
edgeR: differential expression analysis
of digital gene expression data

User’s Guide

Mark Robinson, Davis McCarthy,
Yunshun Chen, Gordon K. Smyth

First edition 17 September 2008

Last revised 14 December 2012

Contents

1 Introduction 4
1.1 Scope . 4
1.2 Citation . 5
1.3 How to get help . 6
1.4 Quick start . 6

2 Overview of capabilities 8
2.1 Terminology . 8
2.2 Producing a table of counts . 8
2.3 Reading the counts from a file . 8
2.4 The DGEList data class . 9
2.5 Normalization . 9

2.5.1 Normalization is only necessary for sample-specific effects 9
2.5.2 Sequencing depth . 10
2.5.3 RNA composition . 10
2.5.4 GC content . 10
2.5.5 Gene length . 11
2.5.6 Model-based normalization, not transformation 11

2.6 Negative binomial models . 11
2.6.1 Introduction . 11
2.6.2 Biological coefficient of variation (BCV) 11
2.6.3 Estimating BCVs . 13

2.7 Pairwise comparisons between two or more groups (classic) 14
2.7.1 Estimating dispersions . 14
2.7.2 Testing for DE genes . 14

2.8 More complex experiments (glm functionality) 15
2.8.1 Generalized linear models . 15
2.8.2 Estimating dispersions . 15
2.8.3 Testing for DE genes . 16

2.9 What to do if you have no replicates . 17
2.10 Clustering, heatmaps etc . 19

1

3 Specific Experimental Designs 20
3.1 Introduction . 20
3.2 Two or more Groups . 20

3.2.1 Introduction . 20
3.2.2 Classic approach . 21
3.2.3 GLM approach . 22
3.2.4 A more traditional glm approach . 23
3.2.5 An ANOVA-like test for any differences 24

3.3 Experiments with all combinations of multiple factors 24
3.3.1 Defining each treatment combination as a group 24
3.3.2 Nested interaction formulas . 26
3.3.3 Treatment effects over all times . 27
3.3.4 Interaction at any time . 27

3.4 Additive Models and Blocking . 28
3.4.1 Paired Samples . 28
3.4.2 Blocking . 29
3.4.3 Batch Effects . 30

3.5 Comparisons Both Between and Within Subjects 31

4 Case studies 34
4.1 SAGE profiles of normal and tumour tissue 34

4.1.1 Introduction . 34
4.1.2 Reading the data . 34
4.1.3 Filter low expression tags . 35
4.1.4 Normalization . 36
4.1.5 Estimating the dispersions . 36
4.1.6 Differential expression . 37
4.1.7 Setup . 39

4.2 deepSAGE of wild-type vs Dclk1 transgenic mice 40
4.2.1 Introduction . 40
4.2.2 Reading in the data . 41
4.2.3 Filtering . 42
4.2.4 Normalization . 42
4.2.5 Data exploration . 42
4.2.6 Estimating the dispersion . 43
4.2.7 Differential expression . 44
4.2.8 Setup . 46

4.3 Androgen-treated prostate cancer cells (RNA-Seq, two groups) 46
4.3.1 Introduction . 46
4.3.2 RNA Samples . 46
4.3.3 Sequencing . 46

2

4.3.4 Read mapping . 47
4.3.5 Reading the data . 47
4.3.6 Filtering . 48
4.3.7 Normalizing . 48
4.3.8 Data exploration . 48
4.3.9 Estimating the dispersion . 49
4.3.10 Differential expression . 50
4.3.11 Setup . 52
4.3.12 Acknowledgements . 52

4.4 RNA-Seq of oral carcinomas vs matched normal tissue 52
4.4.1 Introduction . 52
4.4.2 Reading in the data . 52
4.4.3 Annotation . 53
4.4.4 Filtering . 54
4.4.5 Normalization . 55
4.4.6 Data exploration . 55
4.4.7 The design matrix . 56
4.4.8 Estimating the dispersion . 56
4.4.9 Differential expression . 56
4.4.10 Setup . 58

4.5 RNA-Seq of pathogen inoculated Arabidopsis with batch effects 59
4.5.1 Introduction . 59
4.5.2 RNA samples . 59
4.5.3 Sequencing . 59
4.5.4 Filtering and normalization . 59
4.5.5 Data exploration . 61
4.5.6 The design matrix . 62
4.5.7 Estimating the dispersion . 62
4.5.8 Differential expression . 63
4.5.9 Setup . 65

3

Chapter 1

Introduction

1.1 Scope

This guide provides an overview of the Bioconductor package edgeR for differential expression
analyses of read counts arising from RNA-Seq, SAGE or similar technologies [Robinson
et al., 2010]. The package can be applied to any technology that produces read counts for
genomic features. Of particular interest are summaries of short reads from massively parallel
sequencing technologies such as IlluminaTM, 454 or ABI SOLiD applied to RNA-Seq, SAGE-
Seq or ChIP-Seq experiments. edgeR provides statistical routines for assessing differential
expression in RNA-Seq experiments or differential marking in ChIP-Seq experiments.

The package implements exact statistical methods for multigroup experiments developed
by Robinson and Smyth [2007, 2008]. It also implements statistical methods based on gener-
alized linear models (glms), suitable for multifactor experiments of any complexity, developed
by McCarthy et al. [2012]. Sometimes we refer to the former exact methods as classic edgeR,
and the latter as glm edgeR. However the two sets of methods are complementary and can of-
ten be combined in the course of a data analysis. Most of the glm functions can be identified
by the letters “glm” as part of the function name.

A particular feature of edgeR functionality, both classic and glm, are empirical Bayes
methods that permit the estimation of gene-specific biological variation, even for experiments
with minimal levels of biological replication.

edgeR can be applied to differential expression at the gene, exon, transcript or tag level.
In fact, read counts can be summarized by any genomic feature. edgeR analyses at the
exon level are easily extended to detect differential splicing or isoform-specific differential
expression.

This guide begins with brief overview of some of the key capabilities of package, and then
gives a number of fully worked case studies, from counts to lists of genes.

4

1.2 Citation

The edgeR package implements statistical methods from the following publications. Please
try to cite the appropriate articles when you publish results obtained using the software, as
such citation is the main means by which the authors receive credit for their work.

Robinson, MD, and Smyth, GK (2008). Small sample estimation of negative binomial dis-
persion, with applications to SAGE data. Biostatistics 9, 321–332.

Proposed the idea of sharing information between genes by estimating the negative
binomial variance parameter globally across all genes. This made the use of negative
binomial models practical for RNA-Seq and SAGE experiments with small to mod-
erate numbers of replicates. Introduced the terminology dispersion for the variance
parameter. Proposed conditional maximum likelihood for estimating the dispersion,
assuming common dispersion across all genes. Developed an exact test for differential
expression appropriate for the negative binomially distributed counts. Despite the of-
ficial publication date, this was the first of the papers to be submitted and accepted
for publication.

Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences
in tag abundance. Bioinformatics 23, 2881–2887.

Introduced empirical Bayes moderated dispersion parameter estimation. This is a
crucial improvement on the previous idea of estimating the dispersions from a global
model, because it permits gene-specific dispersion estimation to be reliable even for
small samples. Gene-specific dispersion estimation is necessary so that genes that
behave consistently across replicates should rank more highly than genes that do not.

Robinson, MD, McCarthy, DJ, Smyth, GK (2010). edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Announcement of the edgeR software package. Introduced the terminology coefficient
of biological variation.

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11, R25.

Introduced the idea of model-based scale normalization of RNA-Seq data. Proposed
TMM normalization.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-
4297.

Extended negative binomial differential expression methods to glms, making the meth-
ods applicable to general experiments. Introduced the use of Cox-Reid approximate

5

conditional maximum likelihood for estimating the dispersion parameters, and used
this for empirical Bayes moderation. Developed fast algorithms for fitting glms to
thousands of genes in parallel. Gives a more complete explanation of the concept of
biological coefficient of variation.

Lund, SP, Nettleton, D, McCarthy, DJ, Smyth, GK (2012). Detecting differential expression
in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical
Applications in Genetics and Molecular Biology. (Accepted 31 July 2012)

This paper explains the glmQLFTest function, which is an alternative to glmLRT, and
which replaces the chisquare approximation to the likelihood ratio statistic with a
quasi-likelihood F-test.

1.3 How to get help

Most questions about edgeR will hopefully be answered by the documentation or references.
Every function mentioned in this guide has its own help page. For example, a detailed
description of the arguments and output of the exactTest function can be read by typing
?exactTest or help(exactTest) at the R prompt.

The authors of the package always appreciate receiving reports of bugs in the pack-
age functions or in the documentation. The same goes for well-considered suggestions for
improvements. All other questions about how to use edgeR are best sent to the Biocon-
ductor mailing list bioconductor@stat.math.ethz.ch. To subscribe to the mailing list,
see https://stat.ethz.ch/mailman/listinfo/bioconductor. Please send requests for
general assistance and advice to the mailing list rather than to the individual authors.

Users posting to the mailing list for the first time may find it helpful to read the posting
guide at http://www.bioconductor.org/doc/postingGuide.html.

Posting questions to the Bioconductor mailing list has a number of advantages. First,
the mailing list includes a community of experienced edgeR users who can answer most
common questions. Second, the edgeR authors try hard to ensure that any user posting to
Bioconductor receives assistance. Third, the mailing list allows others with the same sort of
questions to gain from the answers. The authors do occasionally answer questions posted
to other forums such as SEQAnswers, but it is not possible to do this on regular basis. We
recommend therefore that questions be posted to Bioconductor.

1.4 Quick start

A classic edgeR analysis might look like the following. Here we assume there are four RNA-
Seq libraries in two groups, and the counts are stored in a tab-delimited text file, with gene
symbols in a column called Symbol.

6

> x <- read.delim("fileofcounts.txt",row.names="Symbol")

> group <- factor(c(1,1,2,2))

> y <- DGEList(counts=x,group=group)

> y <- calcNormFactors(y)

> y <- estimateCommonDisp(y)

> y <- estimateTagwiseDisp(y)

> et <- exactTest(y)

> topTags(et)

A glm edgeR analysis of the same data would look similar, except that a design matrix
would be formed:

> design <- model.matrix(~group)

> y <- estimateGLMCommonDisp(y,design)

> y <- estimateGLMTrendedDisp(y,design)

> y <- estimateGLMTagwiseDisp(y,design)

> fit <- glmFit(y,design)

> lrt <- glmLRT(fit,coef=2)

> topTags(lrt)

Many variants are available on this analysis.

7

Chapter 2

Overview of capabilities

2.1 Terminology

edgeR performs differential abundance analysis for pre-defined genomic features. Although
not strictly necessary, it usually desirable that these genomic features are non-overlapping.
For simplicity, we will hence-forth refer to the genomic features as “genes”, although they
could in principle be transcripts, exons, general genomic intervals or some other type of
feature. For ChIP-seq experiments, abundance might relate to transcription factor binding
or to histone mark occupancy, but we will henceforth refer to abundance as in terms of
gene expression. In other words, the remainder of this guide will use terminology as for
a gene-level analysis of an RNA-seq experiment, although the methodology is more widely
applicable than that.

2.2 Producing a table of counts

edgeR works on a table of integer read counts, with rows corresponding to genes and columns
to independent libraries. The counts represent the total number of reads aligning to each gene
(or other genomic locus). Such counts can be produced from aligned reads by a variety of
short read software tools, for example featureCounts in the Rsubread package, findOverlaps
in the GenomicRanges package, or the Python software htseq-counts.

When conducting gene-level analyses, the counts could be for reads mapping anywhere
in the genomic span of the gene or the counts could be for exons only. For routine use, we
generally recommend counting reads mapping to exons including the UTRs.

2.3 Reading the counts from a file

If the table of counts has been written to a file, then the first step in any analysis will usually
be to read these counts into an R session.

8

If the count data is contained in a single tab-delimited or comma-separated text file with
multiple columns, one for each sample, then the simplest method is usually to read the file
into R using one of the standard R read functions such as read.delim. See the quick start
above, or the case study on LNCaP Cells, or the case study on oral carcinomas later in this
guide for examples.

If the counts for different samples are stored in separate files, then the files have to be
read separately and collated together. The edgeR function readDGE is provided to do this.
Files need to contain two columns, one for the counts and one for a gene identifier. See the
SAGE and deepSAGE case studies for examples of this.

2.4 The DGEList data class

edgeR stores data in a simple list-based data object called a DGEList. This type of object is
easy to use because it can be manipulated like any list in R. The function readDGE makes a
DGEList object directly. If the table of counts is already available as a matrix or a data.frame,
y say, then a DGEList object can be made by

> dge <- DGEList(counts=y)

A grouping factor can be added at the same time:

> group <- c(1,1,2,2)

> dge <- DGEList(counts=y, group=group)

The main components of an DGEList object are a matrix counts containing the integer
counts, a data.frame samples containing information about the samples or libraries, and a
optional data.frame genes containing annotation for the genes or genomic features. The
data.frame samples contains a column lib.size for the library size or sequencing depth for
each sample. If not specified by the user, the library sizes will be computed from the column
sums of the counts. For classic edgeR the data.frame samples must also contain a column
group, identifying the group membership of each sample.

