
Model Based Analysis of Tiling Arrays

The rMAT package.

Charles Cheung∗and Raphael Gottardo†and Arnaud Droit‡

October 1, 2012

A step-by-step guide in the analysis of tiling array data using the rMAT
package in R

Contents

I Licensing 3

II Introduction 3

III Loading the rMAT Package 4

IV Loading in the data 4

V Reading BPMAP and CEL files 4

VI Normalization 6

VII Finding the Enriched Regions 7

∗cykc@interchange.ubc.ca
†rgottard@fhcrc.org
‡arnaud.droit@crchuq.ulaval.ca

1

1 Creating an annotation graphic 8

2 Plotting a Gene with rtracklayer 8

3 Plotting a Gene with GenomeGraphs 8

VIII Appendix: Installing rMAT 9

2

Part I

Licensing

Under the Artistic license 2.0, you are free to use and redistribute this soft-
ware. However, we ask you to cite the following paper if you use this software
for publication.

A. Droit, C. Cheung, and R. Gottardo, RMAT-an R/Bioconductor
package for analyzing ChIP-chip experiments. Bioinformatics (Oxford,
England), vol. 26, iss. 5, pp. 678-679, 2010.

Part II

Introduction

In our guide, we include examples of code that we hope will help you when
using the rMAT package. The examples are kept at the basic level for ease
of understanding. Some of the options in the functions have been set by de-
fault. To learn more about the exact parameters and usage of each function,
you may type help(FUNCTION_NAME) of the function of interest in R after
the rMAT package is loaded.

The probe sequence information of an Affymetrix tiling array is stored
in the .BPMAP file, while the corresponding expression values (intensity
signals) of each experiment is stored separately in each .CEL file. The
BPMAP file contains different sequences that describe different contents in
the array. For instance, the first sequence may contain probes from chro-
mosome 1 while the second sequence may contain probes from chromosome
2. Each probe would include information such as its Perfect Match base
pair sequence (ie. AGCTTCGAAGCTTCGAAGCTTCGAG), location on
chromosome, X and Y coordinates, etc. The CEL file does not carry any
information about the design of the array; but simply X and Y coordinates
and expression values, as well as other auxiliary columns. For each array
experiment (ie. mock, treated with reagent X, treated with reagent Y), we
have one CEL file. BPMAP and CEL files are stored in binary format and
require a parser (reader) to read its content meaningfully. We make use of
the affxparser software for this purpose, although we provide convenient
wrappers for most of the necessary functions.

3

The common goal in analyzing ChIP-chip data, and more generally tiling ar-
ray data, is to find activities (DNA-protein interaction, transcription, etc) in
specific chromosomal regions. This package focus on detecting DNA-protein
interactions from ChIP-chip experiments. Though, many of the functions
are more general than that, e.g. parsing/normalization. Major analysis
steps are described below.

Part III

Loading the rMAT Package

To load the rMAT package in R, we type

> library(rMAT)

Part IV

Loading in the data

The next step in a typical analysis is to load-in/read data from Affymetrix
CEL files. The data used in this example are available in this package in
inst/doc folder.
In this documentation, the path for the data is the /rMAT/inst/doc folder.

Part V

Reading BPMAP and CEL files

Reading the design of tiling array

In order to read-in appropriate data values from the CEL/BPMAP files,
we first need to understand their content. To understand the design, we
would explore the header section of the BPMAP file using the function
ReadBPMAPAllSeqHeader. ReadBPMAPAllSequence takes in the filename
of the BPMAP file as an argument. The filename is formatted as a string
literal (characters) in unix path format and stored in the variable BPMAP-
File, which is then used by ReadBPMAPAllSeqHeader to specify which
BPMAP file to read.

4

> pwd<-"" #INPUT FILES- BPMAP, ARRAYS, etc.

> path<- system.file("doc/Sc03b_MR_v04_10000.bpmap",package="rMAT")

> bpmapFile = paste(pwd, path, sep="")

> seqHeader <-ReadBPMAPAllSeqHeader(bpmapFile) #save the list of output contents to seqHeader

> print(seqHeader) # show its content

$SeqName

[1] "chr1"

$GroupName

[1] "Sc"

$version

[1] "Oct_2003"

$probeMapping

[1] 0

$seqNum

[1] 0

$NumHits

[1] 10000

Specifying the filenames

From the above header content, the information we want to obtain is the
direct mapping from sequence number to chromosome number. Sequence
numbers are stored in the seqNum column while chromosome numbers can
be read from the Name column, which describes the content of the sequence.
We would like to read the BPMAP and CEL files and merge them by X and
Y coordinate so information such as probe sequence and location along the
chromosome would pair up with the corresponding expression value.
We have already specified the location of the BPMAP file in BPMAP-
File variable, so now let’s specify the location of the CEL files. Because
BPMAPCelParser allows us to parse multiple CEL files simultaneously, we
can store the location of multiple files in a vector using c() each separate
by "," .

