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1 Introduction

We consider a lightweight approach to Bioconductor-based management and interroga-
tion of multiple samples to which NGS methods have been applied.

The basic data store is the binary SAM (BAM) format (Li et al., 2009). This format
is widely used in the 1000 genomes project, and transformations between SAM/BAM
and output formats of various popular alignment programs are well-established. Bio-
conductor’s Rsamtools package allows direct use of important SAM data interrogation
facilities from R.

2 Basic design

A collection of NGS samples is represented through the associated set of BAM files and
BAI index files. These can be stored in the inst/bam folder of an R package to facilitate
documented programmatic access through R file navigation facilities, or the BAM/BAI
files can be accessed through arbitrary path or URL references.

The bamViews class is defined to allow reliable fine-grained access to the NGS data
along with relevant metadata. A bamViews instance contains access path information for
a set of related BAM/BAI files, along with sample metadata and an optional specification
of genomic ranges of interest.

A key design aspect of the bamViews class is preservation of semantics of the X[G,

S] idiom familiar from ExpressionSet objects for management of multiple microarrays.
With ExpressionSet instances, G is a predicate specifying selection of microarray probes
of interest. With bamViews instances, G is a predicate specifying selection of genomic
features of interest. At present, for bamViews , selection using G involves ranges of
genomic coordinates.

3 Illustration

Data from four samples from a yeast RNA-seq experiment (two wild type, two ‘RLP’
mutants) are organized in the leeBamViews package. The data are collected to allow
regeneration of aspects of Figure 8 of Lee et al. (2008). We obtained all reads between
bases 800000 and 900000 of yeast chromosome XIII.

We have not yet addressed durable serialization of manager objects, so the bamViews
instance is created on the fly.

> library(leeBamViews) # bam files stored in package

> bpaths = dir(system.file("bam", package="leeBamViews"), full=TRUE, patt="bam$")

> #

> # extract genotype and lane information from filenames

> #

> gt = gsub(".*/", "", bpaths)
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> gt = gsub("_.*", "", gt)

> lane = gsub(".*(.)$", "\\1", gt)

> geno = gsub(".$", "", gt)

> #

> # format the sample-level information appropriately

> #

> pd = DataFrame(geno=geno, lane=lane, row.names=paste(geno,lane,sep="."))

> prd = new("DataFrame") # protocol data could go here

> #

> # create the views object, adding some arbitrary experiment-level information

> #

> bs1 = BamViews(bamPaths=bpaths, bamSamples=pd,

+ bamExperiment=list(annotation="org.Sc.sgd.db"))

> bs1

BamViews dim: 0 ranges x 8 samples

names: isowt.5 isowt.6 ... xrn.1 xrn.2

detail: use bamPaths(), bamSamples(), bamRanges(), ...

> #

> # get some sample-level data

> #

> bamSamples(bs1)$geno

[1] "isowt" "isowt" "rlp" "rlp" "ssr" "ssr" "xrn" "xrn"

We would like to operate on specific regions of chr XIII for all samples. Note that
the aligner in use (bowtie) employed “Scchr13” to refer to this chromosome. We add a
GRanges instance to the view to identify the region of interest.

> START=c(861250, 863000)

> END=c(862750, 864000)

> exc = GRanges(seqnames="Scchr13", IRanges(start=START, end=END), strand="+")

> bamRanges(bs1) = exc

> bs1

BamViews dim: 2 ranges x 8 samples

names: isowt.5 isowt.6 ... xrn.1 xrn.2

detail: use bamPaths(), bamSamples(), bamRanges(), ...

A common operation will be to extract coverage information. We use a transforming
method, readGappedAlignments, from the GenomicRanges package to extract reads
and metadata for each region and each sample.
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> covex =

+ RleList(lapply(bamPaths(bs1), function(x)

+ coverage(readGappedAlignments(x))[["Scchr13"]]))

> names(covex) = gsub(".bam$", "", basename(bamPaths(bs1)))

> head(covex, 3)

SimpleRleList of length 3

$isowt5_13e

integer-Rle of length 924429 with 21819 runs

Lengths: 799974 2 2 1 6 ... 10 7 1 24399

Values : 0 1 2 3 4 ... 4 3 2 0

$isowt6_13e

integer-Rle of length 924429 with 21799 runs

Lengths: 799976 2 3 14 13 ... 17 1 4 24394

Values : 0 1 2 3 4 ... 3 2 1 0

$rlp5_13e

integer-Rle of length 924429 with 23037 runs

Lengths: 799974 2 6 25 3 ... 4 2 30 24397

Values : 0 1 2 3 4 ... 3 2 1 0

Let’s visualize what we have so far. We use GenomeGraphs and add some supporting
software.

