Integration with the crlmm package for copy number inference

Robert Schgarpf

October 9, 2012

We load a portion of chromosome 8 from 2 HapMap samples that were processed using the crlmm package.

```
> library(oligoClasses)
> library(VanillaICE)
> library2(crlmm)
> library2(SNPchip)
> library2(IRanges)
> data(cnSetExample, package="crlmm")
```

The data cnSetExample is an object of class CNSet. We coerce the CNSet object to a list class that contains information on copy number ($\log \mathrm{R}$ ratios), genotypes, genotype probabilities, and B allele frequencies.

```
> oligoList <- constructOligoSetListFrom(cnSetExample)
```

The [[method can be used to extract a oligoSnpSet for the first element in the list:

```
> oligoSet <- oligoList[[1]]
```

Next, we fit a 6 -state hidden markov model from estimates of the B allele frequency and $\log R$ ratios.

```
> res <- hmm(oligoSet, p.hom=0.1, nupdates=5, TAUP=1e8)
```

The TAUP parameter scales the transition probability matrix. Larger values of TAUP makes it more expensive to transition from the normal copy number state to states with altered copy number. In the following code chunk, we use a lattice multi-panel display to plot each of the altered stated. We frame each alteration by plotting a genomic interval of 200 kb on each side (using the frame $=200 \mathrm{e} 3$ argument):

```
> rd <- res[chromosome(res) == "chr8", ]
> rd <- res[!state(res)%in%c(3,4), ]
> if(require(SNPchip)){
+ fig <- xyplotLrrBaf(rd, oligoSet,
+ frame=200e3,
+ panel=xypanelBaf,
+ scales=list(x="free"),
+ par.strip.text=list(cex=0.9),
+ cex=0.4,
+ state.col="black",
+ state.cex=0.8,
+ pch=21)
+ }
> print(fig)
```


Figure 1: Plot of $\log \mathrm{R}$ ratios (grey) and B allele frequencies (blue). The B allele frequencies have a range of $0-1$ and were rescaled for ease of viewing alongside the $\log \mathrm{R}$ ratios. Each panel displays one region with a copy number alteration predicted from the 6 -state HMM with padding on either side given by the frame argument.

1 Session Information

The version number of R and packages loaded for generating the vignette were:

- R version 2.15.1 (2012-06-22), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: Biobase 2.18.0, BiocGenerics 0.4.0, DBI 0.2-5, IRanges 1.16.2, RColorBrewer 1.0-5, RSQLite 0.11 .2 , SNPchip 2.4.0, VanillaICE 1.20.3, crlmm 1.16.0, oligo 1.22.0, oligoClasses 1.20.0, pd.mapping50k.hind240 1.8.0, pd.mapping50k.xba240 1.8.0
- Loaded via a namespace (and not attached): AnnotationDbi 1.20.0, BiocInstaller 1.8.2, Biostrings 2.26.1, GenomicRanges 1.10.1, XML 3.95-0.1, affxparser 1.30.0, affyio 1.26.0, annotate 1.36.0, bit 1.1-8, codetools $0.2-8$, compiler 2.15.1, ellipse $0.3-7$, ff $2.2-7$, foreach 1.4.0, genefilter 1.40.0, grid 2.15.1, iterators 1.0.6, lattice $0.20-10$, msm 1.1.3, mvtnorm 0.9-9992, parallel 2.15.1, preprocessCore 1.20.0, splines 2.15.1, stats4 2.15.1, survival 2.36-14, tools 2.15.1, xtable 1.7-0, zlibbioc 1.4.0

