
An Introduction to VariantTools

Michael Lawrence, Jeremiah Degenhardt

October 2, 2012

Contents

1 Introduction 2

2 Calling single-sample variants 2
2.1 Basic usage . 2
2.2 Step by step . 3
2.3 Diagnosing the filters . 3
2.4 Extending and customizing the workflow . 7

3 Exporting the calls as VCF 7

1

1 Introduction

This vignette outlines the basic usages of the VariantToolspackage and the general workflow for loading data,
calling single sample variants and tumor-specific somatic mutations or other sample-specific variant types
(eg RNA editing). Most of the functions operate on alignments (BAM files) or datasets of called variants.
The user is expected to have already aligned the reads with a separate tool, e.g., GSNAP via gmapR.

2 Calling single-sample variants

2.1 Basic usage

For our example, we take paired-end RNA-seq alignments from two lung cancer cell lines from the same
individual. H1993 is derived from a metastatis and H2073 is derived from the primary tumor.

Below, we call variants from a region around the p53 gene:

> library(VariantTools)

> bams <- LungCancerLines::LungCancerBamFiles()

> bam <- bams$H1993

> tally.param <- VariantTallyParam(gmapR::TP53Genome(),

+ readlen = 100L,

+ high_base_quality = 23L,

+ which = range(p53))

> called.variants <- callVariants(bam, tally.param)

In the above, we load the genome corresponding to the human p53 gene region and the H1993 BAM file
(stripped down to the same region). We pass the BAM, genome, read length and quality cutoff to the
callVariants workhorse. The read length is not strictly required, but it is necessary for one of the QA
filters. The value given for the high base quality cutoff is appropriate for Sanger and Illumina 1.8 or above.
By default, the high quality counts are used by the likelihood ratio test during calling.

The returned called_variants is a variant GRanges, in the same form as that returned by bam_tally in
the gmapR package. Unsurprisingly, callVariants uses bam_tally internally to generate the per-nucleotide
counts (pileup) from the BAM file. The result is then filtered to generate the variant calls. The VCF class
holds similar information; however, we favor the simple tally GRanges, because it has a separate record for
each ALT, at each position. VCF , the class and the file format, has a single record for a position, collapsing
over multiple ALT alleles, and this is much less convenient for our purposes.

If we subset the variants by those in an actual p53 exon (not an intron), we find two: one with strong
evidence for a homozygous mutation, and another with much weaker evidence (low coverage).

> subsetByOverlaps(called.variants, p53, ignore.strand = TRUE)

GRanges with 2 ranges and 20 metadata columns:

seqnames ranges strand | location ref

<Rle> <IRanges> <Rle> | <character> <character>

[1] TP53 [1012027, 1012027] + | TP53:1012027 T

[2] TP53 [1013309, 1013309] + | TP53:1013309 C

alt ncycles ncycles.ref count count.ref count.total

<character> <integer> <integer> <integer> <integer> <integer>

[1] C 2 0 2 0 2

[2] G 126 0 934 0 936

high.quality high.quality.ref high.quality.total mean.quality

<integer> <integer> <integer> <numeric>

[1] 2 0 2 39.50000

2

[2] 889 0 889 36.26884

mean.quality.ref count.pos count.pos.ref count.neg count.neg.ref

<numeric> <integer> <integer> <integer> <integer>

[1] <NA> 1 0 1 0

[2] <NA> 409 0 525 0

cycleCount.0.10 cycleCount.10.90 cycleCount.90.100

<integer> <integer> <integer>

[1] 0 2 0

[2] 58 800 76

seqlengths:

TP53

2025767

The next section goes into further detail on the process, including the specific filtering rules applied, and
how one might, for example, tweak the parameters to avoid calling low-coverage variants, like the one above.

2.2 Step by step

The callVariants method for BAM files, introduced above, is a convenience wrapper that delegates to
several low-level functions to perform each step of the variant calling process: generating the tallies, basic
QA filtering and the actual variant calling. Calling these functions directly affords the user more control
over the process and provides access to intermediate results, which is useful e.g. for diagnostics and for
caching results. The workflow consists of three function calls that rely on argument defaults to achieve the
same result as our call to callVariants above. Please see their man pages for the arguments available for
customization.