> library(GenomeGraphs)

> cov2baseTrack = function(rle, start, end,

+ dp = DisplayPars(type="l", lwd=0.5, color="black"),

+ countTx=function(x)log10(x+1)) {

+ require(GenomeGraphs)

+ if (!is(rle, "Rle")) stop("requires instance of Rle")

+ dat = runValue(rle)

+ loc = cumsum(runLength(rle))

+ ok = which(loc >= start & loc <= end)

+ makeBaseTrack(base = loc[ok], value=countTx(dat[ok]),

+ dp=dp)

+ }

> trs = lapply(covex, function(x) cov2baseTrack(x, START[1], END[1],

+ countTx = function(x)pmin(x, 80)))

> ac = as.character

> names(trs) = paste(ac(bamSamples(bs1)$geno), ac(bamSamples(bs1)$lane), sep="")

> library(biomaRt)

> mart = useMart("ensembl", "scerevisiae_gene_ensembl")
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> gr = makeGeneRegion(START, END, chromosome="XIII",

+ strand="+", biomart=mart, dp=DisplayPars(plotId=TRUE,

+ idRotation=0, idColor="black"))

> trs[[length(trs)+1]] = gr

> trs[[length(trs)+1]] = makeGenomeAxis()

> print( gdPlot( trs, minBase=START[1], maxBase=END[1]) )

NULL
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We can encapsulate this to something like:

> plotStrains = function(bs, query, start, end, snames, mart, chr, strand="+") {

+ filtbs = bs[query, ]

+ cov = lapply(filtbs, coverage)

+ covtrs = lapply(cov, function(x) cov2baseTrack(x[[1]], start, end,

+ countTx = function(x) pmin(x,80)))

+ names(covtrs) = snames
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+ gr = makeGeneRegion(start, end, chromosome=chr,

+ strand=strand, biomart=mart, dp=DisplayPars(plotId=TRUE,

+ idRotation=0, idColor="black"))

+ grm = makeGeneRegion(start, end, chromosome=chr,

+ strand="-", biomart=mart, dp=DisplayPars(plotId=TRUE,

+ idRotation=0, idColor="black"))

+ covtrs[[length(covtrs)+1]] = gr

+ covtrs[[length(covtrs)+1]] = makeGenomeAxis()

+ covtrs[[length(covtrs)+1]] = grm

+ gdPlot( covtrs, minBase=start, maxBase=end )

+ }

4 Comparative counts in a set of regions of interest

4.1 Counts in a regular partition

The supplementary information for the Lee paper includes data on unnannotated tran-
scribed regions reported in other studies. We consider the study of David et al., confining
attention to chromosome XIII. If you wanted to study their intervals you could use code
like:

> data(leeUnn)

> names(leeUnn)

> leeUnn[1:4,1:8]

> table(leeUnn$study)

> l13 = leeUnn[ leeUnn$chr == 13, ]

> l13d = na.omit(l13[ l13$study == "David", ])

> d13r = GRanges(seqnames="Scchr13", IRanges( l13d$start, l13d$end ),

+ strand=ifelse(l13d$strand==1, "+", ifelse(l13d$strand=="0", "*", "-")))

> elementMetadata(d13r)$name = paste("dav13x", 1:length(d13r), sep=".")

> bamRanges(bs1) = d13r

> d13tab = tabulateReads( bs1 )

but our object bs1 is too restricted in its coverage. Instead, we illustrate with a small
set of subintervals of the basic interval in use:

> myrn = GRanges(seqnames="Scchr13",

+ IRanges(start=seq(861250, 862750, 100), width=100), strand="+")

> elementMetadata(myrn)$name = paste("til", 1:length(myrn), sep=".")