2.5 Normalization

2.5.1 Normalization is only necessary for sample-specific effects

edgeR is concerned with differential expression analysis rather than with the quantification
of expression levels. It is concerned with relative changes in expression levels between condi-
tions, but not directly with estimating absolute expression levels. This greatly simplifies the
technical influences that need to be taken into account, because any technical factor that
is unrelated to the experimental conditions should cancel out of any differential expression
analysis. For example, read counts can generally be expected to be proportional to length

9

as well as to expression for any transcript, but edgeR does not generally need to adjust for
gene length because gene length has the same relative influence on the read counts for each
RNA sample. For this reason, normalization issues arise only to the extent that technical
factors have sample-specific effects.

2.5.2 Sequencing depth

The most obvious technical factor that affects the read counts, other than gene expression
levels, is the sequencing depth of each RNA sample. edgeR adjusts any differential expression
analysis for varying sequencing depths as represented by differing library sizes. This is
part of the basic modeling procedure and flows automatically into fold-change or p-value
calculations. It is always present, and doesn’t require any user intervention.

2.5.3 RNA composition

The second most important technical influence on differential expression is one that is less
obvious. RNA-seq provides a measure of the relative abundance of each gene in each RNA
sample, but does not provide any measure of the total RNA output on a per-cell basis.
This commonly becomes important when a small number of genes are very highly expressed
in one sample, but not in another. The highly expressed genes can consume a substantial
proportion of the total library size, causing the remaining genes to be under-sampled in that
sample. Unless this RNA composition effect is adjusted for, the remaining genes may falsely
appear to be down-regulated in that sample [Robinson and Oshlack, 2010].

The calcNormFactors function normalizes for RNA composition by finding a set of scaling
factors for the library sizes that minimize the log-fold changes between the samples for most
genes. The default method for computing these scale factors uses a trimmed mean of M-
values (TMM) between each pair of samples [Robinson and Oshlack, 2010]. We call the
product of the original library size and the scaling factor the effective library size. The
effective library size replaces the original library size in all downsteam analyses.

2.5.4 GC content

The GC-content of each gene does not change from sample to sample, so it can be expected
to have little effect on differential expression analyses to a first approximation. Recent
publications, however, have demonstrated that sample-specific effects for GC-content can be
detected [Risso et al., 2011, Hansen et al., 2012]. The EDASeq [Risso et al., 2011] and cqn
[Hansen et al., 2012] packages estimate correction factors that adjust for sample-specific GC-
content effects in a way that is compatible with edgeR. In each case, the observation-specific
correction factors can be input into the glm functions of edgeR as an offset matrix.

10

2.5.5 Gene length

Like GC-content, gene length does not change from sample to sample, so it can be expected
to have little effect on differential expression analyses. Nevertheless, sample-specific effects
for gene length have detected [Hansen et al., 2012], although the evidence is not as strong
as for GC-content.

2.5.6 Model-based normalization, not transformation

In edgeR, normalization takes the form of correction factors that enter into the statistical
model. Such correction factors are usually computed internally by edgeR functions, but it is
also possible for a user to supply them. The correction factors may take the form of scaling
factors for the library sizes, such as computed by calcNormFactors, which are then used
to compute the effective library sizes. Alternatively, gene-specific correction factors can be
entered into the glm functions of edgeR as offsets. In the latter case, the offset matrix will
be assumed to account for all normalization issues, including sequencing depth and RNA
composition.

Note that normalization in edgeR is model-based, and the original read counts are not
themselves transformed. This means that users should not transform the read counts in any
way before inputing them to edgeR. For example, users should not enter RPKM or FPKM
values to edgeR in place of read counts. Such quantities will prevent edgeR from correctly
estimating the mean-variance relationship in the data, which is a crucial to the statisti-
cal strategies underlying edgeR. Similarly, edgeR is not designed to work with estimated
expression levels, for example as might be output by Cufflinks.

2.6 Negative binomial models

2.6.1 Introduction

The starting point for an RNA-Seq experiment is a set of n RNA samples, typically associated
with a variety of treatment conditions. Each sample is sequenced, short reads are mapped
to the appropriate genome, and the number of reads mapped to each genomic feature of
interest is recorded. The number of reads from sample i mapped to gene g will be denoted
ygi. The set of genewise counts for sample i makes up the expression profile or library for
that sample. The expected size of each count is the product of the library size and the
relative abundance of that gene in that sample.

2.6.2 Biological coefficient of variation (BCV)

RNA-Seq profiles are formed from n RNA samples. Let πgi be the fraction of all cDNA
fragments in the ith sample that originate from gene g. Let G denote the total number of

11

genes, so
∑G
g=1 πgi = 1 for each sample. Let

√
φg denote the coefficient of variation (CV)

(standard deviation divided by mean) of πgi between the replicates i. We denote the total
number of mapped reads in library i by Ni and the number that map to the gth gene by ygi.
Then

E(ygi) = µgi = Niπgi.

Assuming that the count ygi follows a Poisson distribution for repeated sequencing runs
of the same RNA sample, a well known formula for the variance of a mixture distribution
implies:

var(ygi) = Eπ [var(y|π)] + varπ [E(y|π)] = µgi + φgµ
2
gi.

Dividing both sides by µ2
gi gives

CV2(ygi) = 1/µgi + φg.

The first term 1/µgi is the squared CV for the Poisson distribution and the second is the
squared CV of the unobserved expression values. The total CV2 therefore is the technical
CV2 with which πgi is measured plus the biological CV2 of the true πgi. In this article, we

call φg the dispersion and
√
φg the biological CV although, strictly speaking, it captures

all sources of the inter-library variation between replicates, including perhaps contributions
from technical causes such as library preparation as well as true biological variation between
samples.

Two levels of variation can be distinguished in any RNA-Seq experiment. First, the
relative abundance of each gene will vary between RNA samples, due mainly to biological
causes. Second, there is measurement error, the uncertainty with which the abundance of
each gene in each sample is estimated by the sequencing technology. If aliquots of the same
RNA sample are sequenced, then the read counts for a particular gene should vary according
to a Poisson law [Marioni et al., 2008]. If sequencing variation is Poisson, then it can be
shown that the squared coefficient of variation (CV) of each count between biological replicate
libraries is the sum of the squared CVs for technical and biological variation respectively,

Total CV2 = Technical CV2 + Biological CV2.

Biological CV (BCV) is the coefficient of variation with which the (unknown) true abun-
dance of the gene varies between replicate RNA samples. It represents the CV that would
remain between biological replicates if sequencing depth could be increased indefinitely. The
technical CV decreases as the size of the counts increases. BCV on the other hand does
not. BCV is therefore likely to be the dominant source of uncertainty for high-count genes,
so reliable estimation of BCV is crucial for realistic assessment of differential expression in
RNA-Seq experiments. If the abundance of each gene varies between replicate RNA sam-
ples in such a way that the genewise standard deviations are proportional to the genewise
means, a commonly occurring property of measurements on physical quantities, then it is
reasonable to suppose that BCV is approximately constant across genes. We allow however

12

for the possibility that BCV might vary between genes and might also show a systematic
trend with respect to gene expression or expected count.

The magnitude of BCV is more important than the exact probabilistic law followed
by the true gene abundances. For mathematical convenience, we assume that the true gene
abundances follow a gamma distributional law between replicate RNA samples. This implies
that the read counts follow a negative binomial probability law.

2.6.3 Estimating BCVs

When a negative binomial model is fitted, we need to estimate the BCV(s) before we carry out
the analysis. The BCV, as shown in the previous section, is the square root of the dispersion
parameter under the negative binomial model. Hence, it is equivalent to estimating the
dispersion(s) of the negative binomial model.

The parallel nature of sequencing data allows some possibilities for borrowing information
from the ensemble of genes which can assist in inference about each gene individually. The
easiest way to share information between genes is to assume that all genes have the same
mean-variance relationship, in other words, the dispersion is the same for all the genes
[Robinson and Smyth, 2008]. An extension to this “common dispersion” approach is to put
a mean-dependent trend on a parameter in the variance function, so that all genes with the
same expected count have the same variance [Anders and Huber, 2010].

However, the truth is that the gene expression levels have non-identical and dependent
distribution between genes, which makes the above assumptions too naive. A more gen-
eral approach that allows genewise variance functions with empirical Bayes shrinkage was
introduced several years ago [Robinson and Smyth, 2007] and has recently been extended
to generalized linear models and thus more complex experimental designs [McCarthy et al.,
2012]. Only when using tagwise dispersion will genes that are consistent between replicates
be ranked more highly than genes that are not. It has been seen in many RNA-Seq datasets
that allowing gene-specific dispersion is necessary in order that differential expression is not
driven by outliers. Therefore, the tagwise dispersions are strongly recommended in model
fitting and testing for differential expression.

In edgeR, we first estimate a common dispersion for all the tags and then apply an em-
pirical Bayes strategy for squeezing the tagwise dispersions towards the common dispersion.
The amount of shrinkage is determined by the prior weight given to the common dispersion
(or the dispersion trend) and the precision of the tagwise estimates, and can be considered
as the prior degrees of freedom. The default behavior of the edgeR is to set the prior degrees
of freedom to 20 based on the past experience with a number of data sets, although some
smaller values are suitable for some particular RNA-Seq data sets.

13

2.7 Pairwise comparisons between two or more groups

(classic)

2.7.1 Estimating dispersions

edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method for ex-
periments with single factor.

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-
likelihood estimator etc.) using an extensive simulation study, qCML is the most reliable in
terms of bias on a wide range of conditions and specifically performs best in the situation
of many small samples with a common dispersion, the model which is applicable to Next-
Gen sequencing data. We have deliberately focused on very small samples due to the fact
that DNA sequencing costs prevent large numbers of replicates for SAGE and RNA-seq
experiments.

The qCML method calculates the likelihood by conditioning on the total counts for each
tag, and uses pseudo counts after adjusting for library sizes. Given a table of counts or a
DGEList object, the qCML common dispersion can be calculated using the estimateCommonDisp()
function, and the qCML tagwise dispersions can be calculated using the estimateTagwiseDisp()
function.

However, the qCML method is only applicable on datasets with a single factor de-
sign since it fails to take into account the effects from multiple factors in a more com-
plicated experiment. Therefore, the qCML method (i.e. the estimateCommonDisp() and
estimateTagwiseDisp() function) is recommended for a study with a single factor. When
an experiment has more than one factor involved, we need to seek a new way of estimating
dispersions.

Here is a simple example of estimating dispersions using the qCML method. Given a
DGEList object D, we estimate the dispersions using the following commands.

To estimate common dispersion:

D <- estimateCommonDisp(D)

To estimate tagwise dispersions:

D <- estimateTagwiseDisp(D)

Note that common dispersion needs to be estimated before estimating tagwise dispersions.
For more detailed examples, see the case studies in section 4.1 (Zhang’s data), section

4.2 (’t Hoen’s data) and section 4.3 (Li’s data).

2.7.2 Testing for DE genes

For all the Next-Gen squencing data analyses we consider here, people are most interested
in finding differentially expressed genes/tags between two (or more) groups. Once negative

14

binomial models are fitted and dispersion estimates are obtained, we can proceed with testing
procedures for determining differential expression using the exact test.

The exact test is based on the qCML methods. Knowing the conditional distribution
for the sum of counts in a group, we can compute exact p-values by summing over all sums
of counts that have a probability less than the probability under the null hypothesis of the
observed sum of counts. The exact test for the negative binomial distribution has strong
parallels with Fisher’s exact test.

As we dicussed in the previous section, the exact test is only applicable to experiments
with a single factor. The testing can be done by using the function exactTest(), and the
function allows both common dispersion and tagwise dispersion approaches. For example:

> et <- exactTest(D)

> topTags(et)

For more detailed examples, see the case studies in section 4.1 (Zhang’s data), section
4.2 (’t Hoen’s data) and section 4.3 (Li’s data).

2.8 More complex experiments (glm functionality)

2.8.1 Generalized linear models

Generalized linear models (GLMs) are an extension of classical linear models to nonnormally
distributed response data [Nelder and Wedderburn, 1972, McCullagh and Nelder, 1989].
GLMs specify probability distributions according to their mean-variance relationship, for
example the quadratic mean-variance relationship specified above for read counts. Assuming
that an estimate is available for φg, so the variance can be evaluated for any value of µgi,
GLM theory can be used to fit a log-linear model

log µgi = xTi βg + logNi

for each gene [Lu et al., 2005, Bullard et al., 2010]. Here xi is a vector of covariates that
specifies the treatment conditions applied to RNA sample i, and βg is a vector of regression
coefficients by which the covariate effects are mediated for gene g. The quadratic variance
function specifies the negative binomial GLM distributional family. The use of the negative
binomial distribution is equivalent to treating the πgi as gamma distributed.

2.8.2 Estimating dispersions

For general experiments (with multiple factors), edgeR uses the Cox-Reid profile-adjusted
likelihood (CR) method in estimating dispersions. The CR method is derived to overcome
the limitations of the qCML method as mentioned above. It takes care of multiple factors
by fitting generalized linear models (GLM) with a design matrix.

15

The CR method is based on the idea of approximate conditional likelihood which reduces
to residual maximum likelihood. Given a table counts or a DGEList object and the design
matrix of the experiment, generalized linear models are fitted. This allows valid estimation
of the dispersion, since all systematic sources of variation are accounted for.

The CR method can be used to calculate a common dispersion for all the tags, trended
dispersion depending on the tag abundance, or separate dispersions for individual tags. These
can be done by calling the functions estimateGLMCommonDisp(), estimateGLMTrendedDisp()
and estimateGLMTagwiseDisp(), and the tagwise dispersion approach is strongly recom-
mended in multi-factor experiment cases.

Here is a simple example of estimating dispersions using the GLM method. Given a
DGEList object D and a design matrix, we estimate the dispersions using the following
commands.

