
Differential expression of RNA-Seq data at the gene level –
the DESeq package

Simon Anders1, Wolfgang Huber

European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany
1sanders@fs.tum.de

2012-09-12

Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of differentially expressed genes. The
count data are presented as a table which reports, for each sample, the number of reads that have been assigned
to a gene. Analogous analyses also arise for other assay types, such as comparative ChIP-Seq. The package DESeq
provides methods to test for differential expression by use of the negative binonial distribution and a shrinkage
estimator for the distribution’s variance1. This vignette explains the use of the package. For an exposition of the
statistical method, please see our paper [1] and the additional information in Section 9.

Contents

1 Input data and preparations 2
1.1 The count table . 2
1.2 The metadata . 2
1.3 Normalisation . 4

2 Variance estimation 4

3 Inference: Calling differential expression 6
3.1 Standard comparison between two experimental conditions . 6
3.2 Working partially without replicates . 9
3.3 Working without any replicates . 9

4 Multi-factor designs 10

5 Independent filtering and multiple testing 14
5.1 Filtering by overall count . 14
5.2 Why does it work? . 15
5.3 Diagnostic plots for multiple testing . 16

6 Variance stabilizing transformation 16
6.1 Application to moderated fold change estimates . 17

7 Data quality assessment by sample clustering and visualisation 18
7.1 Heatmap of the count table . 18
7.2 Heatmap of the sample-to-sample distances . 19
7.3 Principal component plot of the samples . 19
7.4 arrayQualityMetrics . 20

8 Further reading 23

9 Changes since publication of the paper 23

1Other Bioconductor packages with similar aims are edgeR and baySeq.

1

10 Session Info 23

1 Input data and preparations

1.1 The count table

As input, the DESeq package expects count data as obtained, e. g., from RNA-Seq or another high-throughput
sequencing experiment, in the form of a rectangular table of integer values. The table cell in the i-th row and the
j-th column of the table tells how many reads have been mapped to gene i in sample j. Analogously, for other types
of assays, the rows of the table might correspond e. g. to binding regions (with ChIP-Seq) or peptide sequences (with
quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DESeq’s statistical model to hold,
as only the actual counts allow assessing the measurement precision correctly. Hence, please do do not supply other
quantities, such as (rounded) normalized counts, or counts of covered base pairs – this will only lead to nonsensical
results.

Furthermore, it is important that each column stems from an independent biological replicate. For technical
replicates (e. g. when the same library preparation was distributed over multiple lanes of the sequencer), please sum
up their counts to get a single column, corresponding to a unique biological replicate. This is needed in order to allow
DESeq to estimate variability in the experiment correctly.

To obtain such a count table for your own data, you will need to create it from your sequence alignments and
suitable annotation. In Bioconductor, you can use the function summarizeOverlaps in the GenomicRanges package.
See the vignette, reference [2], for a worked example. Another possibility is provided by the Bioconductor package
easyRNASeq.

Another easy way to produce such a table from the output of the aligner is to use the htseq-count script distributed
with the HTSeq Python package. Even though HTSeq is written in Python, you do not need to know any Python
to use htseq-count. See http://www-huber.embl.de/users/anders/HTSeq/doc/count.html. HTSeq-count
produces one count file for each sample. DESeq offers the function newCountDataSetFromHTSeqCount, described below,
to get an analysis started from these files.

In this vignette, we will work with the gene level read counts from the pasilla data package. This data set is
from an experiment on Drosophila melanogaster cell cultures and investigated the effect of RNAi knock-down of the
splicing factor pasilla [3]. The detailed transcript of how we produced the pasilla count table from second generation
sequencing (Illumina) FASTQ files is provided in the vignette of the data package pasilla. The table is supplied by the
pasilla package as a text file of tab-separated values. The function system.file tells us where this file is stored on
your computer.

> datafile = system.file("extdata/pasilla_gene_counts.tsv", package="pasilla")

> datafile

[1] "/loc/home/biocbuild/bbs-2.11-bioc/R/library/pasilla/extdata/pasilla_gene_counts.tsv"

Have a look at the file with a text editor to see how it is formatted. To read this file with R, we use the function
read.table.

> pasillaCountTable = read.table(datafile, header=TRUE, row.names=1)

> head(pasillaCountTable)

untreated1 untreated2 untreated3 untreated4 treated1 treated2 treated3

FBgn0000003 0 0 0 0 0 0 1

FBgn0000008 92 161 76 70 140 88 70

FBgn0000014 5 1 0 0 4 0 0

FBgn0000015 0 2 1 2 1 0 0

FBgn0000017 4664 8714 3564 3150 6205 3072 3334

FBgn0000018 583 761 245 310 722 299 308

Here, header=TRUE indicates that the first line contains column names and row.names=1 means that the first column
should be used as row names. This leaves us with a data.frame containing integer count values.

1.2 The metadata

The best data are useless without metadata. DESeq uses familiar idioms in Bioconductor to manage the metadata
that go with the count table. The metadata can be divided into three groups: information about the samples (table
colums), about the features (table rows), and about the overall experiment.

Differential expression of RNA-Seq data at the gene level – the DESeq package

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

First, we need a description of the samples, which we keep in a data.frame whose columns correspond to different
types of information, and whose rows correspond to the 7 samples:

> pasillaDesign = data.frame(

+ row.names = colnames(pasillaCountTable),

+ condition = c("untreated", "untreated", "untreated",

+ "untreated", "treated", "treated", "treated"),

+ libType = c("single-end", "single-end", "paired-end",

+ "paired-end", "single-end", "paired-end", "paired-end"))

> pasillaDesign

condition libType

untreated1 untreated single-end

untreated2 untreated single-end

untreated3 untreated paired-end

untreated4 untreated paired-end

treated1 treated single-end

treated2 treated paired-end

treated3 treated paired-end

Here, simply use a chunk of R code to set up this define. More often, you will read this into R from a spreadsheet table,
using the R functions read.table or read.csv; or perhaps even from a relational database table using R’s database
access facilities.

To analyse these samples, we will have to account for the fact that we have both single-end and paired-end method.
To keep things simple at the start, we defer the discussion of this to Section 4 and first demonstrate a simple analysis
by using only the paired-end samples.

> pairedSamples = pasillaDesign$libType == "paired-end"

> countTable = pasillaCountTable[, pairedSamples]

> condition = pasillaDesign$condition[pairedSamples]

Now, we have data input as follows.

