
The minfi User’s Guide
Analyzing Illumina 450k Methylation Arrays

Kasper D. Hansen Martin J. Aryee

Modified: October 9, 2011. Compiled: October 1, 2012

1 Introduction

The minfi package provides tools for analyzing Illumina’s Methylation arrays, with a special
focus on the new 450k array for humans. At the moment Illumina’s 27k methylation arrays
are not supported.

The tasks addressed in this package include preprocessing, QC assessments, identification
of interesting methylation loci and plotting functionality. Analyzing these types of arrays
is ongoing research in ours and others groups. In general, the analysis of 450k data is not
straightforward and we anticipate many advances in this area in the near future.

The input data to this package are IDAT files, representing two different color channels prior
to normalization. It is possible to use Genome Studio files together with the data structures
contained in this package, but in general Genome Studio files are already normalized and we
do not recommend this.

Chip design and terminology

The 450k array has a complicated design. What follows is a quick overview.

Each sample is measured on a single array, in two different color channels (red and green).
Each array measures roughly 450,000 CpG positions. Each CpG is associated with two
measurements: a methylated measurement and an “un”-methylated measurement. These
two values can be measured in one of two ways: using a “Type I” design or a “Type II
design”. CpGs measured using a Type I design are measured using a single color, with two
different probes in the same color channel providing the methylated and the unmethylated
measurements. CpGs measured using a Type II design are measured using a single probe, and
two different colors provide the methylated and the unmethylated measurements. Practically,
this implies that on this array there is not a one-to-one correspondence between probes and

1

CpG positions. We have therefore tried to be precise about this and we refer to a“methylation
position” (or “CpG”) when we refer to a single-base genomic locus. The previous generation
27k methlation array uses only the Type I design.

In this package we refer to differentially methylated positions (DMPs) by which we mean
a single genomic position that has a different methylation level in two different groups of
samples (or conditions). This is different from differentially methylated regions (DMRs)
which imply more that more than one methylation positions are different between conditions.

Physically, each sample is measured on a single “array”. There are 12 arrays on a single
physical “slide” (organized in a 6 by 2 grid). Slides are organized into “plates” containing at
most 8 slides (96 arrays).

Workflow and R data classes

A set of 450k data files will initially be read into an RGChannelSet, representing the raw
intensities as two matrices: one being the green channel and one being the red channel. This
is a class which is very similar to an ExpressionSet or an NChannelSet.

The RGChannelSet is, together with a IlluminaMethylationManifest object, preprocessed
into a MethylSet. The IlluminaMethylationManifest object contains the array design,
and describes how probes and color channels are paired together to measure the methylation
level at a specific CpG. The object also contains information about control probes (also
known as QC probes). The MethylSet contains normalized data and essentially consists of
two matrices containing the methylated and the unmethylated evidence for each CpG. Only
the RGChannelSet contains information about the control probes.

The process described in the previous paragraph is very similar to the paradigm for analyzing
Affymetrix expression arrays using the affy package (an AffyBatch is preprocessed into an
ExpressionSet using array design information stored in a CDF environment (package)).

A MethylSet is the starting point for any post-normalization analysis, such as searching for
DMPs or DMRs.

Getting Started

> require(minfi)

> require(minfiData)

2 Reading Data

This package supports analysis of IDAT files, containing the summarized bead information.

2

In our experience, most labs use a “Sample Sheet” CSV file to describe the layout of the
experiment. This is based on a sample sheet file provided by Illumina. Our pipeline assumes
the existence of such a file(s), but it is relatively easy to create such a file using for example
Excel, if it is not available.