To estimate common dispersion:

D <- estimateGLMCommonDisp(D, design)

To estimate trended dispersions:

D <- estimateGLMTrendedDisp(D, design)

To estimate tagwise dispersions:

D <- estimateGLMTagwiseDisp(D, design)

Note that we need to estimate either common dispersion or trended dispersions prior
to the estimation of tagwise dispersions. When estimating tagwise dispersions, the em-
pirical Bayes method is applied to squeeze tagwise dispersions towards common dispersion
or trended dispersions, whichever exists. If both exist, the default is to use the trended
dispersions.

For more detailed examples, see the case study in section 4.4 (Tuch’s data).

2.8.3 Testing for DE genes

For general experiments, once negative binomial models are fitted and dispersion estimates
are obtained, we can proceed with testing procedures for determing differential expression
using the generalized linear model (GLM) likelihood ratio test.

The GLM likelihood ratio test is based on the idea of fitting negative binomial GLMs
with the Cox-Reid dispersion estimates. By doing this, it automatically takes all known
sources of varations into account. Therefore, the GLM likelihood ratio test is recommended
for experiments with multiple factors.

The testing can be done by using the functions glmFit() and glmLRT(). Given raw
counts, a fixed value for the dispersion parameter and a design matrix, the function glmFit()

fits the negative binomial GLM for each tag and produces an object of class DGEGLM with
some new components.

16

This DGEGLM object can then be passed to the function glmLRT() to carry out the likeli-
hood ratio test. User can select one or more coefficients to drop from the full design matrix.
This gives the null model against which the full model is compared using the likelihood ratio
test. Tags can then be ranked in order of evidence for differential expression, based on the
p-value computed for each tag.

As a brief example, consider a situation in which are three treatment groups, each with
two replicates, and the researcher wants to make pairwise comparisons between them. A
linear model representing the study design can be fitted to the data with commands such as:

> group <- factor(c(1,1,2,2,3,3))

> design <- model.matrix(~group)

> fit <- glmFit(y,design,etc)

The fit has three parameters. The first is the baseline level of group 1. The second and third
are the 2 vs 1 and 3 vs 1 differences.

To compare 2 vs 1:

> lrt.2vs1 <- glmLRT(fit,coef=2)

> topTags(lrt.2vs1)

To compare 3 vs 1:

> lrt.3vs1 <- glmLRT(fit,coef=3)

To compare 3 vs 2:

> lrt.3vs2 <- glmLRT(fit,contrast=c(0,-1,1))

The contrast argument in this case requests a statistical test of the null hypothesis that
coefficient3−coefficient2 is equal to zero.

To find genes different between any of the three groups:

> lrt <- glmLRT(fit,coef=2:3)

> topTags(lrt)

For more detailed examples, see the case study in section 4.4 (Tuch’s data) and 4.5
(arabidopsis RNA-Seq data).

2.9 What to do if you have no replicates

edgeR is primarily intended for use with data including biological replication. Nevertheless,
RNA-Seq and ChIP-Seq are still expensive technologies, so it sometimes happens that only
one library can be created for each treatment condition. In these cases there are no replicate
libraries from which to estimate biological variability. In this situation, the data analyst
is faced with the following choices, none of which are ideal. We do not recommend any of
these choices as a satisfactory alternative for biological replication. Rather, they are the best
that can be done at the analysis stage, and options 2–4 may be better than assuming that
biological variability is absent.

17

1. Be satisfied with a descriptive analysis, that might include an MDS plot and an analysis
of fold changes. Do not attempt a significance analysis. This may be the best advice.

2. Simply pick a reasonable dispersion value, based on your experience with similar data,
and use that for exactTest or glmFit. Typical values for the common BCV (square-
root-dispersion) for datasets arising from well-controlled experiments are 0.4 for human
data, 0.1 for data on genetically identical model organisms or 0.01 for technical repli-
cates. Here is a toy example with simulated data:

> bcv <- 0.2

> counts <- matrix(rnbinom(40,size=1/bcv^2,mu=10), 20,2)

> y <- DGEList(counts=counts, group=1:2)

> et <- exactTest(y, dispersion=bcv^2)

Note that the p-values obtained and the number of significant genes will be very sen-
sitive to the dispersion value chosen, and be aware than less well controlled datasets,
with unaccounted-for batch effects and so on, could have in reality much larger disper-
sions than are suggested here. Nevertheless, choosing a nominal dispersion value may
be more realistic than ignoring biological variation entirely.

3. Remove one or more explanatory factors from the linear model in order to create
some residual degrees of freedom. Ideally, this means removing the factors that are
least important but, if there is only one factor and only two groups, this may mean
removing the entire design matrix or reducing it to a single column for the intercept.
If your experiment has several explanatory factors, you could remove the factor with
smallest fold changes. If your experiment has several treatment conditions, you could
try treating the two most similar conditions as replicates. Estimate the dispersion from
this reduced model, then insert these dispersions into the data object containing the
full design matrix, then proceed to model fitting and testing with glmFit and glmLRT.
This approach will only be successful if the number of DE genes is relatively small.

In conjunction with this reduced design matrix, you could try estimateGLMCommonDisp

with method="deviance", robust=TRUE and subset=NULL. This is our current best at-
tempt at an automatic method to estimate dispersion without replicates, although it
will only give good results when the counts are not too small and the DE genes are a
small proportion of the whole. Please understand that this is only our best attempt
to return something useable. Reliable estimation of dispersion generally requires repli-
cates.

4. If there exist a sizeable number of control transcripts that should not be DE, then the
dispersion could be estimated from them. For example, suppose that housekeeping is
an index variable identifying housekeeping genes that do not respond to the treatment
used in the experiment. First create a copy of the data object with only one treatment
group:

18

> d1 <- d

> d1$samples$group <- 1

Then estimate the dispersion from the housekeeping genes and all the libraries as one
group:

> d0 <- estimateCommonDisp(d1[housekeeping,])

Then insert this into the full data object and proceed:

> d$common.dispersion <- d0$common.dispersion

> et <- exactTest(d)

and so on. A reasonably large number of control transcripts is required, at least a few
dozen and ideally hundreds.

2.10 Clustering, heatmaps etc

edgeR provides the function plotMDS to draw a multi-dimensional scaling plot of the RNA
samples in which distances correspond to BCV between each pair of the samples for the most
heterogeneous genes. This plot can be viewed as a type of unsupervised clustering.

Inputing RNA-seq counts to clustering or heatmap routines designed for microarray data
is not straight-forward, and the best way to do this is still a matter of research. To draw a
heatmap of individual RNA-seq samples, we suggest using output from predFC, for example

> y <- predFC(d, prior.count.total=2*ncol(d))

where d is the normalized DGEList object. This produces a matrix of log2 counts-per-million,
with undefined values avoided and the poorly defined log-fold-changes for low counts shrunk
towards zero. Larger values for prior.count.total produce more shrinkage. The logCPM
values could optionally be converted to RPKM or FPKM by subtracting log2 of gene length.
The Arabidopsis case study of Section 4.5 gives two examples of this in conjunction with
MDS plots, one example making a plot from the log-counts-per-million and another making
a plot of shrunk log-fold-changes.

19

Chapter 3

Specific Experimental Designs

3.1 Introduction

In this chapter, we outline the principles for setting up the design matrix and forming
contrasts for some typical experimental designs.

3.2 Two or more Groups

3.2.1 Introduction

The simplest and most common type of experimental design is that in which a number
of experimental conditions are compared on the basis of independent biological replicates
of each condition. Suppose that there are three experimental conditions to be compared,
treatments A, B and C, say. The samples component of the DGEList data object might look
like:

> y$samples

group lib.size norm.factors

sample.1 A 100001 1

sample.2 A 100002 1

sample.3 B 100003 1

sample.4 B 100004 1

sample.5 C 100005 1

Note that it is not necessary to have multiple replicates for all the conditions, although it
is usually desirable to do so. By default, the conditions will be listed in alphabetical order,
regardless of the order that the data were read:

> levels(y$samples$group)

[1] "A" "B" "C"

20

3.2.2 Classic approach

The classic edgeR approach is to make pairwise comparisons between the groups. For exam-
ple,

> et <- exactTest(y, pair=c("A","B"))

> topTags(et)

will find genes differentially expressed (DE) in B vs A. Similarly

> et <- exactTest(y, pair=c("A","C"))

for C vs A, or

> et <- exactTest(y, pair=c("C","B"))

for B vs C.
Alternatively, the conditions to be compared can be specified by number, so that

> et <- exactTest(y, pair=c(3,2))

is equivalent to pair=c("C","B"), given that the second and third levels of group are B and
C respectively.

Note that the levels of group are in alphabetical order by default, by can be easily
changed. Suppose for example that C is a control or reference level to which conditions A
and B are to be compared. Then one might redefine the group levels, in a new data object,
so that C is the first level:

> y2 <- y

> y2$samples$group <- relevel(y2$samples$group, ref="C")

> levels(y2$samples$group)

[1] "C" "A" "B"

Now

> et <- exactTest(y2, pair=c("A","B"))

would still compare B to A, but

> et <- exactTest(y2, pair=c(1,2))

would now compare A to C.
When pair is not specified, the default is to compare the first two group levels, so

> et <- exactTest(y)

compares B to A, whereas

> et <- exactTest(y2)

compares A to C.

21

3.2.3 GLM approach

The glm approach to multiple groups is similar to the classic approach, but permits more
general comparisons to be made. The glm approach requires a design matrix to describe the
treatment conditions. We will usually use the model.matrix function to construct the design
matrix, although it could be constructed manually. There are always many equivalent ways
to define this matrix. Perhaps the simplest way is to define a coefficient for the expression
level of each group:

> design <- model.matrix(~0+group, data=y$samples)

> colnames(design) <- levels(y$samples$group)

> design

A B C

sample.1 1 0 0

sample.2 1 0 0

sample.3 0 1 0

sample.4 0 1 0

sample.5 0 0 1

Here, the 0+ in the model formula is an instruction not to include an intercept column and
instead to include a column for each group.

One can compare any of the treatment groups using the contrast argument of the glmLRT

function. For example,

> fit <- glmFit(y, design)

> lrt <- glmLRT(fit, contrast=c(-1,1,0))

> topTags(lrt)

will compare B to A. The meaning of the contrast is to make the comparison -1*A + 1*B +

0*C, which is of course is simply B-A.
The contrast vector can be constructed using makeContrasts if that is convenient. The

above comparison could have been made by

> BvsA <- makeContrasts(B-A, levels=design)

> lrt <- glmLRT(fit, contrast=BvsA)

One could make three pairwise comparisons between the groups by

> my.contrasts <- makeContrasts(BvsA=B-A, CvsB=C-B, CvsA=A-C, levels=design)

> lrt.BvsA <- glmLRT(fit, my.contrasts[,"BvsA"])

> topTags(lrt.BvsA)

> lrt.CvsB <- glmLRT(fit, my.contrasts[,"CvsB"])

> topTags(lrt.CvsB)

> lrt.CvsA <- glmLRT(fit, my.contrasts[,"CvsA"])

> topTags(lrt.CvsA)

which would compare B to A, C to B and C to A respectively.
Any comparison can be made. For example,

22

> lrt <- glmLRT(fit, contrast=c(-0.5,-0.5,1))

would compare C to the average of A and B. Alternatively, this same contrast could have
been specified by

> my.contrast <- makeContrasts(C-(A+B)/2, levels=design)

> lrt <- glmLRT(fit, contrast=my.contrast)

with the same results.

3.2.4 A more traditional glm approach

A more traditional way to create a design matrix in R is to include an intercept term that
represents the first level of the factor. We included 0+ in our model formula above. Had we
omitted it, the design matrix would have had the same number of columns as above, but the
first column would be the intercept term and the meanings of the second and third columns
would change:

> design <- model.matrix(~group, data=y$samples)

> design

(Intercept) groupB groupC

sample.1 1 0 0

sample.2 1 0 0

sample.3 1 1 0

sample.4 1 1 0

sample.5 1 0 1

Now the first coefficient will measure the baseline logCPM expression level in the first treat-
ment condition (here group A), and the second and third columns are relative to the baseline.
Here the second and third coefficients represent B vs A and C vs A respectively. In other
words, coef=2 now means B-A and coef=3 means C-A.

This parametrization makes good sense when one of the groups represents a reference or
control group:

> design2 <- model.matrix(~group, data=y2$samples)

> design2

(Intercept) groupA groupB

sample.1 1 1 0

sample.2 1 1 0

sample.3 1 0 1

sample.4 1 0 1

sample.5 1 0 0

Now

> fit2 <- glmFit(y2, design2)

> lrt <- glmLRT(fit2, coef=2)

23

compares A to C, and

> lrt <- glmLRT(fit2, coef=3)

compares B to C. With this parametrization, one could still compare B to A using

> lrt <- glmLRT(fit2, contrast=c(0,-1,1))

Note that

> lrt <- glmLRT(fit2, coef=1)

should not be used. It would test whether the first coefficient is zero, but it is not meaningful
to compare the logCPM in group A to zero.

3.2.5 An ANOVA-like test for any differences

It might be of interest to find genes that are DE between any of the groups, without specifying
before-hand which groups might be different. This is analogous to a one-way ANOVA test.
In edgeR, this is done by specifying multiple coefficients to glmLRT, when the design matrix
includes an intercept term. For example, with fit as above,

> lrt <- glmLRT(fit, coef=2:3)

> topTags(lrt)

will find any genes that differ between any of the treatment conditions A, B or C. Technically,
this procedure tests whether either of the contrasts B-A or C-A are non-zero. Since at least
one of these must be non-zero when differences exist, the test will detect any differences. To
have this effect, the coef argument should specify all the coefficients except the intercept.