> head(countTable)

untreated3 untreated4 treated2 treated3

FBgn0000003 0 0 0 1

FBgn0000008 76 70 88 70

FBgn0000014 0 0 0 0

FBgn0000015 1 2 0 0

FBgn0000017 3564 3150 3072 3334

FBgn0000018 245 310 299 308

> condition

[1] untreated untreated treated treated

Levels: treated untreated

For your own data, create such a factor simply with

> #not run

> condition = factor(c("untreated", "untreated", "treated", "treated"))

We can now instantiate a CountDataSet, which is the central data structure in the DESeq package:

> library("DESeq")

> cds = newCountDataSet(countTable, condition)

If you have used htseq-count (see above) to obtain your read counts, you can use the funtion newCountDataSet-

FromHTSeqCount to obtain a CountDataSe directly from the count files produced by htseq-count. To this end, produce
a data frame, similar to pasillaDesign constructed above, with the sample names in the first column, the file names
in the scond column, and the condition in the third column (or, if you have more than one factor in your design
matrix, all these factors in the third and folling columns), and pass this data frame to the function. See the help page
(“?newCountDataSetFromHTSeqCount”) for further details.

Differential expression of RNA-Seq data at the gene level – the DESeq package

The CountDataSet class is derived from Biobase’s eSet class and so shares all features of this standard Bioconductor
class. Furthermore, accessors are provided for its data slots2. For example, the counts can be accessed with the counts

function, as we will see in the next section.

1.3 Normalisation

As a first processing step, we need to estimate the effective library size. This step is sometimes also called normalisation,
even though there is no relation to normality or a normal distribution. The effective library size information is called
the size factors vector, since the package only needs to know the relative library sizes. If the counts of non-differentially
expressed genes in one sample are, on average, twice as high as in another (because the library was sequenced twice
as deeply), the size factor for the first sample should be twice that of the other sample [1,4]. The function estimate-

SizeFactors estimates the size factors from the count data. (See the man page of estimateSizeFactorsForMatrix

for technical details on the calculation.)

> cds = estimateSizeFactors(cds)

> sizeFactors(cds)

untreated3 untreated4 treated2 treated3

0.873 1.011 1.022 1.115

If we divide each column of the count table by the size factor for this column, the count values are brought
to a common scale, making them comparable. When called with normalized=TRUE, the counts accessor function
performs this calculation. This is useful, e.g., for visualization.

> head(counts(cds, normalized=TRUE))

untreated3 untreated4 treated2 treated3

FBgn0000003 0.00 0.00 0.0 0.897

FBgn0000008 87.05 69.27 86.1 62.803

FBgn0000014 0.00 0.00 0.0 0.000

FBgn0000015 1.15 1.98 0.0 0.000

FBgn0000017 4082.02 3116.93 3004.5 2991.238

FBgn0000018 280.61 306.75 292.4 276.335

2 Variance estimation

The inference in DESeq relies on an estimation of the typical relationship between the data’s variance and their mean,
or, equivalently, between the data’s dispersion and their mean.

The dispersion can be understood as the square of the coefficient of biological variation. So, if a gene’s expression
typically differs from replicate to replicate sample by 20%, this gene’s dispersion is 0.22 = .04. Note that the variance
seen between counts is the sum of two components: the sample-to-sample variation just mentioned, and the uncertainty
in measuring a concentration by counting reads. The latter, known as shot noise or Poisson noise, is the dominating
noise source for lowly expressed genes. The former dominates for highly expressed genes. The sum of both, shot noise
and dispersion, is considered in the differential expression inference.

Hence, the variance v of count values is modelled as

v = sµ+ αs2µ2,

where µ is the expected normalized count value (estimated by the average normalized count value), s is the size factor
for the sample under consideration, and α is the dispersion value for the gene under consideration.

To estimate the dispersions, use this command.

> cds = estimateDispersions(cds)

We could now proceed straight to the testing for differetial expression in Section 3. However, let us first spend
a little more time with looking at the results of estimateDispersions, in order to better understand the subsequent
inference. Also, verification of the dispersion plot Figure 1, explained below, is an aspect of data quality control: how
well do the data accord to the expectations of our analytic approach? Quality assessment is a crucial step of the data
analysis, and we will see further quality diagnostics in Section 7.

2In fact, the object pasillaGenes from the pasilla package is of class CountDataSet, and we could do the subsequent analysis on the
basis of this object. Here we re-create cds from elementary data types, a data.frame and a factor, for pedagogic effect.

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 1: Empirical (black dots) and fitted (red lines) dispersion values plotted against the mean of the normalised
counts.

The function estimateDispersions performs three steps. First, it estimates a dispersion value for each gene, then
it fits a curve through the estimates. Finally, it assigns to each gene a dispersion value, using a choice between the
per-gene estimate and the fitted value. To allow the user to inspect the intermediate steps, a fitInfo object is stored,
which contains the per-gene estimate, the fitted curve and the values that will subsequently be used for inference.

> str(fitInfo(cds))

List of 5

$ perGeneDispEsts: num [1:14599] -0.4696 0.0237 NaN -0.9987 0.0211 ...

$ dispFunc :function (q)

..- attr(*, "coefficients")= Named num [1:2] 0.00524 1.16816

.. ..- attr(*, "names")= chr [1:2] "asymptDisp" "extraPois"

..- attr(*, "fitType")= chr "parametric"

$ fittedDispEsts : num [1:14599] 5.21332 0.02055 Inf 1.5008 0.00559 ...

$ df : int 2

$ sharingMode : chr "maximum"

It is useful to inspect the results of these steps visually. We can plot the per-gene estimates against the mean normalized
counts per gene and overlay the fitted curve by using the function plotDispEsts (Fig. 1).

> plotDispEsts(cds)

As we estimated the dispersions from a small number of replicates, the estimates scatter with quite some sampling
variance around their true values. An initial assumption that one could make is that the regression line shown in
Figure 1 models the true underlying dispersions, and that the variation of the point estimates around simply reflects
sampling variance. This is the assumption that we put forward in the first paper on DESeq [1]. However, subsequent
experience with larger data sets indicates that not all of the variability of the points around the regression line seen in
Figure 1 is sampling variance: some of it reflects differences of the true, underlying variance between different genes.
Hence, the default behaviour of DESeq now uses a more prudent or conservative approach: if a per-gene estimates
lies below the regression line, we assume that this might indeed be sampling variance, and shift the estimate upwards
to the value predicted by the regression line. If, however, the per-gene estimate lies above the line, we do not shift it
downwards to the line, but rather keep it as is.

The option sharingMode of the function estimateDispersions can be used to control this behaviour. The value
sharingMode="maximum" corresponds to the default. If you have many replicates (where many starts at around 7),
the choice sharingMode="gene-est-only" will typically be more adequate. If you would like to use the behaviour
described in [1], this is achieved by specifying sharingMode="fit-only".