We use an example dataset with 6 samples, spread across two slides. First we obtain the
system path to the IDAT files; this requires a bit since the data comes from an installed
package

> baseDir <- system.file("extdata", package = "minfiData")

> list.files(baseDir)

[1] "5723646052" "5723646053" "SampleSheet.csv"

This shows the typical layout of 450k data: each “slide” (containing 12 arrays) is stored in a
separate directory, with a numeric name. The top level directory contains the sample sheet
file. Inside the slide directories we find the IDAT files (and possible a number of JPG images
or other files):

> list.files(file.path(baseDir, "5723646052"))

[1] "5723646052_R02C02_Grn.idat" "5723646052_R02C02_Red.idat"

[3] "5723646052_R04C01_Grn.idat" "5723646052_R04C01_Red.idat"

[5] "5723646052_R05C02_Grn.idat" "5723646052_R05C02_Red.idat"

The files for each array has another numeric number and consists of a Red and a Grn (Green)
IDAT file. Note that for this example data, each slide contains only 3 arrays and not 12.
This was done because of file size limitations and because we only need 6 arrays to illustrate
the package’s functionality.

First we read the sample sheet. We provide a convenience function for reading in this file
read.450k.sheet. This function has a couple of attractive bells and whistles. Let us look
at the output

> targets <- read.450k.sheet(baseDir)

Found the following CSV files:

[1] "/loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/SampleSheet.csv"

> targets

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID Array

1 GroupA_3 H5 NA GroupA NA R02C02

2 GroupA_2 D5 NA GroupA NA R04C01

3 GroupB_3 C6 NA GroupB NA R05C02

4 GroupB_1 F7 NA GroupB NA R04C02

5 GroupA_1 G7 NA GroupA NA R05C02

6 GroupB_2 H7 NA GroupB NA R06C02

3

Slide

1 5723646052

2 5723646052

3 5723646052

4 5723646053

5 5723646053

6 5723646053

Basename

1 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646052/5723646052_R02C02

2 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646052/5723646052_R04C01

3 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646052/5723646052_R05C02

4 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646053/5723646053_R04C02

5 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646053/5723646053_R05C02

6 /loc/home/biocbuild/bbs-2.11-bioc/R/library/minfiData/extdata/5723646053/5723646053_R06C02

First the output: this is just a data.frame. It contains a column Basename that describes
the location of the IDAT file corresponding to the sample, as well as two columns Array

and Slide. In the sample sheet provided by Illumina, these two columns are named Sen-

trix_Position and Sentrix_ID, but we rename them. We provide more detail on the use
of this function below. The Basename column tend to be too large for display, here it is
simplified relative to baseDir:

> sub(baseDir, "", targets$Basename)

[1] "/5723646052/5723646052_R02C02" "/5723646052/5723646052_R04C01"

[3] "/5723646052/5723646052_R05C02" "/5723646053/5723646053_R04C02"

[5] "/5723646053/5723646053_R05C02" "/5723646053/5723646053_R06C02"

(This is just for display purposes).

With this data.frame, it is easy to read in the data

> RGset <- read.450k.exp(base = baseDir, targets = targets)

Let us look at the associated pheno data, which is really just the information contained in
the targets object above.

> RGset

RGChannelSet (storageMode: lockedEnvironment)

assayData: 622399 features, 6 samples

element names: Green, Red

phenoData

sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

5723646053_R06C02 (6 total)

varLabels: Sample_Name Sample_Well ... filenames (9 total)

varMetadata: labelDescription

4

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn.v1.2

> pd <- pData(RGset)

> pd[,1:4]

Sample_Name Sample_Well Sample_Plate Sample_Group

5723646052_R02C02 GroupA_3 H5 NA GroupA

5723646052_R04C01 GroupA_2 D5 NA GroupA

5723646052_R05C02 GroupB_3 C6 NA GroupB

5723646053_R04C02 GroupB_1 F7 NA GroupB

5723646053_R05C02 GroupA_1 G7 NA GroupA

5723646053_R06C02 GroupB_2 H7 NA GroupB

The read.450k.exp also makes it possible to read in an entire directory or directory tree
(with recursive set to TRUE) by using the function just with the argument base and tar-

gets=NULL, like

> RGset2 = read.450k.exp(file.path(baseDir, "5723646052"))

> RGset3 = read.450k.exp(baseDir, recursive = TRUE)

Advanced notes on Reading Data

The only important column in sheet data.frame used in the targets argument for the
read.450k.exp function is a column names Basename. Typically, such an object would also
have columns named Array, Slide, and (optionally) Plate.