> pathCEL<- system.file("doc/Swr1WTIP_Short.CEL",package="rMAT")

> arrayFile<-paste(pwd,c(pathCEL),sep="")

5

Calling BPMAPCelParser

We are now ready to call and use the BPMAPCelParser.

> ScSet<-BPMAPCelParser(bpmapFile, arrayFile, verbose=FALSE,groupName="Sc")

the ‘groupeName’ argument corresponding to the genome name used.
In this example, we specified saccharomyces cerevisiae genome (Sc). If no
groupName is specified, all sequences will be read, including Affymetrix
controls, etc. You probably don’t want that.

This function returns an object of class tilingSet containing all necessary
information: probe sequences, genomic positions, chromosomes as well as
the probe intensities.

The list of vectors of the merged data are now stored in ScSet. Let’s
explore the (partial) content of ScSet.

> summary(ScSet)

Genome interrogated: Sc03b_MR_v04_10000

Chromosome(s) interrogated: chr1

Sample name(s): Swr1WTIP_Short

The total number of probes is: 10000

Preprocessing Information

- Transformation: log

- Normalization: none

We are now ready to normalize the raw data. Normalization is a proce-
dure to transform raw data into the so-called normalized expression data so
expression values from different tiling arrays become more comparable.

Part VI

Normalization

The ‘NormalizeProbes’ function allows users to normalize expression values
of different experiments with one command, as long as all those experiments
use the same BPMAP tiling design file. We can load these raw expression
values in batch using cbind(). NormalizeProbes also requires users to spec-
ify the sequence vector. In this case, it is a vector of characters containing

6

the 25 base pair sequence of each probe. (Right now, Normalization works
for reading 25mer only.)

For a complete list of parameters for NormalizeProbes, please refer to
help(NormalizeProbes). We are now ready to run the command.

> ScSetNorm<-NormalizeProbes(ScSet,method="MAT",robust=FALSE,all=FALSE,standard=TRUE,verbose=FALSE)

The user can choose from ‘MAT’, or ‘PairBinned’ normalization method.
The ‘PairBinned’ option takes into account interaction between adjacent
pairs along the probe as covariates for the linear regression. Both model
require the same number of parameters. For more details on the other
options, please refer to the man pages.

The output in this example is saved in ScSetNorm.
Let’s explore the (partial) content of ScSetNorm.

> summary(ScSetNorm)

Genome interrogated: Sc03b_MR_v04_10000

Chromosome(s) interrogated: chr1

Sample name(s): Swr1WTIP_Short

The total number of probes is: 10000

Preprocessing Information

- Transformation: log

- Normalization: MAT standardized

Part VII

Finding the Enriched Regions

After normalization, we are ready to compute the MatScores and identify
enriched regions. There are various ways to call enriched regions, based
on p-values, FDR threshold and MATscore thresholds. On the command
below, we use the a MATScore threshold of 1.

For a comprehensive list of parameters you can adjust in callEnrichedRe-
gions, please refer to help(MATScore). Another note is that if FDR is used,
threshold should be set in the range between 0 and 1.

The ‘computeMATScore’ function is first used to compute the scores and
return a ‘RangedData’ object, which can then use exported to a ‘wig’ file
and/or uploaded to a genome browser using rtracklayer.

> RD<-computeMATScore(ScSetNorm,cName=NULL, dMax=600, verbose=TRUE)

7

** Finished processing 10000 probes on 1 arrays **

> Enrich<-callEnrichedRegions(RD,dMax=600, dMerge=300, nProbesMin=8, method="score", threshold=1, verbose=FALSE)

1 Creating an annotation graphic

rMAT results can benefit from integrated visualisation of the genomic in-
formation. We have decided to use the rtrackalayer or GenomeGraphs

package. This last package uses the biomaRt package to deliver queries to
Ensembl e.g. gene/transcript structures to viewports of the grid package,
resulting in genomic information plotted together with your data.