The first step is to tally the variants from the BAM file. By default, this will return observed differences
from the reference, excluding N calls and only counting reads above 13 in mapping quality (MAPQ) score.
There are three cycle bins: the first 10 bases, the final 10 bases, and the stretch between them (these will
be used in the QA step).

> raw.variants <- tallyVariants(bam, tally.param)

Next, basic QA filters are applied. These include a minimum read count (2) check, minimum unique
cycle count (2) check, and Fisher Exact Test on the per-strand counts vs. reference for strand bias (p-value
cutoff: 0.001). If there are at least three cycle bins in the tallies, at least one read must present the variant
in an internal cycle bin. The intent is to ensure that we have sufficient data and that the data are not due
to strand-specific nor cycle-specific artifacts.

> qa.variants <- qaVariants(raw.variants)

The final step is to actually call the variants. The callVariants function uses a binomial likelihood
ratio test for this purpose. The ratio is P (D|p = plower)/P (D|p = perror), where plower = 0.2 is the assumed
lowest variant frequency and perror = 0.001 is the assumed error rate in the sequencing (default: 0.001).

> called.variants <- callVariants(qa.variants)

2.3 Diagnosing the filters

The calls to qaVariants and callVariants are essentially filtering the tallies, so it is important to know,
especially when faced with a new dataset, the effect of each filter and the effect of the individual parameters
on each filter.

The filters are implemented as modules and are stored in a FilterRules object from the IRanges package.
We can create those filters directly and rely on some FilterRules utilities to diagnose the filtering process.

3

Here we construct the FilterRules that implements the qaVariants function. Again, we rely on the
argument defaults to generate the same answer.

> qa.filters <- VariantQAFilters()

We can now ask for a summary of the filtering process, which gives the number of variants that pass each
filter, separately and then combined:

> summary(qa.filters, raw.variants)

<initial> nonNRef cycleCount fisherStrand cycleBin

3924 3924 1385 3852 3486

<final>

1281

Now we retrieve the variants that pass the filters:

> qa.variants <- subsetByFilter(raw.variants, qa.filters)

We could do the same, except modify a filter parameter, such as the p-value cutoff for the Fisher Exact
Test for strand bias:

> qa.filters.custom <- VariantQAFilters(fisher.strand.p.value = 1e-4)

> summary(qa.filters.custom, raw.variants)

<initial> nonNRef cycleCount fisherStrand cycleBin

3924 3924 1385 3876 3486

<final>

1305

To get a glance at the additional variants we are discarding compared to the previous cutoff, we can subset
the filter sets down to the Fisher strand filter, evaluate the old and new filter, and compare the results:

> fs.original <- eval(qa.filters["fisherStrand"], raw.variants)

> fs.custom <- eval(qa.filters.custom["fisherStrand"], raw.variants)

> raw.variants[fs.original != fs.custom]

GRanges with 24 ranges and 20 metadata columns:

seqnames ranges strand | location ref

<Rle> <IRanges> <Rle> | <character> <character>

[1] TP53 [1010944, 1010944] + | TP53:1010944 T

[2] TP53 [1011428, 1011428] + | TP53:1011428 C

[3] TP53 [1011435, 1011435] + | TP53:1011435 A

[4] TP53 [1011467, 1011467] + | TP53:1011467 T

[5] TP53 [1012605, 1012605] + | TP53:1012605 T

[6] TP53 [1013712, 1013712] + | TP53:1013712 T

[7] TP53 [1013961, 1013961] + | TP53:1013961 T

[8] TP53 [1017881, 1017881] + | TP53:1017881 T

[9] TP53 [1017955, 1017955] + | TP53:1017955 T

...

[16] TP53 [1018524, 1018524] + | TP53:1018524 T

[17] TP53 [1018529, 1018529] + | TP53:1018529 T

[18] TP53 [1018669, 1018669] + | TP53:1018669 G

[19] TP53 [1018722, 1018722] + | TP53:1018722 G

[20] TP53 [1018738, 1018738] + | TP53:1018738 G

4

[21] TP53 [1018754, 1018754] + | TP53:1018754 T

[22] TP53 [1018807, 1018807] + | TP53:1018807 T

[23] TP53 [1018843, 1018843] + | TP53:1018843 T

[24] TP53 [1018963, 1018963] + | TP53:1018963 T

alt ncycles ncycles.ref count count.ref

<character> <integer> <integer> <integer> <integer>

[1] G 16 112 23 629

[2] G 7 140 8 634

[3] C 13 136 41 596

[4] C 6 142 12 744

[5] G 6 124 8 778

[6] G 7 139 7 905

[7] C 6 134 9 699

[8] C 5 90 6 385

[9] C 6 130 7 778

...