We used sheet data files build on top of the Sample Sheet data file provided by Illumina.
This is a CSV file, with a header. In this case we assume that the phenotype data starts
after a line beginning with [Data] (or that there is no header present).

It is also easy to read a sample sheet “manually”, using the function read.csv. Here, we
know that we want to skip the first 7 lines of the file.

> targets2 <- read.csv(file.path(baseDir, "SampleSheet.csv"),

+ stringsAsFactors = FALSE, skip = 7)

> targets2

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID

1 GroupA_3 H5 NA GroupA NA

2 GroupA_2 D5 NA GroupA NA

3 GroupB_3 C6 NA GroupB NA

4 GroupB_1 F7 NA GroupB NA

5 GroupA_1 G7 NA GroupA NA

6 GroupB_2 H7 NA GroupB NA

5

Sentrix_ID Sentrix_Position

1 5723646052 R02C02

2 5723646052 R04C01

3 5723646052 R05C02

4 5723646053 R04C02

5 5723646053 R05C02

6 5723646053 R06C02

We now need to populate a Basename column. On possible approach is the following

> targets2$Basename <- file.path(baseDir, targets2$Sentrix_ID,

+ paste0(targets2$Sentrix_ID,

+ targets2$Sentrix_Position))

Finally, minfi contains a file-based parser: read.450k. The return object represents the red
and the green channel measurements of the samples. A useful function that we get from the
package Biobase is combine that combines (“adds”) two sets of samples. This allows the user
to manually build up an RGChannelSet.

3 Quality Control

minfi provides several plots that can be useful for identifying samples with data quality
problems. These functions can display summaries of signal from the array (e.g. density
plots) as well as the values of several types of control probes included on the array. Our
understanding of the expected sample behavior in the QC plots is still evolving and will
improve as the number of available samples from the array increases. A good rule of thumb
is to be wary of samples whose behavior deviates from that of others in the same or similar
experiments.

The wrapper function qcReport function can be used to produce a PDF QC report of the
most common plots. If provided, the optional sample name and group options will be used
to label and color plots. Samples within a group are assigned the same color. The sample
group option can also be used as a very cursory way to check for batch effects (e.g. by setting
it to a processing day variable.)

> qcReport(RGset, sampNames = pd$Sample_Name,

+ sampGroups = pd$Sample_Group, pdf = "qcReport.pdf")

The components of the QC report can also be customized and produced individually as
detailed below.

6

> densityPlot(RGset, sampGroups = pd$Sample_Group,

+ main = "Beta", xlab = "Beta")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Beta

Beta

D
en

si
ty

GroupA
GroupB

Figure 1: Beta density plots

Density plots

The densityPlot function produces density plots of the methylation Beta values for all
samples, typically colored by sample group. While the density plots in Figure 1 are useful
for identifying deviant samples, it is not easy to identify the specific problem sample. If
there is a concern about outlier samples, a useful follow-up is the “bean” plot (Figure 2)
that shows each sample in its own section. While the shape of the distribution for “good”
samples will differ from experiment to experiment, many conditions have methylation profiles
characterized by two modes - one with close to 0% methylation, and a second at close to
100% methylation.

7

> par(oma=c(2,10,1,1))

> densityBeanPlot(RGset, sampGroups = pd$Sample_Group,

+ sampNames = pd$Sample_Name)

0.0 0.2 0.4 0.6 0.8 1.0

GroupA_1

GroupA_2

GroupA_3

GroupB_1

GroupB_2

GroupB_3

Beta

Beta

Figure 2: Beta beanplots

8

Control probe plots

The controlStripPlot function allows plotting of individual control probe types (Figure
3). The following control probes are available on the array:

BISULFITE CONVERSION I 12

BISULFITE CONVERSION II 4

EXTENSION 4

HYBRIDIZATION 3

NEGATIVE 614

NON-POLYMORPHIC 4

NORM_A 32

NORM_C 61

NORM_G 32

NORM_T 61

SPECIFICITY I 12

SPECIFICITY II 3

STAINING 6

TARGET REMOVAL 2

4 Preprocessing (normalization)

Preprocessing (normalization) takes as input a RGChannelSet and returns a MethylSet.