Another difference of the current DESeq version to the original method described in the paper is the way how the
mean-dispersion relation is fitted. By default, estimateDispersions now performs a parametric fit: Using a gamma-
family GLM, two coefficients α0, α1 are found to parametrize the fit as α = α0 + α1/µ. (The values of the two
coefficients can be found in the fitInfo object, as attribute coefficients to dispFunc.) For some data sets, the

Differential expression of RNA-Seq data at the gene level – the DESeq package

parametric fit may give bad results, in which case one should try a local fit (the method described in the paper), which
is available via the option fitType="local" to estimateDispersions.

In any case, the dispersion values which will be used by the subsequent testing are stored in the feature data slot
of cds:

> head(fData(cds))

disp_pooled

FBgn0000003 5.21332

FBgn0000008 0.02368

FBgn0000014 Inf

FBgn0000015 1.50080

FBgn0000017 0.02110

FBgn0000018 0.00928

Fixme: Why is the value for FBgn00000014 Inf and not 0 (given that all counts are 0)? You can verify that these
values are indeed the maxima from the two value vectors in fitInfo(cds), which we saw on page 5. Advanced users
who want to fiddle with the dispersion estimation can change the values in fData(cds) prior to calling the testing
function.

3 Inference: Calling differential expression

3.1 Standard comparison between two experimental conditions

Having estimated the dispersion for each gene, it is straight-forward to look for differentially expressed genes. To
contrast two conditions, e.g., to see whether there is differential expression between conditions“untreated”and“treated”,
we simply call the function nbinomTest. It performs the tests as described in [1] and returns a data frame with the p
values and other useful information.

> res = nbinomTest(cds, "untreated", "treated")

> head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

1 FBgn0000003 0.224 0.00 0.449 Inf Inf 1.000 1.000

2 FBgn0000008 76.296 78.16 74.436 0.952 -0.0704 0.835 1.000

3 FBgn0000014 0.000 0.00 0.000 NaN NaN NA NA

4 FBgn0000015 0.781 1.56 0.000 0.000 -Inf 0.416 1.000

5 FBgn0000017 3298.682 3599.47 2997.890 0.833 -0.2638 0.241 0.881

6 FBgn0000018 289.031 293.68 284.385 0.968 -0.0464 0.757 1.000

The interpretation of the columns of data.frame is as follows.
id feature identifier
baseMean mean normalised counts, averaged over all samples from both conditions
baseMeanA mean normalised counts from condition A
baseMeanB mean normalised counts from condition B
foldChange fold change from condition A to B
log2FoldChange the logarithm (to basis 2) of the fold change
pval p value for the statistical significance of this change
padj p value adjusted for multiple testing with the Benjamini-Hochberg procedure (see the R function

p.adjust), which controls false discovery rate (FDR)

Let us first plot the log2 fold changes against the mean normalised counts, colouring in red those genes that are
significant at 10% FDR (Figure 2).

> plotMA(res)

It is also instructive to look at the histogram of p values (Figure 3). The enrichment of low p values stems from
the differentially expressed genes, while those not differentially expressed are spread uniformly over the range from zero
to one (except for the p values from genes with very low counts, which take discrete values and so give rise to high
counts for some bins at the right.)

> hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="")

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 2: Plot of normalised mean versus log2 fold change for the contrast untreated versus treated.

Figure 3: Histogram of p-values from the call to nbinomTest.

We can filter for significant genes, according to some chosen threshold for the false dicovery rate (FDR),

> resSig = res[res$padj < 0.1,]

and list, e. g., the most significantly differentially expressed genes:

> head(resSig[order(resSig$pval),])

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

9831 FBgn0039155 463 885 41.9 0.0474 -4.40 1.64e-124 1.89e-120

2366 FBgn0025111 1340 311 2369.3 7.6141 2.93 3.50e-107 2.01e-103

612 FBgn0003360 2544 4514 574.6 0.1273 -2.97 1.55e-99 5.95e-96

3192 FBgn0029167 2551 4211 891.7 0.2117 -2.24 4.35e-78 1.25e-74

10305 FBgn0039827 189 357 19.9 0.0556 -4.17 1.19e-65 2.74e-62

6948 FBgn0035085 447 761 133.3 0.1751 -2.51 3.15e-56 6.03e-53

We may also want to look at the most strongly down-regulated of the significant genes,

> head(resSig[order(resSig$foldChange, -resSig$baseMean),])

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

14078 FBgn0259236 4.27 8.54 0.00 0.0000 -Inf 1.31e-03 2.60e-02

Differential expression of RNA-Seq data at the gene level – the DESeq package

13584 FBgn0085359 36.47 71.03 1.92 0.0270 -5.21 2.40e-09 2.19e-07

9831 FBgn0039155 463.44 884.96 41.91 0.0474 -4.40 1.64e-124 1.89e-120

2277 FBgn0024288 42.56 80.89 4.24 0.0524 -4.25 5.57e-20 1.94e-17

10305 FBgn0039827 188.59 357.33 19.86 0.0556 -4.17 1.19e-65 2.74e-62

6495 FBgn0034434 82.89 155.09 10.68 0.0689 -3.86 5.94e-32 5.25e-29

or at the most strongly up-regulated ones:

> head(resSig[order(-resSig$foldChange, -resSig$baseMean),])

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

6030 FBgn0033764 53.9 10.26 97.6 9.52 3.25 9.95e-18 2.93e-15

13079 FBgn0063667 11.8 2.55 21.0 8.23 3.04 1.43e-04 4.22e-03

7020 FBgn0035189 197.5 45.30 349.6 7.72 2.95 6.43e-15 1.35e-12

8499 FBgn0037290 50.5 11.66 89.2 7.65 2.94 1.04e-14 2.05e-12

2366 FBgn0025111 1340.2 311.17 2369.3 7.61 2.93 3.50e-107 2.01e-103

7264 FBgn0035539 16.0 4.19 27.8 6.63 2.73 6.76e-05 2.14e-03

To save the output to a file, use the R functions write.table and write.csv. (The latter is useful if you want to
load the table in a spreadsheet program such as Excel.)

> write.csv(res, file="My Pasilla Analysis Result Table.csv")

Figure 4: Plot of the log2 fold change between the untreated replicates versus average expression strength.

Note in Fig. 2 how the power to detect significant differential expression depends on the expression strength. For
weakly expressed genes, stronger changes are required for the gene to be called significantly expressed. To understand
the reason for this let, us compare the normalized counts between two replicate samples, here taking the two untreated
samples as an example:

> ncu = counts(cds, normalized=TRUE)[, conditions(cds)=="untreated"]

ncu is now a matrix with two columns.