> bamRanges(bs1) = myrn

> tabulateReads(bs1, "+")

til.1 til.2 til.3 til.4 til.5 til.6 til.7 til.8 til.9 til.10

start 861250 861350 861450 861550 861650 861750 861850 861950 862050 862150
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end 861349 861449 861549 861649 861749 861849 861949 862049 862149 862249

isowt.5 1 1 3 6 2 7 299 605 408 380

isowt.6 2 6 9 12 7 4 306 666 458 382

rlp.5 1 5 65 53 36 11 158 247 186 145

rlp.6 3 2 47 48 37 16 123 238 163 159

ssr.1 2 6 35 27 21 8 423 700 541 496

ssr.2 2 6 43 37 26 13 443 839 616 509

xrn.1 7 8 75 78 24 5 180 446 357 288

xrn.2 4 9 96 110 31 8 225 611 465 356

til.11 til.12 til.13 til.14 til.15 til.16

start 862250 862350 862450 862550 862650 862750

end 862349 862449 862549 862649 862749 862849

isowt.5 482 554 895 631 643 702

isowt.6 446 517 870 689 691 701

rlp.5 174 180 316 251 239 277

rlp.6 190 215 336 270 269 281

ssr.1 573 596 966 737 669 771

ssr.2 576 606 987 775 742 811

xrn.1 349 484 678 549 396 342

xrn.2 430 578 837 643 453 420

4.2 Counts in annotated intervals: genes

We can use Bioconductor annotation resources to acquire boundaries of yeast genes on
our subregion of chromosome 13.

In the following chunk we generate annotated ranges of genes on the Watson strand.

> library(org.Sc.sgd.db)

> library(IRanges)

> c13g = get("13", revmap(org.Sc.sgdCHR)) # all genes on chr13

> c13loc = unlist(mget(c13g, org.Sc.sgdCHRLOC)) # their 'start' addresses

> c13locend = unlist(mget(c13g, org.Sc.sgdCHRLOCEND))

> c13locp = c13loc[c13loc>0] # confine attention to + strand

> c13locendp = c13locend[c13locend>0]

> ok = !is.na(c13locp) & !is.na(c13locendp)

> c13pr = GRanges(seqnames="Scchr13", IRanges(c13locp[ok], c13locendp[ok]),

+ strand="+") # store and clean up names

> elementMetadata(c13pr)$name = gsub(".13$", "", names(c13locp[ok]))

> c13pr

GRanges with 297 ranges and 1 metadata column:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>
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[1] Scchr13 [268031, 268149] + | CEN13

[2] Scchr13 [923541, 924431] + | TEL13R

[3] Scchr13 [924307, 924431] + | TEL13R-TR

[4] Scchr13 [923541, 924005] + | TEL13R-XC

[5] Scchr13 [924006, 924306] + | TEL13R-XR

[6] Scchr13 [267174, 267800] + | YML001W

[7] Scchr13 [264541, 266754] + | YML002W

[8] Scchr13 [263483, 264355] + | YML003W

[9] Scchr13 [260221, 261609] + | YML005W

... ... ... ... ... ...

[289] Scchr13 [297278, 297364] + | snR78

[290] Scchr13 [626349, 626654] + | snR83

[291] Scchr13 [463554, 463625] + | tD(GUC)M

[292] Scchr13 [290801, 290872] + | tE(UUC)M

[293] Scchr13 [352280, 352370] + | tF(GAA)M

[294] Scchr13 [363064, 363135] + | tH(GUG)M

[295] Scchr13 [504895, 505008] + | tL(CAA)M

[296] Scchr13 [168795, 168883] + | tY(GUA)M1

[297] Scchr13 [837928, 838016] + | tY(GUA)M2

---

seqlengths:

Scchr13

NA

> c13pro = c13pr[ order(ranges(c13pr)), ]

That’s the complete set of genes on the Watson strand of chromosome XIII. In the
leeBamViews package, we do not have access to all these, but only those lying in a 100kb
interval.

> lim = GRanges(seqnames="Scchr13", IRanges(800000,900000), strand="+")

> c13prol = c13pro[ which(c13pro %in% lim ), ]

Now that we have a set of annotation-based genomic regions, we can tabulate read
counts lying in those regions and obtain an annotated matrix.