A number of preprocessing options are available (and we are working on more methods).
Each set of methods are implemented as a function preprocessXXX with XXX being the
name of the method. Each method may have a number of tuning parameters.

“Raw” preprocessing means simply converting the Red and the Green channel into a Methy-
lated and Unmethylated signal

> MSet.raw <- preprocessRaw(RGset)

We have also implemented preprocessing choices as available in Genome Studio. These
choices follow the description provided in the Illumina documentation and has been validated
by comparing the output of Genome Studio to the output of these algorithms, and this shows
the two approaches to be roughly equivalent (for a precise statement, see the manual pages).

Genome studio allows for background subtraction (also called background normalization) as
well as something they term control normalization. Both of these are optional and turning
both of them off is equivalent to raw preprocessing (preprocessRaw).

> MSet.norm <- preprocessIllumina(RGset, bg.correct = TRUE,

+ normalize = "controls", reference = 2)

9

> controlStripPlot(RGset, controls="BISULFITE CONVERSION II",

+ sampNames = pd$Sample_Name)

Control: BISULFITE CONVERSION II

Log2 Intensity

sa
m

pl
e

GroupA_1

GroupA_2

GroupA_3

GroupB_1

GroupB_2

GroupB_3

6 8 10 12 14 16

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

Red

6 8 10 12 14 16

●● ●●

●● ●●

●● ●●

●● ●●

●● ●●

●● ●●

Green

Figure 3: Beta stripplot

10

The reference = 2 selects which array to use as “reference” which is an arbitrary array (we
are not sure how Genome Studio makes its choice of reference).

Operating on a MethylSet

Once a MethylSet has been generated, we have a various ways of getting access to the
methylation data. The most basic functions are getMeth and getUnmeth, which returns
unlogged methylation channels. The function getBeta gets “beta”-values which are values
between 0 and 1 with 1 interpreted as very high methylation. If type = "Illumina" (not
the default) these are computed using Illumina’s formula

β =
M

M + U + 100

Finally, we have the “M-values” (not to be confused with the methylation channel obtained
by getMeth). M-values are perhaps an unfortunate terminology, but it seems to be standard
in the methylation array world. These are computed as logit(β) and are obtained by getM.

> getMeth(MSet.raw)[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 22041 588 20505

cg00212031 679 569 439

cg00213748 1620 421 707

cg00214611 449 614 343

> getUnmeth(MSet.raw)[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 1945 433 1012

cg00212031 6567 300 2689

cg00213748 384 461 295

cg00214611 4869 183 1655

> getBeta(MSet.raw, type = "Illumina")[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 0.91509591 0.5245317 0.9485590

cg00212031 0.09243126 0.5872033 0.1359975

cg00213748 0.76996198 0.4287169 0.6415608

cg00214611 0.08287191 0.6845039 0.1634890

> getM(MSet.raw)[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 3.502348 0.4414491 4.340695

cg00212031 -3.273751 0.9234662 -2.614777

11

cg00213748 2.076816 -0.1309465 1.260995

cg00214611 -3.438838 1.7463950 -2.270551

MDS plots

After preprocessing the raw data to obtain methylation estimates, Multi-dimensional scaling
(MDS) plots provide a quick way to get a first sense of the relationship between samples.
They are similar to the more familiar PCA plots and display a two-dimensional approxima-
tion of sample-to-sample Euclidean distance. Note that while the plot visualizes the distance
in epigenomic profiles between samples, the absolute positions of the points is not meaning-
ful. One often expects to see greater between-group than within-group distances (although
this clearly depends on the particular experiment). The most variable locations are used
when calculating sample distances, with the number specified by the numPositions option.
Adding sample labels to the MDS plot is a useful way of identifying outliers (figure 4) that
behave differently from their peers.