Note that this approach does not depend on how the group factor was defined, or how
the design matrix was formed, as long as there is an intercept column. For example

> lrt <- glmLRT(fit2, coef=2:3)

gives exactly the results, even though fit2 and fit were computed using different design
matrices.

3.3 Experiments with all combinations of multiple fac-

tors

3.3.1 Defining each treatment combination as a group

We now consider experiments with more than one experimental factor, but in which every
combination of experiment conditions can potentially have a unique effect. For example,
suppose that an experiment has been conducted with an active drug and a placebo, at three
times from 0 hours to 2 hours, with all samples obtained from independent subjects. The
data frame targets describes the treatment conditions applied to each sample:

24

> targets

Sample Treat Time

1 Sample1 Placebo 0h

2 Sample2 Placebo 0h

3 Sample3 Placebo 1h

4 Sample4 Placebo 1h

5 Sample5 Placebo 2h

6 Sample6 Placebo 2h

7 Sample1 Drug 0h

8 Sample2 Drug 0h

9 Sample3 Drug 1h

10 Sample4 Drug 1h

11 Sample5 Drug 2h

12 Sample6 Drug 2h

As always, there are many ways to setup a design matrix. A simple, multi-purpose approach
is to combine all the experimental factors into one combined factor:

> Group <- factor(paste(targets$Treat,targets$Time,sep="."))

> cbind(targets,Group=Group)

Then we can take the same approach as in the previous section on two or more groups. Each
treatment time for each treatment drug is a group:

> design <- model.matrix(~0+Group)

> colnames(design) <- levels(Group)

> fit <- glmFit(y, design)

Then we can make any comparisons we wish. For example, we might wish to make the
following contrasts:

> my.contrasts <- makeContrasts(

+ Drug.1vs0 = Drug.1h-Drug.0h,

+ Drug.2vs0 = Drug.2h-Drug.0h,

+ Placebo.1vs0 = Placebo.1h-Placebo.0h,

+ Placebo.2vs0 = Placebo.2h-Placebo.0h,

+ DrugvsPlacebo.0h = Drug.0h-Placebo.0h,

+ DrugvsPlacebo.1h = (Drug.1h-Drug.0h)-(Placebo.1h-Placebo.0h),

+ DrugvsPlacebo.2h = (Drug.2h-Drug.0h)-(Placebo.2h-Placebo.0h),

+ levels=design)

To find genes responding to the drug at 1 hour:

> lrt <- glmLRT(fit, contrast=my.contrasts[,"Drug.1vs0"])

or at 2 hours:

> lrt <- glmLRT(fit, contrast=my.contrasts[,"Drug.2vs0"])

To find genes with baseline differences between the drug and the placebo at 0 hours:

25

> lrt <- glmLRT(fit, contrast=my.contrasts[,"DrugvsPlacebo.0h"])

To find genes that have responded differently to the drug at the placebo at 2 hours:

> lrt <- glmLRT(fit, contrast=my.contrasts[,"DrugvsPlacebo.2h"])

Of course, it is not compulsory to use makeContrasts to form the contrasts. The coeffi-
cients are the following:

> colnames(fit)

[1] "Drug.0h" "Drug.1h" "Drug.2h" "Placebo.0h" "Placebo.1h" "Placebo.2h"

so

> lrt <- glmLRT(fit, contrast=c(-1,0,1,0,0,0))

would find the Drug.2vs0 contrast, and

> lrt <- glmLRT(fit, contrast=c(-1,0,1,1,0,-1))

is another way of specifying the DrugvsPlacebo.2h contrast.

3.3.2 Nested interaction formulas

We generally recommend the approach of the previous section, because it is so explicit and
easy to understand. However it may be useful to be aware of more short-hand approach to
form the same contrasts in the previous section using a model formula. First, make sure
that the placebo is the reference level:

> targets$Treat <- relevel(targets$Treat, ref="Placebo")

Then form the design matrix:

> design <- model.matrix(~Treat + Treat:Time, data=targets)

> fit <- glmFit(y, design)

The meaning of this formula is to consider all the levels of time for each treatment drug
separately. The second term is a nested interaction, the interaction of Time within Treat.
The coefficient names are:

> colnames(fit)

[1] "(Intercept)" "TreatDrug"

[3] "TreatPlacebo:Time1h" "TreatDrug:Time1h"

[5] "TreatPlacebo:Time2h" "TreatDrug:Time2h"

Now most of the above contrasts are directly available as coefficients:

> lrt <- glmLRT(fit, coef=2)

is the baseline drug vs placebo comparison,

26

> lrt <- glmLRT(fit, coef=4)

is the drug effect at 1 hour,

> lrt <- glmLRT(fit, coef=6)

is the drug effect at 2 hours, and finally

> lrt <- glmLRT(fit, contrast=c(0,0,0,0-1,1))

is the DrugvsPlacebo.2h contrast.

3.3.3 Treatment effects over all times

The nested interaction model makes it easy to find genes that respond to the treatment at
any time, in a single test. Continuing the above example,

> lrt <- glmLRT(fit, coef=c(4,6))

finds genes that respond to the treatment at either 1 hour or 2 hours versus the 0 hour
baseline.

3.3.4 Interaction at any time

The full interaction formula is

> design <- model.matrix(~Treat * Time, data=targets)

which is equivalent to

> design <- model.matrix(~Treat + Time + Treat:Time, data=targets)

> fit <- glmFit(y, design)

This formula is primarily useful as a way to conduct an overall test for interaction. The
coefficients are

The coefficient names are:

> colnames(design)

[1] "(Intercept)" "TreatDrug"

[3] "Time1h" "Time2h"

[5] "TreatDrug:Time1h" "TreatDrug:Time2h"

Now

> lrt <- glmLRT(fit, coef=2)

is again the baseline drug vs placebo comparison, but

> lrt <- glmLRT(fit, coef=3)

27

and

> lrt <- glmLRT(fit, coef=4)

are the effects of the reference drug, i.e., the effects of the placebo at 1 hour and 2 hours.
The last two coefficients give the DrugvsPlacebo.1h and DrugvsPlacebo.2h contrasts, so that

> lrt <- glmLRT(fit, coef=5:6)

is useful because it detects genes that respond differently to the drug, relative to the placebo,
at either of the times.

3.4 Additive Models and Blocking

3.4.1 Paired Samples

Paired samples occur whenever we compare two treatments and each independent subject
in the experiment receives both treatments. Suppose for example that an experiment is
conducted to compare a new treatment (T) with a control (C). Suppose that both the
control and the treatment are administered to each of three patients. This produces the
sample data:

FileName Subject Treatment
File1 1 C
File2 1 T
File3 2 C
File4 2 T
File5 3 C
File6 3 T

This is a paired design in which each subject receives both the control and the active treat-
ment. We can therefore compare the treatment to the control for each patient separately, so
that baseline differences between the patients are subtracted out.

The design matrix is formed from an additive model formula without an interaction term:

> Subject <- factor(targets$Subject)

> Treat <- factor(targets$Treatment, levels=c("C","T"))

> design <- model.matrix(~Subject+Treat)

The omission of an interaction term is characteristic of paired designs. We are not interested
in the effect of the treatment on an individual patient (which is what an interaction term
would examine). Rather we are interested in the average effect of the treatment over a
population of patients.

As always, the dispersion has to be estimated:

28

> y <- estimateGLMCommonDisp(y,design)

> y <- estimateGLMTrendedDisp(y,design)

> y <- estimateGLMTagwiseDisp(y,design)

We proceed to fit a linear model and test for the treatment effect. Note that we can omit
the coef argument to glmLRT because the treatment effect is the last coefficient in the model.

> fit <- glmFit(y, design)

> lrt <- glmLRT(fit)

> topTags(lrt)

This test detects genes that are differentially expressed in response to the active treatment
compared to the control, adjusting for baseline differences between the patients. This test
can be viewed as a generalization of a paired t-test.

See the oral carcinomas case study of Section 4.4 for a fully worked analysis with paired
samples.

3.4.2 Blocking

Paired samples are a simple example of what is called “blocking” in experimental design.
The idea of blocking is to compare treatments using experimental subjects that are as similar
as possible, so that the treatment different stands out as clearly as possible.

Suppose for example that we wish to compare three treatments A, B and C using exper-
imental animals. Suppose that animals from the same litter are appreciably more similar
than animals from different litters. This might lead to an experimental setup like:

FileName Litter Treatment
File1 1 A
File2 1 B
File3 1 C
File4 2 B
File5 2 A
File6 2 C
File7 3 C
File8 3 B
File9 3 A

Here it is the differences between the treatments that are of interest. The differences between
the litters are not of primary interest, nor are we interested in a treatment effect that occurs
for in only one litter, because that would not be reproducible.

We can compare the three treatments adjusting for any baseline differences between the
litters by fitting an additive model:

> Litter <- factor(targets$Litter)

> Treatment <- factor(targets$Treatment)

> design <- model.matrix(~Litter+Treatment)

29

This creates a design matrix with five columns: three for the litters and two more for the
differences between the treatments.

If fit is the fitted model with this design matrix, then we may proceed as follows. To
detect genes that are differentially expressed between any of the three treatments, adjusting
for litter differences:

> lrt <- glmLRT(fit, coef=4:5)

> topTags(lrt)

To detect genes that are differentially expressed in treatment B vs treatment A:

> lrt <- glmLRT(fit, coef=4)

> topTags(lrt)

To detect genes that are differentially expressed in treatment C vs treatment A:

> lrt <- glmLRT(fit, coef=5)

> topTags(lrt)

To detect genes that are differentially expressed in treatment C vs treatment B:

> lrt <- glmLRT(fit, contrast=c(0,0,0,-1,1))

> topTags(lrt)

The advantage of using litter as a blocking variable in the analysis is that this will make
the comparison between the treatments more precise, if litter-mates are more alike that
animals from different litters. On the other hand, if litter-mates are no more alike than
animals from different litters, which might be so for genetically identical inbred laboratory
animals, then the above analysis is somewhat inefficient because the litter effects are being
estimated unnecessarily. In that case, it would be better to omit litter from the model
formula.

3.4.3 Batch Effects

Another situation in which additive model formulas are used is when correcting for batch
effects in an experiment. The situation here is analogous to blocking, the only difference
being that the batch effects were probably unintended rather than a deliberate aspect of
the experimental design. The analysis is the same as for blocking. The treatments can be
adjusted for differences between the batches by using an additive model formula of the form:

> design <- model.matrix(~Batch+Treatment)

In this type of analysis, the treatments are compared only within each batch. The analysis
is corrected for baseline differences between the batches.

The Arabidopsis case study in Section 4.5 gives a fully worked example with batch effects.

30

3.5 Comparisons Both Between and Within Subjects

Here is a more complex scenario, posed by a poster to the Bioconductor mailing list. The
experiment has 18 RNA samples collected from 9 subjects. The samples correspond to cells
from 3 healthy patients, either treated or not with a hormone; cells from 3 patients with
disease 1, either treated or not with the hormone; and cells from 3 patients with disease 2,
either treated or not with the hormone. The targets frame looks like this:

> targets

Disease Patient Treatment

1 Healthy 1 None

2 Healthy 1 Hormone

3 Healthy 2 None

4 Healthy 2 Hormone

5 Healthy 3 None

6 Healthy 3 Hormone

7 Disease1 4 None

8 Disease1 4 Hormone

9 Disease1 5 None

10 Disease1 5 Hormone

11 Disease1 6 None

12 Disease1 6 Hormone

13 Disease2 7 None

14 Disease2 7 Hormone

15 Disease2 8 None

16 Disease2 8 Hormone

17 Disease2 9 None

18 Disease2 9 Hormone

If all the RNA samples were collected from independent subjects, then this would be nested
factorial experiment, from which we would want to estimate the treatment effect for each
disease group. As it is, however, we have a paired comparison experiment for each disease
group. The feature that makes this experiment complex is that some comparisons (between
the diseases) are made between patients while other comparisons (hormone treatment vs no
treatment) are made within patients.