[16] C 6 133 9 1002

[17] C 4 128 9 959

[18] T 9 93 14 712

[19] A 4 89 4 605

[20] T 3 90 4 687

[21] G 3 88 5 705

[22] C 8 93 18 417

[23] G 10 108 14 509

[24] G 9 117 11 563

count.total high.quality high.quality.ref high.quality.total

<integer> <integer> <integer> <integer>

[1] 653 0 416 416

[2] 643 0 493 493

[3] 638 1 454 455

[4] 758 0 621 621

[5] 788 0 668 668

[6] 913 0 836 836

[7] 711 0 593 593

[8] 393 0 327 327

[9] 792 0 712 712

...

[16] 1013 0 842 842

[17] 972 0 828 828

[18] 728 0 577 577

[19] 611 0 543 543

[20] 691 0 657 657

[21] 713 0 662 662

[22] 436 1 326 327

[23] 525 0 437 437

[24] 577 0 473 473

mean.quality mean.quality.ref count.pos count.pos.ref count.neg

<numeric> <numeric> <integer> <integer> <integer>

[1] <NA> 32.82692 23 444 0

[2] <NA> 34.63692 8 258 0

[3] 27 32.52423 7 270 34

5

[4] <NA> 34.83575 0 380 12

[5] <NA> 36.20060 8 317 0

[6] <NA> 35.49282 7 331 0

[7] <NA> 34.29174 0 379 9

[8] <NA> 35.21407 0 290 6

[9] <NA> 36.63062 0 526 7

...

[16] <NA> 34.66627 0 554 9

[17] <NA> 34.34058 0 526 9

[18] <NA> 35.87868 0 305 14

[19] <NA> 36.68877 4 80 0

[20] <NA> 38.35312 4 112 0

[21] <NA> 36.18580 5 117 0

[22] 37 33.53374 1 212 17

[23] <NA> 35.12815 14 287 0

[24] <NA> 34.08457 11 285 0

count.neg.ref cycleCount.0.10 cycleCount.10.90 cycleCount.90.100

<integer> <integer> <integer> <integer>

[1] 185 0 19 4

[2] 376 0 7 1

[3] 326 0 19 22

[4] 364 0 4 8

[5] 461 0 6 2

[6] 574 0 6 1

[7] 320 0 9 0

[8] 95 0 4 2

[9] 252 0 6 1

...

[16] 448 0 4 5

[17] 433 0 9 0

[18] 407 0 5 9

[19] 525 0 3 1

[20] 575 0 1 3

[21] 588 0 5 0

[22] 205 1 17 0

[23] 222 0 14 0

[24] 278 0 11 0

seqlengths:

TP53

2025767

We can also manipulate the filters that call the variants that have already passed the basic QA checks.

> calling.filters <- VariantCallingFilters()

> summary(calling.filters, qa.variants)

<initial> readCount likelihoodRatio <final>

1281 75 23 20

6

2.4 Extending and customizing the workflow

Since the built-in filters are implemented using FilterRules, it is easy to mix and match different filters,
including those implemented externally to the VariantTools package. This is the primary means of extending
and customizing the variant calling workflow.

3 Exporting the calls as VCF

VCF is a common file format for communicating variants. To export our variants to a VCF file, we first
need to coerce the GRanges to a VCF object. Then, we use writeVcf from the VariantAnnotation package
to write the file (indexing is highly recommended for large files).

> vcf <- variantGR2Vcf(called.variants, sample.id = "H1993",

+ project = "VariantTools_Vignette")

> writeVcf(vcf, "H1993.vcf", index = TRUE)

7

	Introduction
	Calling single-sample variants
	Basic usage
	Step by step
	Diagnosing the filters
	Extending and customizing the workflow

	Exporting the calls as VCF