The validation of preprocessIllumina

By validation we mean “yielding output that is equivalent to Genome Studio”.

Illumina offers two steps: control normalization and background subtraction (normalization).
Using output from Genome Studio we are certain that the control normalization step is
validated, with the following caveat: control normalization requires the selection of one array
among the 12 arrays on a chip as a reference array. It is currently unclear how Genome Studio
selects the reference; if you know the reference array we can recreate Genome Studio exactly.
Background subtraction (normalization) is almost correct: for 18 out of 24 arrays we see
exact equivalence and for the remaining 6 out of 24 arrays we only see small discrepancies
(a per-array max difference of 1-4 for unlogged intensities). A script for doing this is in
scripts/GenomeStudio.R.

Subset-quantile within array normalisation (SWAN)

SWAN (subset-quantile within array normalisation) is a new normalization method for Illu-
mina 450k arrays. What follows is a brief description of the methodology (written by the
authors of SWAN):

Technical differences have been demonstrated to exist between the Type I and Type II assay
designs within a single 450K array[1, 2]. Using the SWAN method substantially reduces the
technical variability between the assay designs whilst maintaining the important biological
differences. The SWAN method makes the assumption that the number of CpGs within the
50bp probe sequence reflects the underlying biology of the region being interrogated. Hence,

12

> mdsPlot(MSet.norm, numPositions = 1000, sampGroups = pd$Sample_Group,

+ sampNames = pd$Sample_Name)

−10 −5 0 5 10

−
10

−
5

0
5

Beta MDS
1000 most variable positions

GroupA_3

GroupA_2

GroupB_3

GroupB_1

GroupA_1

GroupB_2

GroupA GroupB

Figure 4: Multi-dimensional scaling plot

13

> par(mfrow=c(1,2))

> plotBetasByType(MsetEx[,1], main = "Raw")

> plotBetasByType(Mset.swan[,1], main = "SWAN")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Raw

Beta values

D
en

si
ty

All probes
Infinium I
Infinium II

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SWAN

Beta values

D
en

si
ty

All probes
Infinium I
Infinium II

Figure 5: The effect of normalizing using SWAN.

the overall distribution of intensities of probes with the same number of CpGs in the probe
body should be the same regardless of design type. The method then uses a subset quantile
normalization approach to adjust the intensities of each array [3]. SWAN takes a MethylSet

as input. This can be generated by either preprocessRaw or preprocessIllumina. Calling
the function without specifying a MethylSet uses preprocessRaw.

> Mset.swan <- preprocessSWAN(RGsetEx, MsetEx)

Normalizing array 1 of 6

Normalizing array 2 of 6

Normalizing array 3 of 6

Normalizing array 4 of 6

Normalizing array 5 of 6

Normalizing array 6 of 6

The technical differences between Infinium I and II assay designs can result in aberrant
beta value distributions (Figure 5, panel “Raw”). Using SWAN corrects for the technical
differences between the Infinium I and II assay designs and produces a smoother overall beta
value distribution (Figure 5, panel “SWAN”).

14

5 Finding differentially methylated positions (DMPs)

We are now ready to use the normalized data to identify DMPs, defined as CpG positions
where the methylation level correlates with a phenotype of interest. The phenotype may be
categorical (e.g. cancer vs. normal) or continuous (e.g. blood pressure).

We will create a 20,000 CpG subset of our dataset to speed up the demo:

> mset <- MSet.norm[1:20000,]

Categorical phenotypes

The dmpFinder function uses an F-test to identify positions that are differentially methylated
between (two or more) groups. Tests are performed on logit transformed Beta values as
recommended in Pan et al. Care should be taken if you have zeroes in either the Meth or
the Unmeth matrix. One possibility is to threshold the beta values, so they are always in
the interval [ε, 1 − ε]. We call ε the betaThreshold

Here we find the differences between GroupA and GroupB.