The design matrix will be easier to construct in R if we re-number the patients within
each disease group:

> Patient <- gl(3,2,length=18)

We also define Disease and Treatment to be factors, with the control state as the first level
in each case:

> Disease <- factor(targets$Disease, levels=c("Healthy","Disease1","Disease2"))

> Treatment <- factor(targets$Treatment, levels=c("None","Hormone"))

This gives us a revised targets frame:

31

> data.frame(Disease,Patient,Treatment)

Disease Patient Treatment

1 Healthy 1 None

2 Healthy 1 Hormone

3 Healthy 2 None

4 Healthy 2 Hormone

5 Healthy 3 None

6 Healthy 3 Hormone

7 Disease1 1 None

8 Disease1 1 Hormone

9 Disease1 2 None

10 Disease1 2 Hormone

11 Disease1 3 None

12 Disease1 3 Hormone

13 Disease2 1 None

14 Disease2 1 Hormone

15 Disease2 2 None

16 Disease2 2 Hormone

17 Disease2 3 None

18 Disease2 3 Hormone

Now we can construct the design matrix. The critical feature to appreciate is that Patient
and Treatment are of interest within each disease group, so we use the nested factorial formula
discussed in a previous section. The patients are nested with the disease groups, because
we have different patients in each group. The treatment is nested within disease groups,
because we are interested in the disease-specific treatment effects. The model formula has
the main effect for disease plus nested interactions with Patient and Treatment:

> design <- model.matrix(~Disease+Disease:Patient+Disease:Treatment)

> colnames(design)

[1] "(Intercept)" "DiseaseDisease1"

[3] "DiseaseDisease2" "DiseaseHealthy:Patient2"

[5] "DiseaseDisease1:Patient2" "DiseaseDisease2:Patient2"

[7] "DiseaseHealthy:Patient3" "DiseaseDisease1:Patient3"

[9] "DiseaseDisease2:Patient3" "DiseaseHealthy:TreatmentHormone"

[11] "DiseaseDisease1:TreatmentHormone" "DiseaseDisease2:TreatmentHormone"

After estimating the dispersions (code not shown), we can fit a linear model:

> fit <- glmFit(y, design)

To find genes responding to the hormone in healthy patients:

> lrt <- glmLRT(fit, coef="DiseaseHealthy:TreatmentHormone")

> topTags(lrt)

To find genes responding to the hormone in disease1 patients:

> lrt <- glmLRT(fit, coef="DiseaseDisease1:TreatmentHormone")

> topTags(lrt)

32

To find genes responding to the hormone in disease2 patients:

> lrt <- glmLRT(fit, coef="DiseaseDisease2:TreatmentHormone")

> topTags(lrt)

To find genes that respond to the hormone in any disease group:

> lrt <- glmLRT(fit, coef=10:12)

> topTags(lrt)

To find genes that respond differently to the hormone in disease1 vs healthy patients:

> lrt <- glmLRT(fit, contrast=c(0,0,0,0,0,0,0,0,0,-1,1,0))

> topTags(lrt)

To find genes that respond differently to the hormone in disease2 vs healthy patients:

> lrt <- glmLRT(fit, contrast=c(0,0,0,0,0,0,0,0,0,-1,0,1))

> topTags(lrt)

To find genes that respond differently to the hormone in disease2 vs disease1 patients:

> lrt <- glmLRT(fit, contrast=c(0,0,0,0,0,0,0,0,0,0,-1,1))

> topTags(lrt)

33

Chapter 4

Case studies

4.1 SAGE profiles of normal and tumour tissue

4.1.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate
the data analysis pipeline for edgeR. The data come from a very early study using SAGE
technology to analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

Zhang et al. [1997] examined human colorectal and pancreatic cancer tumor tissue. In this
case study, we analyse the data comparing primary colon tumor tissue with normal colon
epithelial cells. Two tumor and two normal RNA samples were available from different
individuals.

4.1.2 Reading the data

The tag counts for the four individual libraries are stored in four separate plain text files
obtained from the GEO repository:

> dir()

[1] "GSM728.txt" "GSM729.txt" "GSM755.txt" "GSM756.txt" "targets.txt"

In each file, the tag IDs and counts for each tag are provided in a table.
The file targets.txt gives the filename, the group and a brief description for each sample:

> targets <- readTargets()

> targets

files group description

1 GSM728.txt NC Normal colon

2 GSM729.txt NC Normal colon

3 GSM755.txt Tu Primary colonrectal tumour

4 GSM756.txt Tu Primary colonrectal tumour

34

This makes a convenient argument to the function readDGE, which reads the tables of counts,
calculates the sizes of the count libraries and produces a DGEList object for use by subsequent
functions. The skip and comment.char arguments are used to ignore comment lines:

> d <- readDGE(targets, skip=5, comment.char = "!")

> d$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 50179 1

2 GSM729.txt NC Normal colon 49593 1

3 GSM755.txt Tu Primary colonrectal tumour 57686 1

4 GSM756.txt Tu Primary colonrectal tumour 49064 1

> head(d$counts)

1 2 3 4

CCCATCGTCC 1288 1380 1236 0

CCTCCAGCTA 719 458 148 142

CTAAGACTTC 559 558 248 199

GCCCAGGTCA 520 448 22 62

CACCTAATTG 469 472 763 421

CCTGTAATCC 448 229 459 374

> summary(d$counts)

1 2 3 4

Min. : 0 Min. : 0 Min. : 0 Min. : 0

1st Qu.: 0 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0

Median : 0 Median : 0 Median : 0 Median : 0

Mean : 1 Mean : 1 Mean : 1 Mean : 1

3rd Qu.: 1 3rd Qu.: 1 3rd Qu.: 1 3rd Qu.: 1

Max. :1288 Max. :1380 Max. :1236 Max. :1011

There are 57448 unique tags:

> dim(d)

[1] 57448 4

4.1.3 Filter low expression tags

The number of unique tags is greater than the total number of reads in each library, so the
average number of reads per tag per sample is less than one. We will filter out tags with
very low counts. We want to keep tags that are expressed in at least one normal or tumor
samples. Since there are two replicate samples in each group, we keep tags that are expressed
at a reasonable level in at least two samples. Our expression cutoff is 100 counts per million
(cpm). For the library sizes here, 100 cpm corresponds to a read count of about 5:

> keep <- rowSums(cpm(d)>100) >= 2

> d <- d[keep,]

> dim(d)

35

[1] 1233 4

This reduces the dataset to around 1200 tags. For the filtered tags, there is very little power
to detect differential expression, so little information is lost by filtering.

After filtering, it is a good idea to reset the library sizes:

> d$samples$lib.size <- colSums(d$counts)

> d$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 27012 1

2 GSM729.txt NC Normal colon 27735 1

3 GSM755.txt Tu Primary colonrectal tumour 28696 1

4 GSM756.txt Tu Primary colonrectal tumour 22461 1

4.1.4 Normalization

Apply TMM normalization:

> d <- calcNormFactors(d)

> d$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 27012 0.989

2 GSM729.txt NC Normal colon 27735 1.005

3 GSM755.txt Tu Primary colonrectal tumour 28696 0.906

4 GSM756.txt Tu Primary colonrectal tumour 22461 1.110

The normalization factors here are all very close to one, indicating that the four libraries
are very similar in composition. Although we do see some differences between the tumour
samples, which are noticeably different from one another when compared against the normals,
which are very similar to each other.

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes.

4.1.5 Estimating the dispersions

The first major step in the analysis of DGE data using the NB model is to estimate the
dispersion parameter for each tag, a measure of the degree of inter-library variation for that
tag. Estimating the common dispersion gives an idea of overall variability across the genome
for this dataset:

> d <- estimateCommonDisp(d, verbose=TRUE)

Disp = 0.173 , BCV = 0.416

36

The square root of the common dispersion gives the coefficient of variation of biological
variation (BCV). Here the BCV is 41%. This is a relatively large value, but not atypical for
observational studies on human tumor tissue where the replicates are independent tumors
or individuals.

For routine differential expresion analysis, we use empirical Bayes tagwise dispersions.
For SAGE date, no abundance-dispersion trend is usually necessary:

> d <- estimateTagwiseDisp(d, trend="none")

plotBCV() plots the tagwise dispersions against log2-CPM:

> plotBCV(d, cex=0.4)

4.1.6 Differential expression

Once the dispersions are estimated, we can proceed with testing procedures for determining
differential expression. The function exactTest conducts tagwise tests using the exact nega-
tive binomial test proposed by Robinson and Smyth [2008]. The test results for the n most
significant tags are conveniently displayed by the topTags function:

> et <- exactTest(d)

> topTags(et, n=20)

Comparison of groups: Tu-NC

logFC logCPM PValue FDR

AGCTGTTCCC 12.19 13.46 6.55e-14 8.08e-11

CTTGGGTTTT 8.94 10.19 3.57e-09 2.20e-06

37

TCACCGGTCA -4.00 10.88 5.06e-08 2.08e-05

TACAAAATCG 8.19 9.43 8.18e-08 2.15e-05

GTCATCACCA -7.74 9.00 8.72e-08 2.15e-05

TAATTTTTGC 5.63 9.16 2.71e-07 5.58e-05

TAAATTGCAA -4.03 10.63 3.40e-07 5.99e-05

GTGCGCTGAG 7.42 8.64 5.25e-07 7.98e-05

GGCTTTAGGG 3.44 12.59 5.82e-07 7.98e-05

ATTTCAAGAT -5.40 9.05 7.37e-07 9.08e-05

GCCCAGGTCA -3.42 13.25 1.15e-06 1.19e-04

GTGTGTTTGT 7.31 8.53 1.18e-06 1.19e-04

CGCGTCACTA 4.78 10.09 1.25e-06 1.19e-04

CTTGACATAC -7.21 8.46 1.44e-06 1.27e-04

GACCAGTGGC -4.78 9.29 1.57e-06 1.29e-04

CCAGTCCGCC 7.84 9.09 2.22e-06 1.71e-04

GGAACTGTGA -3.62 10.76 3.36e-06 2.44e-04

CCTTCAAATC -5.12 8.77 3.57e-06 2.45e-04

GCAACAACAC 3.81 9.94 3.78e-06 2.45e-04

GATGACCCCC -3.37 9.84 7.70e-06 4.75e-04

By default, Benjamini and Hochberg’s algorithm is used to control the false discovery rate
(FDR) [Benjamini and Hochberg, 1995].

The table below shows the counts per million for the tags that edgeR has identified as
the most differentially expressed. There are pronounced differences between the groups:

> detags <- rownames(topTags(et, n=20))

> cpm(d)[detags,]

1 2 3 4

AGCTGTTCCC 0 0.0 4146.9 45011.4

CTTGGGTTTT 0 0.0 731.8 4318.6

TCACCGGTCA 4368 2704.2 209.1 222.6

TACAAAATCG 0 0.0 487.9 2493.2

GTCATCACCA 1296 721.1 0.0 0.0

TAATTTTTGC 0 36.1 1289.4 935.0

TAAATTGCAA 3813 2127.3 104.5 267.1

GTGCGCTGAG 0 0.0 627.3 1024.0

GGCTTTAGGG 777 1298.0 13660.4 8370.1

ATTTCAAGAT 1296 757.2 0.0 44.5

GCCCAGGTCA 19251 16152.9 766.7 2760.3

GTGTGTTTGT 0 0.0 522.7 1024.0

CGCGTCACTA 37 108.2 3066.6 935.0

CTTGACATAC 666 721.1 0.0 0.0

GACCAGTGGC 777 1622.5 0.0 89.0

CCAGTCCGCC 0 0.0 209.1 2181.6

GGAACTGTGA 3332 3028.7 69.7 489.7

CCTTCAAATC 1074 612.9 0.0 44.5

GCAACAACAC 111 144.2 2265.1 1335.6

GATGACCCCC 1555 1766.7 104.5 222.6

The total number of differentially expressed genes at FDR< 0.05 is:

38

> summary(de <- decideTestsDGE(et, p=0.05, adjust="BH"))

[,1]

-1 87

0 1088

1 58

Here the entries for -1, 0 and 1 are for down-regulated, non-differentially expressed and
up-regulated tags respectively.

The function plotSmear generates a plot of the tagwise log-fold-changes against log-cpm
(analogous to an MA-plot for microarray data). DE tags are highlighted on the plot:

> detags <- rownames(d)[as.logical(de)]

> plotSmear(et, de.tags=detags)

> abline(h = c(-2, 2), col = "blue")

The horizontal blue lines show 4-fold changes.

4.1.7 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

39

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_3.0.6 limma_3.15.5

loaded via a namespace (and not attached):

[1] tools_2.15.2

4.2 deepSAGE of wild-type vs Dclk1 transgenic mice

4.2.1 Introduction

This section provides a detailed analysis of data from an experiment using deep-sequenced
tag-based expression profiling [’t Hoen et al., 2008].

The biological question addressed was the identification of transcripts differentially ex-
pressed in the hippocampus between wild-type mice and transgenic mice over-expressing a
splice variant of the δC-doublecortin-like kinase-1 (Dclk1) gene. The splice variant, DCLK-
short, makes the kinase constitutively active and causes subtle behavioural phenotypes.

The tag-based gene expression technology in this experiment could be thought of as a
hybrid between SAGE and RNA-seq—like SAGE it uses short sequence tags (∼17bp) to
identify transcripts, but it uses the deep sequencing capabilities of the Solexa/Illumina 1G
Genome Analyzer greatly to increase the number of tags that can be sequenced.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice over-
expressing DCLK-short with a C57/BL6j background. Tissue samples were collected from
four individuals in each of the two groups by dissecting out both hippocampi from each
mouse. Total RNA was isolated and extracted from the hippocampus cells and sequence
tags were prepared using Illumina’s Digital Gene Expression Tag Profiling Kit according to
the manufacturer’s protocol.

Sequencing was done using Solexa/Illumina’s Whole Genome Sequencer. RNA from
each biological sample was supplied to an individual lane in one Illumina 1G flowcell. The
instrument conducted 18 cycles of base incorporation, then image analysis and basecalling
were performed using the Illumina Pipeline. Sorting and counting the unique tags followed,
and the raw data (tag sequences and counts) are what we will analyze here. ’t Hoen et al.
[2008] went on to annotate the tags by mapping them back to the genome. In general, the
mapping of tags is an important and highly non-trivial part of a DGE experiment, but we
shall not deal with this task in this case study.

40

4.2.2 Reading in the data

The tag counts for the eight individual libraries are stored in eight separate plain text files:

> dir()

[1] "GSE10782_Dataset_Summary.txt" "GSM272105.txt" "GSM272106.txt"

[4] "GSM272318.txt" "GSM272319.txt" "GSM272320.txt"

[7] "GSM272321.txt" "GSM272322.txt" "GSM272323.txt"

[10] "Targets.txt"

In each file, the tag IDs and counts for each tag are provided in a table. It is best to
create a tab-delimited, plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and
‘description’, gives the filename, the group and a brief description for each sample.