> plotMA(data.frame(baseMean = rowMeans(ncu),

+ log2FoldChange = log2(ncu[,2] / ncu[,1])),

+ col = "black")

As one can see in Figure 4, the log fold changes between replicates are stronger for lowly expressed genes than for
highly expressed ones. We ought to conclude that a gene’s expression is influenced by the treatment only if the change
between treated and untreated samples is stronger than what we see between replicates, and hence, the dividing line
between red and black in Figure 2 mimics the shape seen in Figure 4.

Differential expression of RNA-Seq data at the gene level – the DESeq package

3.2 Working partially without replicates

If you have replicates for one condition but not for the other, you can still proceed as before. In such cases only the
conditions with replicates will be used to estimate the dispersion. Of course, this is only valid if you have good reason
to believe that the unreplicated condition does not have larger variation than the replicated one.

To demonstrate, we subset our data object to only three samples:

> cdsUUT = cds[, 1:3]

> pData(cdsUUT)

sizeFactor condition

untreated3 0.873 untreated

untreated4 1.011 untreated

treated2 1.022 treated

Figure 5: MvA plot for the contrast “treated” vs. “untreated”, using two treated and only one untreated sample.

Now, we do the analysis as before.

> cdsUUT = estimateSizeFactors(cdsUUT)

> cdsUUT = estimateDispersions(cdsUUT)

> resUUT = nbinomTest(cdsUUT, "untreated", "treated")

We produce the analogous plot as before, again with

> plotMA(resUUT)

Figure 5 shows the same symmetry in up- and down-regulation as in Fig. 2, but a certain asymmetry in the boundary
line for significance. This has an easy explanation: low counts suffer from proportionally stronger shot noise than high
counts, and since there is only one “untreated” sample versus two “treated” ones, a stronger downward fold-change is
required to be called significant than for the upward direction.

3.3 Working without any replicates

Proper replicates are essential to interpret a biological experiment. After all, if one compares two conditions and finds
a difference, how else can one know that this difference is due to the different conditions and would not have arisen
between replicates, as well, just due to experimental or biological noise? Hence, any attempt to work without replicates
will lead to conclusions of very limited reliability.

Nevertheless, such experiments are sometimes undertaken, and the DESeq package can deal with them, even
though the soundness of the results may depend much on the circumstances.

Our primary assumption is now that the mean is a good predictor for the dispersion. Once we accept this
assumption, we may argue as follows: Given two samples from different conditions and a number of genes with
comparable expression levels, of which we expect only a minority to be influenced by the condition, we may take the

Differential expression of RNA-Seq data at the gene level – the DESeq package

dispersion estimated from comparing their counts across conditions as ersatz for a proper estimate of the variance
across replicates. After all, we assume most genes to behave the same within replicates as across conditions, and
hence, the estimated variance should not be affected too much by the influence of the hopefully few differentially
expressed genes. Furthermore, the differentially expressed genes will only cause the dispersion estimate to be too high,
so that the test will err to the side of being too conservative.

We shall now see how well this works for our example data. We reduce our count data set to just two columns,
one “untreated” and one “treated” sample:

> cds2 = cds[,c("untreated3", "treated3")]

Now, without any replicates at all, the estimateDispersions function will refuse to proceed unless we instruct it
to ignore the condition labels and estimate the variance by treating all samples as if they were replicates of the same
condition:

> cds2 = estimateDispersions(cds2, method="blind", sharingMode="fit-only")

Note the option sharingMode="fit-only". Remember that the default, sharingMode="maximum", takes care of
outliers, i.e., genes with dispersion much larger than the fitted values. Without replicates, we cannot catch such
outliers and so have to disable this functionality.

Now, we can attempt to find differential expression:

> res2 = nbinomTest(cds2, "untreated", "treated")

Figure 6: MvA plot, from a test using no replicates.

Unsurprisingly, we find much fewer hits, as can be seen from the plot (Fig. 6)

> plotMA(res2)

and from this table, tallying the number of significant hits in our previous and our new, restricted analysis:

> addmargins(table(res_sig = res$padj < .1, res2_sig = res2$padj < .1))

res2_sig

res_sig FALSE TRUE Sum

FALSE 10084 1 10085

TRUE 773 48 821

Sum 10857 49 10906

4 Multi-factor designs

Let us return to the full pasilla data set. Remember that we started of with these data:

> head(pasillaCountTable)

Differential expression of RNA-Seq data at the gene level – the DESeq package

untreated1 untreated2 untreated3 untreated4 treated1 treated2 treated3

FBgn0000003 0 0 0 0 0 0 1

FBgn0000008 92 161 76 70 140 88 70

FBgn0000014 5 1 0 0 4 0 0

FBgn0000015 0 2 1 2 1 0 0

FBgn0000017 4664 8714 3564 3150 6205 3072 3334

FBgn0000018 583 761 245 310 722 299 308

> pasillaDesign

condition libType

untreated1 untreated single-end

untreated2 untreated single-end

untreated3 untreated paired-end

untreated4 untreated paired-end

treated1 treated single-end

treated2 treated paired-end

treated3 treated paired-end

When creating a count data set with multiple factors, just pass a data frame instead of the condition factor:

> cdsFull = newCountDataSet(pasillaCountTable, pasillaDesign)

As before, we estimate the size factors and then the dispersions. Here, the default method (method= pooled to
estimateDispersion), means that, as before, one dispersion is computed for each gene, which is now an average over
all cells (weighted by the number of samples for each cells), where the term cell denotes any of the four combinations
of factor levels of the design. An alternative is the option method= pooled-CR , which uses a Cox-Reid-adjusted
maximum likelihood estimator [5, 6]. The latter is slower but useful when the cell concept is not applicable (e.g. in
paired designs).

> cdsFull = estimateSizeFactors(cdsFull)

> cdsFull = estimateDispersions(cdsFull)

Figure 7: Estimated (black) pooled dispersion values for all seven samples, with regression curve (red).

We check the fit (Fig. 7):

> plotDispEsts(cdsFull)

For inference, we now specify two models by formulas. The full model regresses the genes’ expression on both the
library type and the treatment condition, the reduced model regresses them only on the library type. For each gene,
we fit generalized linear models (GLMs) according to the two models, and then compare them in order to infer whether
the additional specification of the treatment improves the fit and hence, whether the treatment has significant effect.