> table(pd$Sample_Group)

GroupA GroupB

3 3

> M <- getM(mset, type = "beta", betaThreshold = 0.001)

> dmp <- dmpFinder(M, pheno=pd$Sample_Group, type="categorical")

> head(dmp)

intercept f pval qval

cg10805483 -9.964341 1706.1212 2.053224e-06 0.02639720

cg20386875 -5.434480 1445.1107 2.859882e-06 0.02639720

cg07155336 -5.799521 550.9746 1.952772e-05 0.05148498

cg13059719 -2.505878 549.6611 1.962059e-05 0.05148498

cg08343042 -3.565042 506.2230 2.310839e-05 0.05148498

cg23098069 1.532107 497.6219 2.390872e-05 0.05148498

dmpFinder returns a table of CpG positions sorted by differential methylation p-value.

We can use the plotCpG function to plot methylation levels at individual positions:

> cpgs <- rownames(dmp)[1:4]

> par(mfrow=c(2,2))

> plotCpg(mset, cpg=cpgs, pheno=pd$Sample_Group)

15

GroupA GroupB

0.
0

0.
4

0.
8

 cg10805483

B
et

a

GroupA GroupB

0.
0

0.
4

0.
8

 cg20386875

B
et

a

GroupA GroupB

0.
0

0.
4

0.
8

 cg07155336

B
et

a

GroupA GroupB

0.
0

0.
4

0.
8

 cg13059719

B
et

a

Continuous phenotypes

We can also identify DMPs where the mean methylation level varies with a continuous
covariate using linear regression. Since the sample dataset does not contain any continuous
phenotypes we will simulate one for demonstration purposes:

> continuousPheno <- rnorm(nrow(pd))

We now search for DMPs associated with this phenotype.

> dmp <- dmpFinder(mset, pheno=continuousPheno, type="continuous")

> dmp[1:3,]

intercept beta t pval qval

cg24397815 -3.351423 -0.7331320 -25.81199 1.338235e-05 0.08318226

cg24683414 -3.211661 -0.9242404 -25.45945 1.413518e-05 0.08318226

cg09787089 1.534886 0.9960066 22.35962 2.368779e-05 0.08318226

16

The beta column gives the change in mean phenotype for each unit increase of methylation.
We can filter the DMP list to exclude positions with a small effect size:

> dmp <- subset(dmp, abs(beta)>1)

The plotCpg function can be used to visualise these continuous DMPs:

> cpgs <- rownames(dmp)[1:4]

> par(mfrow=c(2,2))

> plotCpg(mset, cpg=cpgs, type="continuous",

+ pheno=continuousPheno, xlab="Phenotype 1")

● ●

●

●●

●

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

 cg27222162

Phenotype 1

B
et

a

● ● ●●● ●

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

 cg11059561

Phenotype 1

B
et

a

● ●

●

●●

●

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

 cg08185105

Phenotype 1

B
et

a

● ●
●

●●
●

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

 cg09799039

Phenotype 1

B
et

a

6 Advanced: The manifest object

In order to preprocess the data we need a “manifest” object. This object is similar to the
union of a CDF environment and a probe package (and may be restructured). Essentially it

17

describes what probes are on the array and how they are matched together.

The manifest object only depends on the array design. It is not related to annotating the
CpGs measured by the array.