> bamRanges(bs1) = c13prol

> annotab = tabulateReads(bs1, strandmarker="+")

5 Larger scale sanity check

The following plot compares read counts published with the Lee et al. (2008) paper to
those computed by the methods sketched here, for all regions noted on the plus strand of
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chromosome XIII. Exact correspondence is not expected because of different approaches
to read filtering.
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6 Statistical analyses of differential expression

6.1 Using edgeR

Statistical analysis of read counts via negative binomial distributions with moderated
dispersion is developed in Robinson and Smyth (2008). The edgeR differential expression
statistics are computed using regional read counts, and total library size plays a role.
We compute total read counts directly (the operation can be somewhat slow for very
large BAM files):

> totcnts = totalReadCounts(bs1)

In the following demonstration, we will regard multiple lanes from the same genotype as
replicates. This is probably inappropriate for this method; the original authors tested
for lane effects and ultimately combined counts across lanes within strain.
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> library(edgeR)

> #

> # construct an edgeR container for read counts, including

> # genotype and region (gene) metadata

> #

> dgel1 = DGEList( counts=t(annotab)[,-c(1,2)],

+ group=factor(bamSamples(bs1)$geno),

+ lib.size=totcnts, genes=colnames(annotab))

> #

> # compute a dispersion factor for the negative binomial model

> #

> cd = estimateCommonDisp(dgel1)

> #

> # test for differential expression between two groups

> # for each region

> #

> et12 = exactTest(cd)

> #

> # display statistics for the comparison

> #

> tt12 = topTags(et12)

> tt12

Comparison of groups: rlp-isowt

genes logFC logCPM PValue FDR

YMR297W YMR297W -0.9089950 17.34778 2.559645e-266 6.911040e-265

YMR269W YMR269W 4.4295907 11.38777 1.889034e-87 2.550196e-86

YMR294W YMR294W 2.2938913 11.09085 1.199710e-31 1.079739e-30

YMR292W YMR292W 1.8956889 11.52542 4.386646e-31 2.960986e-30

YMR306W YMR306W 1.3016506 12.06293 5.286705e-23 2.854821e-22

YMR284W YMR284W 1.3626019 11.74647 1.997702e-20 8.989658e-20

YMR286W YMR286W 2.1386637 10.56551 5.032338e-20 1.941045e-19

YMR312W YMR312W 1.4720015 11.45330 2.254859e-19 7.610150e-19

YMR278W YMR278W 0.9070925 12.60175 6.124400e-17 1.837320e-16

YMR276W YMR276W -1.0281775 12.42047 1.161190e-16 3.135214e-16

An analog of the “MA-plot” familiar from microarray studies is available for this
analysis. The ‘concentration’ is the log proportion of reads present in each gene, and
the “log fold change” is the model-based estimate of relative abundance. In the following
display we label the top 10 genes (those with smallest FDR).

> plotSmear(cd, cex=.8, ylim=c(-5,5))

> text(tt12$table$logCPM, tt12$table$logFC+.15, as.character(

+ tt12$table$genes), cex=.65)
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7 Summary

• The BAM format provides reasonably compact and comprehensive information
about a alignments of short reads obtained in a sequencing experiment. samtools
utilities permit efficient random access to read collections of interest.

• Rsamtools brings samtools functionality into R, principally through the scanBam

method, which is richly parameterized so that many details of access to and filtering
of reads from BAM files can be controlled in R.

• Rsamtools defines the bamViews container for management of collections of BAM
files. Read data are managed external to R; data on aligned reads can be im-
ported efficiently, and “streaming read” models for scanning large collections of
reads can be used. Many embarrassingly parallel operations can be accomplished
concurrently using multicore or similar packages.
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• The leeBamViews package provides small excerpts from BAM files generated af-
ter bowtie alignment of FASTQ records available through the NCBI short read
archives. These excerpts can be analyzed using code shown in this vignette.

• After the count data have been generated, various approaches to inference on dif-
ferential expression are available. We consider the moderated negative binomial
models of edgeR above; more general variance modeling is available in the devel-
opmental DESeq package.
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8 Session data

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
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attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] edgeR_3.0.0 limma_3.14.0 org.Sc.sgd.db_2.8.0

[4] RSQLite_0.11.2 DBI_0.2-5 AnnotationDbi_1.20.0

[7] GenomeGraphs_1.18.0 biomaRt_2.14.0 leeBamViews_0.99.20

[10] BSgenome_1.26.0 Rsamtools_1.10.0 Biostrings_2.26.0

[13] GenomicRanges_1.10.0 IRanges_1.16.0 Biobase_2.18.0

[16] BiocGenerics_0.4.0

loaded via a namespace (and not attached):

[1] RCurl_1.91-1 XML_3.95-0 bitops_1.0-4.1 parallel_2.15.1

[5] stats4_2.15.1 tools_2.15.1 zlibbioc_1.4.0
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