Differential expression of RNA-Seq data at the gene level – the DESeq package

> fit1 = fitNbinomGLMs(cdsFull, count ~ libType + condition)

> fit0 = fitNbinomGLMs(cdsFull, count ~ libType)

These commands take a while to execute. Also, they may produce a few warnings, informing you that the GLM fit
failed to converge (and the results from these genes should be interpreted with care). The“fit”objects are data frames
with three columns:

> str(fit1)

'data.frame': 14599 obs. of 5 variables:

$ (Intercept) : num -0.722 6.654 -30.278 -1.591 11.978 ...

$ libTypesingle-end : num -31.082 -0.261 31.568 -0.462 -0.1 ...

$ conditionuntreated: num -30.8575 0.0405 -0.0306 2.1028 0.2562 ...

$ deviance : num 0.452 2.275 1.098 2.759 2.557 ...

$ converged : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

- attr(*, "df.residual")= num 4

To perform the test, we call

> pvalsGLM = nbinomGLMTest(fit1, fit0)

> padjGLM = p.adjust(pvalsGLM, method="BH")

Fixme: Can we add a paragraph on what to do if we only want to make specific comparisons, e.g. let fac be a factor
with three levels A, B and C, and we want to test pairwise for differences between A and B (without C), between A
and C (without B) etc.

The function nbinomTestGLM returned simply a vector of p values which we handed to the standard R function
p.adjust to adjust for multiple testing using the Benjamini-Hochberg (BH) method.

Figure 8: Comparison of per-gene estimates of the dispersion in the analysis using only the four paired-end samples
(x-axis) and in the analysis using all seven samples (y-axis). For visualisation, the values are on a logarithm-like scale,
defined by the function trsf, which is of the form f(x) = log

(
(x+

√
x2 + 1)/2

)
. For x > 2, the values of f(x) and

log(x) are approximately the same, whereas for values of x around 0, f(x) ≈ x is approximated by a straight line of
slope 1.

Let’s compare with the result from the four-samples test:

> tab1 = table("paired-end only" = res$padj < .1, "all samples" = padjGLM < .1)

> addmargins(tab1)

all samples

paired-end only FALSE TRUE Sum

Differential expression of RNA-Seq data at the gene level – the DESeq package

FALSE 10392 288 10680

TRUE 143 678 821

Sum 10535 966 11501

We see that the analyses find 678 genes in common, while 288 were only found in the analysis using all samples and
143 were specific for the paired-end only analysis.

In this case, the improvement in power that we gained from the additional samples is rather modest. This might
indicate that the single-end samples (which are presumably older than the paired-end one) are of lower quality. This is
supported by the observation that the dispersion estimates in the full data set tend to be larger than in the paired-end
only one. So, despite the fact that with 7 samples we gain power from having more degrees of freedom in the estimation
of the treatment effect, the additional samples also increase the dispersion (or equivalently, the variance), which loses
power.

> table(sign(fitInfo(cds)$perGeneDispEsts - fitInfo(cdsFull)$perGeneDispEsts))

-1 1

8175 3326

See also Figure 8, which is produced by

> trsf = function(x) log((x + sqrt(x*x+1))/2)

> plot(trsf(fitInfo(cds)$perGeneDispEsts),

+ trsf(fitInfo(cdsFull)$perGeneDispEsts), pch=16, cex=0.45, asp=1)

> abline(a=0, b=1, col="red3")

Continuing with the analysis, we can now extract the significant genes from the vector padjGLM as before. To see
the corresponding fold changes, we have a closer look at the object fit1.

> head(fit1)

(Intercept) libTypesingle-end conditionuntreated deviance converged

FBgn0000003 -0.722 -31.082 -30.8575 0.452 TRUE

FBgn0000008 6.654 -0.261 0.0405 2.275 TRUE

FBgn0000014 -30.278 31.568 -0.0306 1.098 TRUE

FBgn0000015 -1.591 -0.462 2.1028 2.759 TRUE

FBgn0000017 11.978 -0.100 0.2562 2.557 TRUE

FBgn0000018 8.568 0.230 0.0647 1.585 TRUE

The first three columns show the fitted coefficients, converted to a logarithm base 2 scale. The log2 fold change
due to the condition is shown in the third column. As indicated by the column name, it is the effect of “untreated”,
i.e., the log ratio of “untreated” versus “treated”. (This is unfortunately the other way round as before, due to the
peculiarities of contrast coding.) Note that the library type also had noticeable influence on the expression, and hence
would have increased the dispersion estimates (and so reduced power) if we had not fitted an effect for it.

The column deviance is the deviance of the fit. (Comparing the deviances with a χ2 likelihood ratio test is how
nbinomGLMTest calculates the p values.) The last column, converged, indicates whether the calculation of coefficients
and deviance has fully converged. (If it is false too often, you can try to change the GLM control parameters, as
explained in the help page to fitNbinomGLMs.) Fixme: This is a bit vague, ’too often’ should be specified and ideally
the remedy be automated.

Finally, we show that taking the library type into account was important to have good detection power by doing
the analysis again using the standard workflow, as outlined earlier, and without informing DESeq of the library types:

> cdsFullB = newCountDataSet(pasillaCountTable, pasillaDesign$condition)

> cdsFullB = estimateSizeFactors(cdsFullB)

> cdsFullB = estimateDispersions(cdsFullB)

> resFullB = nbinomTest(cdsFullB, "untreated", "treated")

> tab2 = table(

+ `all samples simple` = resFullB$padj < 0.1,

+ `all samples GLM` = padjGLM < 0.1)

> addmargins(tab2)

all samples GLM

all samples simple FALSE TRUE Sum

FALSE 11387 389 11776

TRUE 6 577 583

Sum 11393 966 12359

Differential expression of RNA-Seq data at the gene level – the DESeq package

We see that the two analyses find 577 genes in common, while in addition 389 genes were found by the analysis that
took library type into account. The small number, namely 6, of genes that only made the FDR cutoff in the simple
analysis is likely due to sampling variation.

5 Independent filtering and multiple testing

5.1 Filtering by overall count

The analyses of the previous sections involve the application of statistical tests, one by one, to each row of the data
set, in order to identify those genes that have evidence for differential expression. The idea of independent filtering is
to filter out those tests from the procedure that have no, or little chance of showing significant evidence, without even
looking at their test statistic. Typically, this results in increased detection power at the same experiment-wide type I
error. Here, we measure experiment-wide type I error in terms of the false discovery rate. A good choice for a filtering
criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,

2. is correlated with the test statistic under the alternative, and

3. does not notably change the dependence structure –if there is any– between the tests that pass the filter,
compared to the dependence structure between the tests before filtering.

The benefit from filtering relies on property 2, and we will explore it further in Section 5.2. Its statistical validity relies
on property 1 –which is simple to formally prove for many combinations of filter criteria with test statistics– and 3,
which is less easy to theoretically imply from first principles, but rarely a problem in practice. We refer to [7] for further
discussion of this topic.