> targets <- read.delim("targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM272105.txt DCLK Dclk1 transgenic mouse hippocampus

2 GSM272106.txt WT wild-type mouse hippocampus

3 GSM272318.txt DCLK Dclk1 transgenic mouse hippocampus

4 GSM272319.txt WT wild-type mouse hippocampus

5 GSM272320.txt DCLK Dclk1 transgenic mouse hippocampus

6 GSM272321.txt WT wild-type mouse hippocampus

7 GSM272322.txt DCLK Dclk1 transgenic mouse hippocampus

8 GSM272323.txt WT wild-type mouse hippocampus

This object makes a convenient argument to the function readDGE which reads the tables of
counts into our R session, calculates the sizes of the count libraries and produces a DGEList

object for use by subsequent functions. The skip and comment.char arguments are used to
skip over comment lines:

> d <- readDGE(targets, skip = 5, comment.char = "!")

> colnames(d) <- c("DCLK1","WT1","DCLK2","WT2","DCLK3","WT3","DCLK4","WT4")

> d$samples

files group description lib.size norm.factors

DCLK1 GSM272105.txt DCLK Dclk1 transgenic mouse hippocampus 2685418 1

WT1 GSM272106.txt WT wild-type mouse hippocampus 3517977 1

DCLK2 GSM272318.txt DCLK Dclk1 transgenic mouse hippocampus 3202246 1

WT2 GSM272319.txt WT wild-type mouse hippocampus 3558260 1

DCLK3 GSM272320.txt DCLK Dclk1 transgenic mouse hippocampus 2460753 1

WT3 GSM272321.txt WT wild-type mouse hippocampus 294909 1

DCLK4 GSM272322.txt DCLK Dclk1 transgenic mouse hippocampus 651172 1

WT4 GSM272323.txt WT wild-type mouse hippocampus 3142280 1

> dim(d)

[1] 844316 8

41

4.2.3 Filtering

For this dataset there were over 800,000 unique tags sequenced, most of which have a very
small number of counts in total across all libraries. We want to keep tags that are expressed
in at least one of wild-type or transgenic mice. In either case, the tag should be expressed
in at least four libraries. We seek tags that achieve one count per million for at least four
libraries:

> keep <- rowSums(cpm(d) > 1) >= 4

> d <- d[keep,]

> dim(d)

[1] 44882 8

Having filtered, reset the library sizes:

> d$samples$lib.size <- colSums(d$counts)

4.2.4 Normalization

For this SAGE data, composition normalization is not so strongly required as for RNA-
Seq data. Nevertheless, we align the upper-quartiles of the counts-per-million between the
libraries:

> d <- calcNormFactors(d,method="upperquartile")

> d$samples

files group description lib.size norm.factors

DCLK1 GSM272105.txt DCLK Dclk1 transgenic mouse hippocampus 2441387 1.033

WT1 GSM272106.txt WT wild-type mouse hippocampus 3198460 0.979

DCLK2 GSM272318.txt DCLK Dclk1 transgenic mouse hippocampus 2895690 1.051

WT2 GSM272319.txt WT wild-type mouse hippocampus 3210704 0.975

DCLK3 GSM272320.txt DCLK Dclk1 transgenic mouse hippocampus 2225219 1.016

WT3 GSM272321.txt WT wild-type mouse hippocampus 271817 0.960

DCLK4 GSM272322.txt DCLK Dclk1 transgenic mouse hippocampus 601062 1.013

WT4 GSM272323.txt WT wild-type mouse hippocampus 2855960 0.975

4.2.5 Data exploration

Before proceeding with the computations for differential expression, it is possible to produce
a plot showing the sample relations based on multidimensional scaling:

> plotMDS(d)

42

−1.0 −0.5 0.0 0.5
−

0.
4

0.
0

0.
4

0.
8

Dimension 1

D
im

en
si

on
 2 DCLK1

WT1

DCLK2

WT2

DCLK3

WT3

DCLK4

WT4

The DCLK and WT samples separate quite nicely.

4.2.6 Estimating the dispersion

First we estimate the common dispersion to get an idea of the overall degree of inter-library
variability in the data:

> d <- estimateCommonDisp(d, verbose=TRUE)

Disp = 0.152 , BCV = 0.39

The biological coefficient of variation is the square root of the common dispersion.
Generally it is important to allow tag-specific dispersion estimates, so we go on to com-

pute empirical Bayes moderated tagwise dispersion estimates. The trend is turned off as it
is not usually required for SAGE data:

> d <- estimateTagwiseDisp(d, trend="none")

The following plot displays the estimates:

> plotBCV(d)

43

4.2.7 Differential expression

Conduct exact conditional tests for differential expression between the mutant and the wild-
type:

> et <- exactTest(d, pair=c("WT","DCLK"))

Top ten differentially expressed tags:

> topTags(et)

Comparison of groups: DCLK-WT

logFC logCPM PValue FDR

TCTGTACGCAGTCAGGC 9.33 5.46 5.40e-19 2.42e-14

CATAAGTCACAGAGTCG 9.78 3.58 4.28e-18 9.62e-14

CCAAGAATCTGGTCGTA 3.83 3.65 1.78e-14 2.66e-10

ATACTGACATTTCGTAT -4.40 4.49 1.24e-13 1.16e-09

GCTAATAAATGGCAGAT 3.11 5.92 1.29e-13 1.16e-09

CTGCTAAGCAGAAGCAA 3.34 3.91 1.59e-13 1.19e-09

AAAAGAAATCACAGTTG 9.45 3.17 2.10e-13 1.35e-09

TTCCTGAAAATGTGAAG 3.57 3.92 6.05e-13 3.39e-09

TATTTTGTTTTGTCGTA -4.04 4.08 2.91e-12 1.45e-08

CTACTGCAGCATTATCG 2.95 4.06 7.61e-12 3.42e-08

The following table shows the individual counts per million for the top ten tags. edgeR
chooses tags that both have large fold changes and are consistent between replicates:

> detags <- rownames(topTags(et)$table)

> cpm(d)[detags, order(d$samples$group)]

44

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

TCTGTACGCAGTCAGGC 65.54 34.88 197.73 54.90 0.000 0.311 0.00 0.00

CATAAGTCACAGAGTCG 27.44 26.59 26.06 11.65 0.000 0.000 0.00 0.00

CCAAGAATCTGGTCGTA 28.67 22.79 21.12 21.63 0.938 1.557 0.00 2.45

ATACTGACATTTCGTAT 2.05 1.73 3.60 1.66 35.330 71.012 14.72 36.42

GCTAATAAATGGCAGAT 158.52 110.85 59.32 118.12 14.069 9.967 3.68 13.31

CTGCTAAGCAGAAGCAA 31.13 30.39 23.37 24.96 2.189 2.180 0.00 3.85

AAAAGAAATCACAGTTG 12.70 31.08 18.87 4.99 0.000 0.000 0.00 0.00

TTCCTGAAAATGTGAAG 30.31 24.17 38.65 16.64 1.876 2.803 0.00 2.45

TATTTTGTTTTGTCGTA 4.10 1.73 1.35 0.00 27.513 53.259 14.72 23.46

CTACTGCAGCATTATCG 30.31 33.50 31.46 21.63 3.752 3.426 0.00 4.55

The total number of differentiallly expressed genes at FDR< 0.05:

> summary(de <- decideTestsDGE(et, p=0.05))

[,1]

-1 685

0 43313

1 884

A smearplot displays the log-fold changes with the DE genes highlighted:

> detags <- rownames(d)[as.logical(de)]

> plotSmear(et, de.tags=detags)

> abline(h = c(-2, 2), col = "blue")

Blue lines indicate 4-fold changes.

45

4.2.8 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_3.0.6 limma_3.15.5

loaded via a namespace (and not attached):

[1] tools_2.15.2

4.3 Androgen-treated prostate cancer cells (RNA-Seq,

two groups)

4.3.1 Introduction

This case study considers RNA-Seq data from a treatment vs control experiment with rela-
tively low biological variability.

4.3.2 RNA Samples

Genes stimulated by androgens (male hormones) are implicated in the survival of prostate
cancer cells and are potential target of anti-cancer treatments. Three replicate RNA samples
were collected from prostate cancer cells (LNCaP cell line) after treatment with an androgen
hormone (100uM of DHT). Four replicate control samples were also collected from cells
treated with an inactive compound [Li et al., 2008].

4.3.3 Sequencing

35bp reads were sequenced on an Illumina 1G Genome Analyzer using seven lanes of one
flow-cell. FASTA format files are available from http://yeolab.ucsd.edu/yeolab/Papers.

html.

46

4.3.4 Read mapping

Reads were mapped and summarized at the gene level as previously described by Young
et al. [2010]. Reads were mapped to the NCBI36 build of the human genome using Bowtie,
allowing up to two mismatches. Reads not mapping uniquely were discarded. The number of
reads overlapping the genomic span of each Ensembl gene (version 53) was counted. Reads
mapping to introns and non-coding regions were included. The tab-delimited file of read
counts can be downloaded as pnas expression.txt from http://sites.google.com/site/

davismcc/useful-documents.

4.3.5 Reading the data

Read the targets file associating treatments with samples:

> targets <- readTargets()

> targets

Lane Treatment Label

Con1 1 Control Con1

Con2 2 Control Con2

Con3 2 Control Con3

Con4 4 Control Con4

DHT1 5 DHT DHT1

DHT2 6 DHT DHT2

DHT3 8 DHT DHT3

Read the file of counts:

> x <- read.delim("pnas_expression.txt", row.names=1, stringsAsFactors=FALSE)

> head(x)

lane1 lane2 lane3 lane4 lane5 lane6 lane8 len

ENSG00000215696 0 0 0 0 0 0 0 330

ENSG00000215700 0 0 0 0 0 0 0 2370

ENSG00000215699 0 0 0 0 0 0 0 1842

ENSG00000215784 0 0 0 0 0 0 0 2393

ENSG00000212914 0 0 0 0 0 0 0 384

ENSG00000212042 0 0 0 0 0 0 0 92

Put the counts and other information into a DGEList object:

> y <- DGEList(counts=x[,1:7], group=targets$Treatment, genes=data.frame(Length=x[,8]))

> colnames(y) <- targets$Label

> dim(y)

[1] 37435 7

47

4.3.6 Filtering

We filter out very lowly expressed tags, keeping genes that are expressed at a reasonable
level in at least one treatment condition. Since the smallest group size is three, we keep
genes that achieve at least one count per million (cpm) in at least three samples:

> keep <- rowSums(cpm(y)>1) >= 3

> y <- y[keep,]

> dim(y)

[1] 16494 7

Re-compute the library sizes:

> y$samples$lib.size <- colSums(y$counts)

4.3.7 Normalizing

Compute effective library sizes using TMM normalization:

> y <- calcNormFactors(y)

> y$samples

group lib.size norm.factors

Con1 Control 976847 1.030

Con2 Control 1154746 1.037

Con3 Control 1439393 1.036

Con4 Control 1482652 1.038

DHT1 DHT 1820628 0.954

DHT2 DHT 1831553 0.953

DHT3 DHT 680798 0.958

4.3.8 Data exploration

An MDS plots shows distances, in terms of biological coefficient of variation (BCV), between
samples:

> plotMDS(y)

48

−1.0 −0.5 0.0 0.5 1.0
−

0.
4

0.
0

0.
2

0.
4

Dimension 1

D
im

en
si

on
 2

Con1

Con2

Con3
Con4

DHT1

DHT2

DHT3

Dimension 1 clearly separates the control from the DHT-treated samples. This shows that
the replicates are consistent, and we can expect to find lots of DE genes.

4.3.9 Estimating the dispersion

The common dispersion estimates the overall BCV of the dataset, averaged over all genes:

> y <- estimateCommonDisp(y, verbose=TRUE)

Disp = 0.02 , BCV = 0.141

The BCV (square root of the common dispersion) here is 14%, a typical size for a laboratory
experiment with a cell line or a model organism.

Now estimate gene-specific dispersions:

> y <- estimateTagwiseDisp(y)

Plot the estimated dispersions:

> plotBCV(y)

49

4.3.10 Differential expression

Compute exact genewise tests for differential expression between androgen and control treat-
ments:

> et <- exactTest(y)

> top <- topTags(et)

> top

Comparison of groups: DHT-Control

Length logFC logCPM PValue FDR

ENSG00000151503 5605 5.82 9.71 0.00e+00 0.00e+00

ENSG00000096060 4093 5.00 9.94 0.00e+00 0.00e+00

ENSG00000166451 1556 4.66 8.83 1.15e-228 6.31e-225

ENSG00000127954 3919 8.17 7.20 1.00e-209 4.14e-206

ENSG00000162772 1377 3.32 9.74 2.09e-182 6.91e-179

ENSG00000113594 10078 4.08 8.03 5.07e-153 1.39e-149

ENSG00000116133 4286 3.26 8.78 6.33e-148 1.49e-144

ENSG00000115648 2920 2.63 11.47 2.82e-139 5.81e-136

ENSG00000123983 4305 3.59 8.58 8.38e-138 1.54e-134

ENSG00000116285 3076 4.22 7.35 1.05e-135 1.73e-132

Check the individual cpm values for the top genes:

> cpm(y)[rownames(top),]

Con1 Con2 Con3 Con4 DHT1 DHT2 DHT3

ENSG00000151503 35.8 30.3 34.04 39.79 1816 1878 1798

ENSG00000096060 66.5 68.4 72.95 76.21 2183 2035 2131

ENSG00000166451 42.0 45.0 39.60 38.44 961 903 1069

ENSG00000127954 0.0 0.0 2.08 2.02 333 329 323

50

ENSG00000162772 176.1 176.7 173.68 205.04 1632 1785 1633

ENSG00000113594 37.9 31.2 39.60 29.00 514 524 614

ENSG00000116133 99.3 92.7 106.99 96.45 896 880 815

ENSG00000115648 962.3 938.7 914.97 907.16 5344 5428 4806

ENSG00000123983 63.5 65.8 65.31 72.84 744 687 922

ENSG00000116285 18.4 24.2 15.98 21.58 354 344 320

The total number of DE genes at 5% FDR is given by

> summary(de <- decideTestsDGE(et))

[,1]

-1 2083

0 12127

1 2284

Of the 4373 tags identified as DE, 2085 are up-regulated in DHT-treated cells and 2288 are
down-regulated.