The internal structure of the manifest object should not be of concern to users. However, it
may be useful to know something about the array design. First we have a look at the object:

> IlluminaHumanMethylation450kmanifest

IlluminaMethylationManifest object

Annotation

array: IlluminaHumanMethylation450k

Number of type I probes: 135476

Number of type II probes: 350036

Number of control probes: 850

Number of SNP type I probes: 25

Number of SNP type II probes: 40

> head(getProbeInfo(IlluminaHumanMethylation450kmanifest, type = "I"), n = 3)

DataFrame with 3 rows and 8 columns

Name AddressA AddressB Color NextBase

<character> <character> <character> <character> <DNAStringSet>

1 cg00050873 32735311 31717405 Red A

2 cg00212031 29674443 38703326 Red T

3 cg00213748 30703409 36767301 Red A

ProbeSeqA

<DNAStringSet>

1 ACAAAAAAACAACACACAACTATAATAATTTTTAAAATAAATAAACCCCA

2 CCCAATTAACCACAAAAACTAAACAAATTATACAATCAAAAAAACATACA

3 TTTTAACACCTAACACCATTTTAACAATAAAAATTCTACAAAAAAAAACA

ProbeSeqB nCpG

<DNAStringSet> <integer>

1 ACGAAAAAACAACGCACAACTATAATAATTTTTAAAATAAATAAACCCCG 2

2 CCCAATTAACCGCAAAAACTAAACAAATTATACGATCGAAAAAACGTACG 4

3 TTTTAACGCCTAACACCGTTTTAACGATAAAAATTCTACAAAAAAAAACG 3

> head(getProbeInfo(IlluminaHumanMethylation450kmanifest, type = "II"), n = 3)

DataFrame with 3 rows and 4 columns

Name AddressA

<character> <character>

1 cg00035864 31729416

2 cg00061679 28780415

3 cg00063477 16712347

18

ProbeSeqA nCpG

<DNAStringSet> <integer>

1 AAAACACTAACAATCTTATCCACATAAACCCTTAAATTTATCTCAAATTC 0

2 AAAACATTAAAAAACTAATTCACTACTATTTAATTACTTTATTTTCCATC 0

3 TATTCTTCCACACAAAATACTAAACRTATATTTACAAAAATACTTCCATC 1

> head(getProbeInfo(IlluminaHumanMethylation450kmanifest, type = "Control"), n = 3)

DataFrame with 3 rows and 4 columns

Address Type Color ExtendedType

<character> <character> <character> <character>

1 21630339 STAINING -99 DNP(20K)

2 27630314 STAINING Red DNP (High)

3 43603326 STAINING Purple DNP (Bkg)

The 450k array has a rather special design. It is a two-color array, so each array will have
an associated Green signal and a Red signal.

On the 450k array, a CpG may be measured by a “type I” or “type II” design. The literature
often uses the term“type I/II probes” which we believe is unfortunate (see next paragraph).

Each CpG has an associated methylated and un-methylated signal. If the CpG is of “type I”,
the methylation and un-methylation signal are originating from two different probes (physical
location on the array). There is one set of “type I” CpGs where the signal comes from the
Green channel for both probes (and the Red channel measures nothing) and another set
where the signal comes from the Red channel. If the CpG is of “type II”, a single probe
(physical location) is being used to measure the methylated/un-methylated signal and the
methylated signal is always measured in the Green channel.

This is reflected in the manifest object seen above: “type I” CpGs have “AddressA”, “Ad-
dressB” (this is a link to the physical location on the array) as well as “ProbeSeqA” and
“ProbeSeqB”. They also have a “Col” indicator (which channel is the methylated signal com-
ing from). In contrast “type II” CpGs have a single “Address”, one “ProbeSeq” and no color
information.

Because CpGs of “type I” are measured using two different physical probes, we dislike calling
the probes “type I/II” and instead attaches the type to the CpG itself.

Note that Illumina uses a special “cgXXX” name for the CpGs. There is actually a meaning
to this, not unlike the meaning associated with “rsXXX” numbers for SNPs. Essentially the
XXX is a hash of the bases surrounding the CpG, making the cgXXX numbers independent
of genome version. Illumina has a technical note describing this.