> rs = rowSums (counts (cdsFull))

> theta = 0.4

> use = (rs > quantile(rs, probs=theta))

> table(use)

use

FALSE TRUE

5861 8738

> cdsFilt = cdsFull[use,]

Above, we consider as a filter criterion rs, the overall sum of counts (irrespective of biological condition), and remove
the genes in the lowest 40% quantile (as indicated by the parameter theta). We perform the testing as before in
Section 4.

> fitFilt1 = fitNbinomGLMs(cdsFilt, count ~ libType + condition)

> fitFilt0 = fitNbinomGLMs(cdsFilt, count ~ libType)

> pvalsFilt = nbinomGLMTest(fitFilt1, fitFilt0)

> padjFilt = p.adjust(pvalsFilt, method="BH")

Let us compare the number of genes found at an FDR of 0.1 by this analysis with that from the previous one (padjGLM).

> padjFiltForComparison = rep(+Inf, length(padjGLM))

> padjFiltForComparison[use] = padjFilt

> tab3 = table(`no filtering` = padjGLM < .1,

+ `with filtering` = padjFiltForComparison < .1)

> addmargins(tab3)

with filtering

no filtering FALSE TRUE Sum

FALSE 11287 106 11393

TRUE 3 963 966

Sum 11290 1069 12359

The analysis with filtering found an additional 106 genes, an increase in the detection rate by about 11%, while 3
genes were only found by the previous analysis.

Differential expression of RNA-Seq data at the gene level – the DESeq package

5.2 Why does it work?

First, consider Figure 9, which shows that among the 40–45% of genes with lowest overall counts, rs, there are
essentially none that achieved an (unadjusted) p value less than 0.003 (this corresponds to about 2.5 on the − log10-
scale).

> plot(rank(rs)/length(rs), -log10(pvalsGLM), pch=16, cex=0.45)

Figure 9: Scatterplot of rank of filter criterion (overall sum of counts rs) versus the negative logarithm of the test
statistic pvalsGLM.

This means that by dropping the 40% genes with lowest rs, we do not loose anything substantial from our subsequent
results. Second, consider the p value histogram in Figure 10. It shows how the filtering ameliorates the multiple testing
problem – and thus the severity of a multiple testing adjustment – by removing a background set of hypotheses whose
p values are distributed more or less uniformly in [0, 1].

> h1 = hist(pvalsGLM[!use], breaks=50, plot=FALSE)

> h2 = hist(pvalsGLM[use], breaks=50, plot=FALSE)

> colori = c(`do not pass`="khaki", `pass`="powderblue")

> barplot(height = rbind(h1$counts, h2$counts), beside = FALSE, col = colori,

+ space = 0, main = "", ylab="frequency")

> text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)), adj = c(0.5,1.7), xpd=NA)

> legend("topright", fill=rev(colori), legend=rev(names(colori)))

Figure 10: Histogram of p values for all tests (pvalsGLM). The area shaded in blue indicates the subset of those that
pass the filtering, the area in khaki those that do not pass.

Differential expression of RNA-Seq data at the gene level – the DESeq package

5.3 Diagnostic plots for multiple testing

The Benjamini-Hochberg multiple testing adjustment procedure [8] has a simple graphical illustration, which we
produce in the following code chunk. Its result is shown in the left panel of Figure 11.

> orderInPlot = order(pvalsFilt)

> showInPlot = (pvalsFilt[orderInPlot] <= 0.08)

> alpha = 0.1

> plot(seq(along=which(showInPlot)), pvalsFilt[orderInPlot][showInPlot],

+ pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

> abline(a=0, b=alpha/length(pvalsFilt), col="red3", lwd=2)

Schweder and Spjøtvoll [9] suggested a diagnostic plot of the observed p-values which permits estimation of the fraction
of true null hypotheses. For a series of hypothesis tests H1, . . . ,Hm with p-values pi, they suggested plotting

(1− pi, N(pi)) for i ∈ 1, . . . ,m, (1)

where N(p) is the number of p-values greater than p. An application of this diagnostic plot to pvalsFilt is shown in
the right panel of Figure 11. When all null hypotheses are true, the p-values are each uniformly distributed in [0, 1],
Consequently, the cumulative distribution function of (p1, . . . , pm) is expected to be close to the line F (t) = t. By
symmetry, the same applies to (1−p1, . . . , 1−pm). When (without loss of generality) the first m0 null hypotheses are
true and the other m−m0 are false, the cumulative distribution function of (1− p1, . . . , 1− pm0

) is again expected to
be close to the line F0(t) = t. The cumulative distribution function of (1− pm0+1, . . . , 1− pm), on the other hand, is
expected to be close to a function F1(t) which stays below F0 but shows a steep increase towards 1 as t approaches 1.
In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative
distribution function is expected to be close to

F (t) =
m0

m
F0(t) +

m−m0

m
F1(t). (2)

Such a situation is shown in the right panel of Figure 11. If F1(t)/F0(t) is small for small t, then the mixture fraction
m0

m can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right.
Such a fit is shown by the red line in the right panel of Figure 11.

> plot(1-pvalsFilt[orderInPlot],

+ (length(pvalsFilt)-1):0, pch=".",

+ xlab=expression(1-p[i]), ylab=expression(N(p[i])))

> abline(a=0, slope, col="red3", lwd=2)

6 Variance stabilizing transformation

For some applications, it is useful to work with transformed versions of the count data. Maybe the most obvious choice
is logarithmic transformation. Since count values for a gene can be zero in some conditions (and non-zero in others),
some people advocate the use of pseudocounts, i. e. transformations of the form

y = log2(n+ 1) or more generally, y = log2(n+ n0), (3)

where n represents the count values and n0 is a somehow chosen positive constant. In this section, we discuss a related,
alternative approach that offers more theoretical justification and a rational way of chosen the parameter equivalent to
n0 above. It is based on error modeling and the concept of variance stabilizing transformations [1,10,11]. We estimate
an overall mean-dispersion relationship of the data using estimateDispersions with the argument method="blind" and
call the function getVarianceStabilizedData.

> cdsBlind = estimateDispersions(cds, method="blind")

> vsd = varianceStabilizingTransformation(cdsBlind)

Here, we have used a parametric fit for the dispersion. In this case, the a closed-form expression for the variance stabi-
lizing transformation is used by getVarianceStabilizedData, which is derived in the file vst.pdf, that is distributed
in the package alongside this vignette. If a local fit is used (option fittype="local" to estimateDispersion) a
numerical integration is used instead. The resulting transformation is shown in Figure 12. The code that produces the
figure is hidden from this vignette for the sake of brevity, but can be seen in the .Rnw or .R source file.