Plot the log-fold-changes, highlighting the DE genes:

> detags <- rownames(y)[as.logical(de)]

> plotSmear(et, de.tags=detags)

> abline(h=c(-1, 1), col="blue")

The blue lines indicate 2-fold changes.

51

4.3.11 Setup

The analysis of this section was conducted with:

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_3.0.6 limma_3.15.5

loaded via a namespace (and not attached):

[1] tools_2.15.2

4.3.12 Acknowledgements

Thanks to Matthew Young for the file of read counts.

4.4 RNA-Seq of oral carcinomas vs matched normal

tissue

4.4.1 Introduction

This section provides a detailed analysis of data from a paired design RNA-seq experiment,
featuring oral squamous cell carcinomas and matched normal tissue from three patients [Tuch
et al., 2010]. The aim of the analysis is to detect genes differentially expressed between
tumor and normal tissue, adjusting for any differences between the patients. This provides
an example of the GLM capabilities of edgeR.

RNA was sequenced on an Applied Biosystems SOLiD System 3.0 and reads mapped to
the UCSC hg18 reference genome [Tuch et al., 2010]. Read counts, summarised at the level
of refSeq transcripts, are available in Table S1 of Tuch et al. [2010].

4.4.2 Reading in the data

The read counts for the six individual libraries are stored in one tab-delimited file. To make
this file, we downloaded Table S1 from Tuch et al. [2010], deleted some unnecessary columns

52

and edited the column headings slightly:

> rawdata <- read.delim("TableS1.txt", check.names=FALSE, stringsAsFactors=FALSE)

> head(rawdata)

RefSeqID Symbol NbrOfExons 8N 8T 33N 33T 51N 51T

1 NM_182502 TMPRSS11B 10 2592 3 7805 321 3372 9

2 NM_003280 TNNC1 6 1684 0 1787 7 4894 559

3 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181

4 NM_022438 MAL 3 2496 2 3585 239 1596 7

5 NM_001100112 MYH2 40 4389 7 7944 16 9262 1818

6 NM_017534 MYH2 40 4402 7 7943 16 9244 1815

For easy manipulation, we put the data into a DGEList object:

> library(edgeR)

> y <- DGEList(counts=rawdata[,4:9], genes=rawdata[,1:3])

4.4.3 Annotation

The study by Tuch et al. [2010] was undertaken a few years ago, so not all of the RefSeq IDs
provided by match RefSeq IDs currently in use. We retain only those transcripts with IDs
in the current NCBI annotation, which is provided by the org.HS.eg.db package:

> library(org.Hs.eg.db)

> idfound <- y$genes$RefSeqID %in% mappedRkeys(org.Hs.egREFSEQ)

> y <- y[idfound,]

> dim(y)

[1] 15578 6

We add Entrez Gene IDs to the annotation:

> egREFSEQ <- toTable(org.Hs.egREFSEQ)

> head(egREFSEQ)

gene_id accession

1 1 NM_130786

2 1 NP_570602

3 2 NM_000014

4 2 NP_000005

5 3 NR_040112

6 9 NM_000662

> m <- match(y$genes$RefSeqID, egREFSEQ$accession)

> y$genes$EntrezGene <- egREFSEQ$gene_id[m]

Now use the Entrez Gene IDs to update the gene symbols:

> egSYMBOL <- toTable(org.Hs.egSYMBOL)

> head(egSYMBOL)

53

gene_id symbol

1 1 A1BG

2 2 A2M

3 3 A2MP1

4 9 NAT1

5 10 NAT2

6 11 AACP

> m <- match(y$genes$EntrezGene, egSYMBOL$gene_id)

> y$genes$Symbol <- egSYMBOL$symbol[m]

> head(y$genes)

RefSeqID Symbol NbrOfExons EntrezGene

1 NM_182502 TMPRSS11B 10 132724

2 NM_003280 TNNC1 6 7134

3 NM_152381 XIRP2 10 129446

4 NM_022438 MAL 3 4118

5 NM_001100112 MYH2 40 4620

6 NM_017534 MYH2 40 4620

4.4.4 Filtering

Different RefSeq transcripts for the same gene symbol count predominantly the same reads.
So we keep one transcript for each gene symbol. We choose the transcript with highest
overall count:

> o <- order(rowSums(y$counts))

> y <- y[o,]

> d <- duplicated(y$genes$Symbol)

> y <- y[!d,]

> nrow(y)

[1] 10526

Normally we would also filter lowly expressed genes. For this data, all transcripts already
have at least 50 reads for all samples of at least one of the tissues types.

Recompute the library sizes:

> y$samples$lib.size <- colSums(y$counts)

Use Entrez Gene IDs as row names:

> rownames(y$counts) <- rownames(y$genes) <- y$genes$EntrezGene

> y$genes$EntrezGene <- NULL

54

4.4.5 Normalization

TMM normalization is applied to this dataset to account for compositional difference between
the libraries.

> y <- calcNormFactors(y)

> y$samples

group lib.size norm.factors

8N 1 7412036 1.154

8T 1 7137779 1.062

33N 1 15293080 0.656

33T 1 13691005 0.949

51N 1 19365708 1.089

51T 1 14422746 1.203

4.4.6 Data exploration

The first step of an analysis should be to examine the samples for outliers and for other
relationships. The function plotMDS produces a plot in which distances between samples
correspond to leading biological coefficient of variation (BCV) between those samples:

> plotMDS(y)

In the plot, dimension 1 separates the tumor from the normal samples, while dimension 2
roughly corresponds to patient number. This confirms the paired nature of the samples. The
tumor samples appear more heterogeneous than the normal samples.

55

4.4.7 The design matrix

Before we fit negative binomial GLMs, we need to define our design matrix based on the
experimental design. Here we want to test for differential expression between tumour and
normal tissues within patients, i.e. adjusting for differences between patients. In statistical
terms, this is an additive linear model with patient as the blocking factor:

> Patient <- factor(c(8,8,33,33,51,51))

> Tissue <- factor(c("N","T","N","T","N","T"))

> data.frame(Sample=colnames(y),Patient,Tissue)

Sample Patient Tissue

1 8N 8 N

2 8T 8 T

3 33N 33 N

4 33T 33 T

5 51N 51 N

6 51T 51 T

> design <- model.matrix(~Patient+Tissue)

> rownames(design) <- colnames(y)

This sort of additive model is appropriate for paired designs, or experiments with batch
effects.

4.4.8 Estimating the dispersion

First we estimate the overall dispersion for the dataset, to get an idea of the overall level of
biological variability:

> y <- estimateGLMCommonDisp(y, design, verbose=TRUE)

Disp = 0.162 , BCV = 0.402

The square root of the common dispersion gives the coefficient of variation of biological
variation. Here the common dispersion is found to be 0.162, so the coefficient of biological
variation is around 0.402.

Then we estimate gene-wise dispersion estimates, allowing a possible trend with averge
count size:

> y <- estimateGLMTrendedDisp(y, design)

> y <- estimateGLMTagwiseDisp(y, design)

4.4.9 Differential expression

Now proceed to determine differentially expressed genes. Fit genewise glms:

> fit <- glmFit(y, design)

56

Conduct likelihood ratio tests for tumour vs normal tissue differences and show the top
genes:

> lrt <- glmLRT(fit)

> topTags(lrt)

Coefficient: TissueT

RefSeqID Symbol NbrOfExons logFC logCPM LR PValue FDR

4118 NM_022440 MAL 2 -7.16 6.66 108.0 2.65e-25 2.79e-21

27179 NM_014440 IL36A 4 -6.14 5.48 103.5 2.64e-24 1.39e-20

5837 NM_005609 PYGM 20 -5.48 6.07 96.0 1.15e-22 4.03e-19

5737 NM_000959 PTGFR 3 -5.21 4.81 90.5 1.81e-21 4.75e-18

132724 NM_182502 TMPRSS11B 10 -7.41 7.72 87.7 7.62e-21 1.60e-17

4606 NM_004533 MYBPC2 28 -5.46 6.57 86.7 1.28e-20 2.24e-17

487 NM_173201 ATP2A1 22 -4.62 6.03 82.8 8.85e-20 1.33e-16

3850 NM_057088 KRT3 9 -5.83 6.57 81.5 1.80e-19 2.36e-16

2027 NM_053013 ENO3 12 -5.17 6.39 79.0 6.17e-19 7.22e-16

11240 NM_007365 PADI2 16 -4.56 6.41 71.8 2.35e-17 2.47e-14

Note that glmLFT has conducted a test for the last coefficient in the linear model, which we
can see is the tumor vs normal tissue effect:

> colnames(design)

[1] "(Intercept)" "Patient33" "Patient51" "TissueT"

The genewise tests are for tumor vs normal differential expression, adjusting for baseline
differences between the three patients. (The tests can be viewed as analogous to paired
t-tests.) The top DE tags have tiny p-values and FDR values, as well as large fold changes.

Here’s a closer look at the counts-per-million in individual samples for the top genes:

> o <- order(lrt$table$PValue)

> cpm(y)[o[1:10],]

8N 8T 33N 33T 51N 51T

4118 279.7 0.140 192.0 7.012 69.8 0.4853

27179 49.5 1.401 119.3 3.287 41.4 0.0693

5837 188.7 3.082 82.8 1.169 112.1 7.1415

5737 61.4 0.981 18.5 0.876 89.6 3.1201

132724 349.7 0.420 510.4 23.446 174.1 0.6240

4606 130.3 1.541 31.8 0.438 415.4 31.6861

487 131.9 3.502 101.5 3.798 117.0 11.1629

3850 144.2 0.981 246.8 26.149 45.7 0.3467

2027 146.4 0.560 84.2 5.405 249.5 15.4617

11240 131.7 3.222 67.9 2.264 280.3 36.1928

We see that all the top genes have consistent tumour vs normal changes for the three patients.
The total number of differentially expressed genes at 5% FDR is given by:

> summary(de <- decideTestsDGE(lrt))

57

[,1]

-1 970

0 9251

1 305

Plot log-fold change against log-counts per million, with DE genes highlighted:

> detags <- rownames(y)[as.logical(de)]

> plotSmear(lrt, de.tags=detags)

> abline(h=c(-1, 1), col="blue")

The blue lines indicate 2-fold changes.

4.4.10 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

58

other attached packages:

[1] org.Hs.eg.db_2.8.0 RSQLite_0.11.2 DBI_0.2-5

[4] AnnotationDbi_1.20.3 Biobase_2.18.0 BiocGenerics_0.4.0

[7] edgeR_3.0.6 limma_3.15.5

loaded via a namespace (and not attached):

[1] IRanges_1.16.4 parallel_2.15.2 stats4_2.15.2 tools_2.15.2

4.5 RNA-Seq of pathogen inoculated Arabidopsis with

batch effects

4.5.1 Introduction

This case study re-analyses Arabidopsis thaliana RNA-Seq data described by Cumbie et al.
[2011]. Summarized count data is available as a data object in the CRAN package NBPSeq

comparing ∆hrcC challenged and mock-inoculated samples [Cumbie et al., 2011]. Samples
were collected in three batches, and adjustment for batch effects proves to be important.
The aim of the analysis therefore is to detect genes differentially expressed in response to
∆hrcC challenge, while correcting for any differences between the batches.

4.5.2 RNA samples

Pseudomonas syringae is a bacterium often used to study plant reactions to pathogens. In
this experiment, six-week old Arabidopsis plants were inoculated with the ∆hrcC mutant of
P. syringae, after which total RNA was extracted from leaves. Control plants were inoculated
with a mock pathogen.

Three biological replicates of the experiment were conducted at separate times and using
independently grown plants and bacteria.

4.5.3 Sequencing

The six RNA samples were sequenced one per lane on an Illumina Genome Analyzer. Reads
were aligned and summarized per gene using GENE-counter. The reference genome was
derived from the TAIR9 genome release (www.arabidopsis.org).