19

7 SessionInfo

• R version 2.15.1 (2012-06-22), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Biobase 2.18.0, BiocGenerics 0.4.0, Biostrings 2.26.0,
GenomicRanges 1.10.0, IRanges 1.16.0,
IlluminaHumanMethylation450kmanifest 0.4.0, lattice 0.20-10, minfi 1.4.0,
minfiData 0.3.0, plyr 1.7.1, reshape 0.8.4

• Loaded via a namespace (and not attached): AnnotationDbi 1.20.0,
BiocInstaller 1.8.0, DBI 0.2-5, MASS 7.3-21, R.methodsS3 1.4.2, RColorBrewer 1.0-5,
RSQLite 0.11.2, XML 3.95-0, affyio 1.26.0, annotate 1.36.0, beanplot 1.1, bit 1.1-8,
codetools 0.2-8, crlmm 1.16.0, ellipse 0.3-7, ff 2.2-7, foreach 1.4.0, genefilter 1.40.0,
grid 2.15.1, iterators 1.0.6, limma 3.14.0, matrixStats 0.5.3, mclust 4.0,
multtest 2.14.0, mvtnorm 0.9-9992, nor1mix 1.1-3, oligoClasses 1.20.0, parallel 2.15.1,
preprocessCore 1.20.0, siggenes 1.32.0, splines 2.15.1, stats4 2.15.1, survival 2.36-14,
tools 2.15.1, xtable 1.7-0, zlibbioc 1.4.0

References

[1] Marina Bibikova, Bret Barnes, Chan Tsan, Vincent Ho, Brandy Klotzle, Jennie M Le,
David Delano, Lu Zhang, Gary P Schroth, Kevin L Gunderson, Jian-Bing Fan, and
Richard Shen. High density DNA methylation array with single CpG site resolution.
Genomics, 98(4):288–295, 2011. doi:10.1016/j.ygeno.2011.07.007.

[2] Sarah Dedeurwaerder, Matthieu Defrance, Emilie Calonne, Hélène Denis, Christos
Sotiriou, and François Fuks. Evaluation of the Infinium Methylation 450K technology.
Epigenomics, 3(6):771–784, 2011. doi:10.2217/epi.11.105.

[3] Jovana Maksimovic, Lavinia Gordon, and Alicia Oshlack. SWAN: Subset quantile
Within-Array Normalization for Illumina Infinium HumanMethylation450 BeadChips.
Genome Biology, 13(6):R44, 2012. doi:10.1186/gb-2012-13-6-r44.

[4] Juan Sandoval, Holger Heyn, Sebastian Moran, Jordi Serra-Musach, Miguel A Pujana,
Marina Bibikova, and Manel Esteller. Validation of a DNA methylation microarray
for 450,000 CpG sites in the human genome. Epigenetics, 6(6):692–702, 2011. doi:

10.4161/epi.6.6.16196.

20

http://dx.doi.org/10.1016/j.ygeno.2011.07.007
http://dx.doi.org/10.2217/epi.11.105
http://dx.doi.org/10.1186/gb-2012-13-6-r44
http://dx.doi.org/10.4161/epi.6.6.16196
http://dx.doi.org/10.4161/epi.6.6.16196

[5] Pan Du, Xiao Zhang, Chiang-Ching Huang, Nadereh Jafari, Warren A Kibbe, Lifang
Hou, and Simon M Lin. Comparison of Beta-value and M-value methods for quantifying
methylation levels by microarray analysis. BMC Bioinformatics, 11:587, 2010. doi:

10.1186/1471-2105-11-587.

21

http://dx.doi.org/10.1186/1471-2105-11-587
http://dx.doi.org/10.1186/1471-2105-11-587

	Introduction
	Chip design and terminology
	Workflow and R data classes
	Getting Started

	Reading Data
	Advanced notes on Reading Data

	Quality Control
	Density plots
	Control probe plots

	Preprocessing (normalization)
	Operating on a MethylSet
	MDS plots
	The validation of preprocessIllumina
	Subset-quantile within array normalisation (SWAN)

	Finding differentially methylated positions (DMPs)
	Categorical phenotypes
	Continuous phenotypes

	Advanced: The manifest object
	SessionInfo

