:
#Loads the mutational and positional data
CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"
Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")
data(KRAS.Mutations)

#gets the cluster results and graph object
my.graph.clusters <- GraphClust(KRAS.Mutations,KRAS.Positions$Positions,
insertion.type = "cheapest_insertion",alpha = 0.05,
MultComp = "Bonferroni")

Plot.Protein(my.graph.clusters$protein.graph, my.graph.clusters$candidate.path,
vertex.size=5, color.palette="heat")

## End(Not run)</pre>
```

Index

```
*Topic Amino Acids
    Plot.Protein, 6
*Topic Clusters
    GraphClust, 4
*Topic Graph
    Find.TSP.Path, 3
    Plot.Protein, 6
*Topic Mutations
    GraphClust, 4
*Topic Order
    Plot.Protein, 6
*Topic Traveling Salesman
    Find.TSP.Path, 3
Find.TSP.Path, 3
{\sf GraphClust}, {\sf 4}
GraphPAC (GraphPAC-package), 2
GraphPAC-package, 2
Plot.Protein, 6
```