4.5.4 Filtering and normalization

Load the data from the NBPSeq package:

59

> library(NBPSeq)

> library(edgeR)

> data(arab)

> head(arab)

mock1 mock2 mock3 hrcc1 hrcc2 hrcc3

AT1G01010 35 77 40 46 64 60

AT1G01020 43 45 32 43 39 49

AT1G01030 16 24 26 27 35 20

AT1G01040 72 43 64 66 25 90

AT1G01050 49 78 90 67 45 60

AT1G01060 0 15 2 0 21 8

There are two experimental factors, treatment (hrcc vs mock) and the time that each replicate
was conducted:

> Treat <- factor(substring(colnames(arab),1,4))

> Treat <- relevel(Treat, ref="mock")

> Time <- factor(substring(colnames(arab),5,5))

There is no purpose in analysing genes that are not expressed in either experimental
condition. We consider a gene to be expressed at a reasonable level in a sample if it has at
least two counts for each million mapped reads in that sample. This cutoff is ad hoc, but
serves to require at least 4–6 reads in this case. Since this experiment has three replicates
for each condition, a gene should be expressed in at least three samples if it responds to at
least one condition. Hence we keep genes with at least two counts per million (CPM) in at
least three samples:

> keep <- rowSums(cpm(arab)>2) >= 3

> arab <- arab[keep,]

> table(keep)

keep

FALSE TRUE

9696 16526

Note that the filtering does not use knowledge of what treatment corresponds to each sample,
so the filtering does not bias the subsequent differential expression analysis.

Create a DGEList and apply TMM normalization:

> y <- DGEList(counts=arab,group=Treat)

> y <- calcNormFactors(y)

> y$samples

group lib.size norm.factors

mock1 mock 1896802 0.979

mock2 mock 1898690 1.054

mock3 mock 3249396 0.903

hrcc1 hrcc 2119367 1.051

hrcc2 hrcc 1264927 1.096

hrcc3 hrcc 3516253 0.932

60

4.5.5 Data exploration

An MDS plot shows the relative similarities of the six samples. Distances on an MDS plot of
a DGEList object correspond to leading BCV, the biological coefficient of variation between
each pair of samples using the 500 genes with most heterogeneous expression.

> plotMDS(y, main="BCV distance")

For comparison, we also make an MDS plot with distances defined in terms of shrunk fold
changes.

> logCPM <- predFC(y, prior.count=2*ncol(y))

> plotMDS(logCPM, main="logFC distance")

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

BCV distance

Dimension 1

D
im

en
si

on
 2

mock1

mock2

mock3
hrcc1

hrcc2

hrcc3

−2 −1 0 1

−
1.

0
0.

0
0.

5
1.

0
1.

5

logFC distance

Dimension 1

D
im

en
si

on
 2 mock1

mock2

mock3

hrcc1hrcc2

hrcc3

The two plots give similar conclusions. Each pair of samples extracted at each time tend
to cluster together, suggesting a batch effect. The hrcc treated samples tend to be above
the mock samples for each time, suggesting a treatment effect within each time. The two
samples at time 1 are less consistent than at times 2 and 3.

To examine further consistency of the three replicates, we compute predictive log2-fold-
changes (logFC) for the treatment separately for the three times.

> design <- model.matrix(~Time+Time:Treat)

> logFC <- predFC(y,design,prior.count=1)

The logFC at the three times are positively correlated with one another, as we would hope:

> cor(logFC[,4:6])

61

Time1:Treathrcc Time2:Treathrcc Time3:Treathrcc

Time1:Treathrcc 1.000 0.241 0.309

Time2:Treathrcc 0.241 1.000 0.369

Time3:Treathrcc 0.309 0.369 1.000

The correlation is highest between times 2 and 3.

4.5.6 The design matrix

Before we fit GLMs, we need to define our design matrix based on the experimental design.
We want to test for differential expressions between ∆hrcC challenged and mock-inoculated
samples within batches, i.e. adjusting for differences between batches. In statistical terms,
this is an additive linear model. So the design matrix is created as:

> design <- model.matrix(~Time+Treat)

> rownames(design) <- colnames(y)

> design

(Intercept) Time2 Time3 Treathrcc

mock1 1 0 0 0

mock2 1 1 0 0

mock3 1 0 1 0

hrcc1 1 0 0 1

hrcc2 1 1 0 1

hrcc3 1 0 1 1

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$Time

[1] "contr.treatment"

attr(,"contrasts")$Treat

[1] "contr.treatment"

4.5.7 Estimating the dispersion

Estimate the average dispersion over all genes:

> y <- estimateGLMCommonDisp(y, design, verbose=TRUE)

Disp = 0.0705 , BCV = 0.266

The square root of dispersion is the coefficient of biological variation (BCV). Here the com-
mon dispersion is 0.0705, so the BCV is 0.266. The common BCV is on the high side,
considering that this is a designed experiment using genetically identical plants.

Now estimate genewise dispersion estimates, allowing for a possible abundance trend:

62

> y <- estimateGLMTrendedDisp(y, design)

> y <- estimateGLMTagwiseDisp(y, design, prior.df=10)

Here we have chosen prior.df slightly smaller than the default, which is 20, after inspecting
the following BCV plot. The genewise dispersions show a decreasing trend with expression
level. At low logCPM, the dispersions are very large indeed:

> plotBCV(y)

4.5.8 Differential expression

Now proceed to determine differentially expressed genes. Fit genewise glms:

> fit <- glmFit(y, design)

First we check whether there was a genuine need to adjust for the experimental times. We
do this by testing for differential expression between the three times. There is considerable
differential expression, justifying our decision to adjust for the batch effect:

> lrt <- glmLRT(fit, coef=2:3)

> topTags(lrt)

Coefficient: Time2 Time3

logFC.Time2 logFC.Time3 logCPM LR PValue FDR

AT5G66800 5.59 -1.075 5.43 274 2.53e-60 4.18e-56

AT5G31702 5.84 -2.612 5.90 237 4.33e-52 3.58e-48

AT5G23000 5.60 -0.292 5.68 235 1.18e-51 6.50e-48

AT3G33004 4.82 -1.770 5.59 227 6.44e-50 2.66e-46

63

AT2G45830 5.43 -0.597 4.64 190 6.11e-42 2.02e-38

AT2G11230 3.50 -1.534 5.56 174 2.09e-38 5.75e-35

AT5G35736 5.41 -1.013 4.55 162 5.69e-36 1.34e-32

AT2G08986 7.20 -0.563 6.81 161 1.11e-35 2.30e-32

AT2G07782 3.49 -1.620 5.23 161 1.30e-35 2.38e-32

AT2G18193 3.06 -2.407 5.02 147 1.30e-32 2.14e-29

> FDR <- p.adjust(lrt$table$PValue, method="BH")

> sum(FDR < 0.05)

[1] 3179

Now conduct likelihood ratio tests for the pathogen effect and show the top genes. By
default, the test is for the last coefficient in the design matrix, which in this case is the
treatment effect:

> lrt <- glmLRT(fit)

> topTags(lrt)

Coefficient: Treathrcc

logFC logCPM LR PValue FDR

AT5G48430 6.34 6.71 257 7.07e-58 1.17e-53

AT2G19190 4.50 7.37 230 6.19e-52 5.11e-48

AT2G39530 4.34 6.70 212 5.63e-48 3.10e-44

AT3G46280 4.78 8.09 198 5.16e-45 2.13e-41

AT2G39380 4.95 5.75 189 4.16e-43 1.37e-39

AT1G51800 3.97 7.70 181 2.62e-41 7.21e-38

AT1G51820 4.34 6.36 172 3.44e-39 7.76e-36

AT1G51850 5.33 5.39 171 3.75e-39 7.76e-36

AT2G44370 5.43 5.17 164 1.70e-37 3.13e-34

AT3G55150 5.80 4.86 155 1.57e-35 2.60e-32

Here’s a closer look at the individual counts-per-million for the top genes. The top genes are
very consistent across the three replicates:

> top <- rownames(topTags(lrt)$table)

> cpm(y)[top,order(y$samples$group)]

mock1 mock2 mock3 hrcc1 hrcc2 hrcc3

AT5G48430 4.218 4.74 0.00 198.6 344.7 116.6

AT2G19190 16.343 12.64 12.00 358.6 279.1 327.3

AT2G39530 6.854 9.48 12.00 166.1 210.3 226.7

AT3G46280 18.452 17.91 16.62 404.4 410.3 765.3

AT2G39380 2.109 3.16 4.31 96.3 92.5 126.0

AT1G51800 28.469 17.38 27.70 380.8 381.0 432.6

AT1G51820 9.490 7.90 5.54 127.4 171.6 178.3

AT1G51850 1.054 1.05 3.39 82.1 61.7 101.5

AT2G44370 2.109 1.05 1.54 59.9 73.5 80.2

AT3G55150 0.527 1.05 1.23 45.3 71.2 60.0

The total number of genes significantly up-regulated or down-regulated at 5% FDR is
summarized as follows:

64

> summary(dt <- decideTestsDGE(lrt))

[,1]

-1 1238

0 14038

1 1250

We can pick out which genes are DE:

> isDE <- as.logical(dt)

> DEnames <- rownames(y)[isDE]

Then we can plot all the logFCs against average count size, highlighting the DE genes:

> plotSmear(lrt, de.tags=DEnames)

> abline(h=c(-1,1), col="blue")

The blue lines indicate 2-fold up or down.

4.5.9 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

65

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] edgeR_3.0.6 limma_3.15.5 NBPSeq_0.1.8 qvalue_1.32.0

loaded via a namespace (and not attached):

[1] tcltk_2.15.2 tools_2.15.2

66

Bibliography

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11(10):R106, Oct 2010. doi: 10.1186/gb-2010-11-10-r106.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289–
300, 1995.

JH Bullard, E Purdom, KD Hansen, and S Dudoit. Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics,
18:11–94, February 2010.

Jason S Cumbie, Jeffrey A Kimbrel, Yanming Di, Daniel W Schafer , Larry J Wil-
helm, Samuel E Fox, Christopher M Sullivan, Aron D Curzon, James C Carring-
ton, Todd C Mockler, and Jeff H Chang. Gene-counter: A computational pipeline
for the analysis of RNA-Seq data for gene expression differences. PLoS ONE, 6(10):
e25279, 10 2011. doi: 10.1371/journal.pone.0025279. URL http://dx.doi.org/10.1371%

2Fjournal.pone.0025279.

Kasper D. Hansen, Rafael A. Irizarry, and Zhijin WU. Removing technical variability in
rna-seq data using conditional quantile normalization. Biostatistics, 13(2):204–216, 2012.
doi: 10.1093/biostatistics/kxr054. URL http://biostatistics.oxfordjournals.org/

content/13/2/204.abstract.

H. R Li, M. T Lovci, Y-S. Kwon, M. G Rosenfeld, X-D. Fua, and G. W Yeo. Determination
of tag density required for digital transcriptome analysis: Application to an androgen-
sensitive prostate cancer model. Proceedings of the National Academy of Sciences of the
USA, 105(51):20179–20184, 2008.

J Lu, JK Tomfohr, and TB Kepler. Identifying differential expression in multiple SAGE
libraries: an overdispersed log-linear model approach. BMC Bioinformatics, 6:165,
2005. URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=

Retrieve&dopt=AbstractPlus&list_uids=17713979177590352770related:

gmvwljWy1PUJ.

67

John C Marioni, Christopher E Mason, Shrikant M Mane, Matthew Stephens, and Yoav
Gilad. RNA-seq: An assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res, 18:1509–1517, Jun 2008. doi: 10.1101/gr.079558.108.

Davis J. McCarthy, Yunshun Chen, and Gordon K. Smyth. Differential expression analysis
of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids
Research, 40(10):4288–4297, 2012. URL http://nar.oxfordjournals.org/content/40/

10/4288.

P. McCullagh and John A. Nelder. Generalized Linear Models. Chapman & Hall/CRC, Boca
Raton, Florida, 2nd edition edition, 1989.

J. A Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal
Statistical Society. Series A (General), 135(3):370–384, 1972. URL http://www.jstor.

org/stable/2344614.

Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit. GC-content normal-
ization for RNA-Seq data. BMC Bioinformatics, 12:480, 2011.

M. D Robinson and G. K Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23(21):2881–2887, 2007.

M. D Robinson and G. K Smyth. Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9(2):321–332, 2008.

Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biology, 11(3):R25, Mar 2010. doi:
10.1186/gb-2010-11-3-r25.

Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics, 26(1):
139–40, Jan 2010. doi: 10.1093/bioinformatics/btp616. URL http://bioinformatics.

oxfordjournals.org/cgi/content/full/26/1/139.

P. A. C ’t Hoen, Y. Ariyurek, H. H Thygesen, E. Vreugdenhil, R. H. A. M Vossen, R. X De
Menezes, J. M Boer, G-J. B Van Ommen, and J. T Den Dunnen. Deep sequencing-
based expression analysis shows major advances in robustness, resolution and inter-lab
portability over five microarray platforms. Nucleic Acids Research, 36(21):e141, 2008.

Brian B Tuch, Rebecca R Laborde, Xing Xu, Jian Gu, Christina B Chung, Cinna K
Monighetti, Sarah J Stanley, Kerry D Olsen, Jan L Kasperbauer, Eric J Moore, Adam J
Broomer, Ruoying Tan, Pius M Brzoska, Matthew W Muller, Asim S Siddiqui, Yan W
Asmann, Yongming Sun, Scott Kuersten, Melissa A Barker, Francisco M De La Vega,
and David I Smith. Tumor transcriptome sequencing reveals allelic expression imbal-
ances associated with copy number alterations. PLoS ONE, 5(2):e9317, Jan 2010. doi:

68

10.1371/journal.pone.0009317. URL http://www.plosone.org/article/info:doi/10.

1371/journal.pone.0009317.

Matthew D. Young, Matthew J. Wakefield, Gordon K. Smyth, and Alicia Oshlack. Gene
ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 11:R14,
2010.

L. Zhang, W. Zhou, V. E Velculescu, S. E Kern, R. H Hruban, S. R Hamilton, B. Vogelstein,
and K. W Kinzler. Gene expression profiles in normal and cancer cells. Science, 276(5316):
1268–1272, May 1997.

69