Figure 13 plots the standard deviation of the transformed data, across samples, against the mean, first using the
shifted logarithm transformation (3), then using DESeq’s variance stabilising transformation. While for the latter, the
standard deviation is roughly constant along the whole dynamic range, the shifted logarithm results in a highly elevated
standard deviation in the lower count range.

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 11: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [8]. The black line
shows the p-values (y-axis) versus their rank (x-axis), starting with the smallest p-value from the left, then the second
smallest, and so on. Only the first 2021 p-values are shown. The red line is a straight line with slope α/n, where
n = 8738 is the number of tests, and α = 0.1 is a target false discovery rate (FDR). FDR is controlled at the value
α if the genes are selected that lie to the left of the rightmost intersection between the red and black lines: here,
this results in 1069 genes. Right: Schweder and Spjøtvoll plot, as described in the text. For both of these plots, the
p-values pvalsFilt from Section 5.1 were used as a starting point. Analogously, one can produce these types of plots
for any set of p-values, for instance those from the previous sections.

> library("vsn")

> par(mfrow=c(1,2))

> notAllZero = (rowSums(counts(cds))>0)

> meanSdPlot(log2(counts(cds)[notAllZero,] + 1), ylim = c(0,2.5))

> meanSdPlot(vsd[notAllZero,], ylim = c(0,2.5))

6.1 Application to moderated fold change estimates

In the beginning of Section 3, we have seen in the data.frame res the (logarithm base 2) fold change estimate
computed from the size-factor adjusted counts. When the involved counts are small, these (logarithmic) fold-change
estimates can be highly variable, and can even be infinite. For some purposes, such as the clustering of samples or
genes according to their expression profiles, or for visualisation of the data, this high variability from ratios between low
counts tends to drown informative, systematic signal in other parts of the data. The variance stabilizing transformation
offers one way to moderate the fold change estimates, so that they are more amenable to plotting or clustering.

> mod_lfc = (rowMeans(exprs(vsd)[, conditions(cds)=="treated", drop=FALSE]) -

+ rowMeans(exprs(vsd)[, conditions(cds)=="untreated", drop=FALSE]))

Let us compare these to the original (log2) fold changes. First we find that many of the latter are infinite (resulting
from division of a finite value by 0) or not a number (NaN, resulting from division of 0 by 0).

> lfc = res$log2FoldChange

> table(lfc[!is.finite(lfc)], useNA="always")

-Inf Inf NaN <NA>

568 608 3098 0

For plotting, let us bin genes by their log10 mean to colour them according to expression strength,

> logdecade = 1 + round(log10(1+rowMeans(counts(cdsBlind, normalized=TRUE))))

> lfccol = colorRampPalette(c("gray", "blue"))(6)[logdecade]

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 12: Graphs of the variance stabilizing transformation for sample 1, in blue, and of the transformation f(n) =
log2(n/s1), in black. n are the counts and s1 is the size factor for the first sample.

and then compare their ordinary log-ratios (lfc) against the moderated log-ratios (mod_lfc) in a scatterplot.

> ymax = 4.5

> plot(pmax(-ymax, pmin(ymax, lfc)), mod_lfc,

+ xlab = "ordinary log-ratio", ylab = "moderated log-ratio",

+ cex=0.45, asp=1, col = lfccol,

+ pch = ifelse(lfc<(-ymax), 60, ifelse(lfc>ymax, 62, 16)))

> abline(a=0, b=1, col="red3")

The result is shown in Figure 14.

7 Data quality assessment by sample clustering and visualisation

Data quality assessment and quality control (i. e. the removal of insufficiently good data) are essential steps of any
data analysis. Even though we present these steps towards the end of this vignette, they should typically be performed
very early in the analysis of a new data set, preceding or in parallel to the differential expression testing.

We define the term quality as fitness for purpose3. Our purpose is the detection of differentially expressed genes,
and we are looking in particular for samples whose experimental treatment suffered from an anormality that renders
the data points obtained from these particular samples detrimental to our purpose.

7.1 Heatmap of the count table

To explore a count table, it is often instructive to look at it as a heatmap. Below we show how to produce such a
heatmap from the variance stabilisation transformed data for all 7 samples.

> cdsFullBlind = estimateDispersions(cdsFull, method = "blind")

> vsdFull = varianceStabilizingTransformation(cdsFullBlind)

> library("RColorBrewer")

> library("gplots")

> select = order(rowMeans(counts(cdsFull)), decreasing=TRUE)[1:30]

> hmcol = colorRampPalette(brewer.pal(9, "GnBu"))(100)

> heatmap.2(exprs(vsdFull)[select,], col = hmcol, trace="none", margin=c(10, 6))

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 13: Per-gene standard deviation (taken across samples), against the rank of the mean, for the shifted logarithm
log2(n+ 1) (left) and DESeq’s variance stabilising transformation (right).

The left panel of Figure 15 shows the resulting heatmap for the 30 most highly expressed genes. For comparison, let
us also do the same with the untransformed counts.

> heatmap.2(counts(cdsFull)[select,], col = hmcol, trace="none", margin=c(10,6))

7.2 Heatmap of the sample-to-sample distances

Another use of variance stabilized data is sample clustering. Here, we apply the dist function to the transpose of the
transformed count matrix to get sample-to-sample distances.

> dists = dist(t(exprs(vsdFull)))

A heatmap of this distance matrix gives us an overview over similarities and dissimilarities between samples (Figure 16):

> mat = as.matrix(dists)

> rownames(mat) = colnames(mat) = with(pData(cdsFullBlind), paste(condition, libType, sep=" : "))

> heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13))

The clustering correctly reflects our experimental design, i.e., samples are more similar when they have the same
treatment or the same library type. (To avoid potential circularities in this conclusion, it was important to re-estimate
the dispersions with method="blind" in the calculation for cdsFullBlind above, as only then, the variance stabilizing
transformation is not informed about the design, and we can be sure that it is not biased towards a result supporting
the design.)

7.3 Principal component plot of the samples

Related to the distance matrix of Section 7.2 is the PCA plot of the samples, which we obtain as follows (Figure 17).

> print(plotPCA(vsdFull, intgroup=c("condition", "libType")))

3http://en.wikipedia.org/wiki/Quality_%28business%29

Differential expression of RNA-Seq data at the gene level – the DESeq package

http://en.wikipedia.org/wiki/Quality_%28business%29

Figure 14: Scatterplot of ordinary (lfc) versus moderated log-ratios (mod_lfc). The points are coloured in a scale
from grey to blue, representing weakly to strongly expressed genes. For the highly expressed genes (blue), lfc and
mod_lfc agree. Differences arise when the involved counts are small (grey points): in this case, the moderated log-ratio
is shrunk towards 0, compared to the ordinary log-ratio. The > and < symbols correspond to values of lfc whose
absolute value was larger than 4.5 (including those that were infinite). All values of mod_lfc vary in a finite range.