To load the GenomeGraphs and rtracklayer packages in R, we type

> library(GenomeGraphs)

> library(rtracklayer)

2 Plotting a Gene with rtracklayer

> genome(Enrich)<-"sacCer2"

> names(Enrich)<-"chrI"

> #Viewing the targets

> session<- browserSession("UCSC")

> track(session,"toto") <- Enrich

> #Get the first feature

> subEnrich<-Enrich[2,]

> #View with GenomeBrowser

> view<- browserView(session,range(subEnrich) * -2)

3 Plotting a Gene with GenomeGraphs

If one wants to plot annotation information from Ensembl then you need
to connect to Ensembl Biomart using the useMart function of the biomaRt

package.

> mart<-useMart("ensembl",dataset="scerevisiae_gene_ensembl")

If you are interested in plotting a whole gene region, you should create a
GeneRegion object. In the example below we will retrieve the genes of the
chromsome (I) between 1 and 200000. We added a genomic axis as well to
give us the base positions.

8

> genomeAxis<-makeGenomeAxis(add53 = TRUE, add35=TRUE)

> minbase<-1

> maxbase<-50000

> genesplus<-makeGeneRegion(start = minbase, end = maxbase, strand = "+", chromosome = "I", biomart = mart)

> genesmin<-makeGeneRegion(start = minbase, end = maxbase, strand = "-", chromosome = "I", biomart = mart)

We create a Generic Array for chromosome I only

> RD1<-RD[space(RD)=="chr1",]

> Enrich1<-Enrich[space(Enrich)=="chr1",]

> MatScore<-makeGenericArray(intensity=as.matrix(score(RD1)), probeStart=start(RD1), dp=DisplayPars(size=1, color="black", type="l"))

> rectList<- makeRectangleOverlay(start = start(Enrich1), end = end(Enrich1), region = c(1, 4), dp = DisplayPars(color = "green", alpha = 0.1))

> gdPlot(list("score" = MatScore, "Gene +" = genesplus, Position = genomeAxis, "Gene -" = genesmin), minBase = minbase, maxBase = maxbase, labelCex = 1, overlays=rectList)

Part VIII

Appendix: Installing rMAT

To build the rMAT package from source, make sure that the following is
present in your system:

• GNU Scientific Library (GSL)

• Basic Linear Algebra Subprograms (BLAS)

GSL can be downloaded at http://www.gnu.org/software/gsl/. In
addition, the package uses BLAS to perform basic vector and matrix oper-
ations. Please go to http://www.netlib.org/blas/faq.html#5 for a list
of optimized BLAS libraries for a variety of computer architectures. For
instance, Mac users may use the built-in vecLib framework, while users of
Intel machines may use the Math Kernel Library (MKL). A C compiler is
needed to build the package as the core of the rMAT function is coded in C.

For the package to be installed properly you might have to type the fol-
lowing command before installation:

export LD_LIBRARY_PATH=’/path/to/GSL/:/path/to/BLAS/’:$LD_LIBRARY_PATH

which will tell R where your GSL and BLAS libraries (see below for more
details about BLAS libraries) are. Note that this might have already been
configured on your system, so you might not have to do so. In case you need

9

http://www.gnu.org/software/gsl/
http://www.netlib.org/blas/faq.html#5

to do it, you might consider copying and pasting the line in your .bashrc

so that you do not have to do it every time.
Now you are ready to install the package:

R CMD INSTALL rMAT_x.y.z.tar.gz

The package will look for a BLAS library on your system, and by default
it will choose gslcblas, which is not optimized for your system. To use an
optimized BLAS library, you can use the --with-blas argument which will
be passed to the configure.ac file. For example, on a Mac with vecLib
pre-installed the package may be installed via:

R CMD INSTALL rMAT_x.y.z.tar.gz --configure-args="--with-blas=’-

framework vecLib’"

On a 64-bit Intel machine which has MKL as the optimized BLAS library,
the command may look like:

R CMD INSTALL rMAT_x.y.z.tar.gz --configure-args="--with-blas=’-

L/usr/local/mkl/lib/em64t/ -lmkl -lguide -lpthread’"

where /usr/local/mkl/lib/em64t/ is the path to MKL.
If you prefer to install a prebuilt binary, you need GSL for successful

installation. Finally, as of version 2.1.0, rMAT makes use of the Grand Cen-
tral Dispatch to normalize arrays in parallel. The Grand Central Dispatch
technology is available on Apple Snow Leopard operating system.

10

	I Licensing
	II Introduction
	III Loading the rMAT Package
	IV Loading in the data
	V Reading BPMAP and CEL files
	VI Normalization
	VII Finding the Enriched Regions
	Creating an annotation graphic
	Plotting a Gene with rtracklayer
	Plotting a Gene with GenomeGraphs

	VIII Appendix: Installing rMAT