7.4 arrayQualityMetrics

Heatmaps and PCA plots similar to Figures 16 and 17 as well as some further diagnostics are also provided by the
package arrayQualityMetrics. The package may be particularly useful for larger data set with dozens of samples. You
can call its main function, which is also called arrayQualityMetrics, with an ExpressionSet such as vsdFull, which you
will have produced from your CountDataSet with calls to estimateDispersions and varianceStabilizingTransformation
as in the beginning of Section 7.1.

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 15: Heatmaps showing the expression data of the 30 most highly expressed genes. Left, the variance stabilisation
transformed data (vsdFull) are shown, right, the original count data (cdsFull). In the left panel, the sample clustering
aligns with the experimental factor (treated / untreated). The clustering and the colour scale in the right plot is
dominated by a small number of data points with large values.

Differential expression of RNA-Seq data at the gene level – the DESeq package

Figure 16: Heatmap showing the Euclidean distances between the samples as calculated from the variance stabilising
transformation of the count data.

Figure 17: PCA plot. The 7 samples shown in the 2D plane spanned by their first two principal components. This
type of plot is useful for visualizing the overall effect of experimental covariates and batch effects. For this data set,
no batch effects besides the known effects of condition and libType are discernible.

Differential expression of RNA-Seq data at the gene level – the DESeq package

8 Further reading

For more information on the statistical method, see our paper [1]. For more information on how to customize the
DESeq work flow, see the package help pages, especially the help page for estimateDispersions.

9 Changes since publication of the paper

Since our paper on DESeq was published in Genome Biology in Oct 2010, we have made a number of changes to
algorithm and implementation, which are listed here.

• nbinomTest calculates a p value by summing up the probabilities of all per-group count sums a and b that
sum up to the observed count sum kiS and are more extreme than the observed count sums kiA and kiB .
Equation (11) of the paper defined more extreme as those pairs of values (a, b) that had smaller probability
than the observed pair. This caused problems in cases where the dispersion exceeded 1. Hence, we now sum
instead the probabilities of all values pairs that are further out in the sense that they cause a more extreme fold
change (a/sA)/(b/sB), where sA and sB are the sums of the size factors of the samples in conditions A and B,
respectively. We do this in a one-tailed manner and double the result. Furthermore, we no longer approximate
the sum, but always calculate it exactly.

• We added the possibility to fit GLMs of the negative binomial family with log link. This new functionality is
described in this vignette. p values are calculated by a χ2 likelihood ratio test. The logarithms of the size factors
are provided as offsets to the GLM fitting function.

• The option sharingMode=’maximum’ was added to estimateDispersion and made default. This change makes
DESeq robust against variance outliers and was not yet discussed in the paper.

• By default, DESeq now estimates one pooled dispersion estimate across all (replicated) conditions. In the
original version, we estimated a separate dispersion-mean relation for each condition. The “maximum” sharing
mode achieves its goal of making DESeq robust against outliers only with pooled dispersion estimate, and hence,
this is now the default. The option method=’per-condition’ to estimateDispersions allows the user to go
back to the old method.

• In the paper, the mean-dispersion relation is fitted by local regression. Now, DESeq also offers a parametric
regression, as described in this vignette. The option fitType to estimateDispersions allows the user to choose
between these. If a parametric regression is used, the variance stabilizing transformation is calculated using the
closed-form expression given in the vignette supplement file vst.pdf.

• Finally, instead of the term raw squared coefficient of variance used in the paper we now prefer the more standard
term dispersion.

10 Session Info

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] gplots_2.11.0 MASS_7.3-22 KernSmooth_2.23-8 caTools_1.13 bitops_1.0-4.1

[6] gdata_2.12.0 gtools_2.7.0 RColorBrewer_1.0-5 vsn_3.26.0 pasilla_0.2.14

[11] DESeq_1.10.1 lattice_0.20-10 locfit_1.5-8 DEXSeq_1.4.0 Biobase_2.18.0

Differential expression of RNA-Seq data at the gene level – the DESeq package

[16] BiocGenerics_0.4.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.20.0 BiocInstaller_1.8.2 DBI_0.2-5 IRanges_1.16.2

[5] RCurl_1.95-0.1.2 RSQLite_0.11.2 XML_3.95-0.1 affy_1.36.0

[9] affyio_1.26.0 annotate_1.36.0 biomaRt_2.14.0 genefilter_1.40.0

[13] geneplotter_1.36.0 hwriter_1.3 limma_3.14.0 parallel_2.15.1

[17] plyr_1.7.1 preprocessCore_1.20.0 splines_2.15.1 statmod_1.4.16

[21] stats4_2.15.1 stringr_0.6.1 survival_2.36-14 tools_2.15.1

[25] xtable_1.7-0 zlibbioc_1.4.0

References

[1] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biology,
11:R106, 2010.

[2] Valerie Obenchain. Counting with summarizeOverlaps. Vignette, distributed as part of the Bioconductor
package GenomicRanges, as file summarizeOverlaps.pdf, 2011.

[3] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R. Graveley.
Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research, pages 193–202,
2011.

[4] Simon Anders, Alejandro Reyes, and Wolfgang Huber. Detecting differential usage of exons from RNA-seq data.
Genome Research, 2012.

[5] D. R. Cox and N. Reid. Parameter orthogonality and approximate conditional inference. Journal of the Royal
Statistical Society, Series B, 49(1):1–39, 1987.

[6] Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Research, 40:4288–4297, January 2012.

[7] Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering increases detection power for
high-throughput experiments. PNAS, 107(21):9546–9551, 2010.

[8] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society B, 57:289–300, 1995.

[9] T. Schweder and E. Spjotvoll. Plots of P-values to evaluate many tests simultaneously. Biometrika, 69:493–502,
1982.

[10] Robert Tibshirani. Estimating transformations for regression via additivity and variance stabilization. Journal of
the American Statistical Association, 83:394–405, 1988.

[11] Wolfgang Huber, Anja von Heydebreck, Holger Sültmann, Annemarie Poustka, and Martin Vingron. Parameter
estimation for the calibration and variance stabilization of microarray data. Statistical Applications in Genetics
and Molecular Biology, 2(1):Article 3, 2003.

Differential expression of RNA-Seq data at the gene level – the DESeq package

	Input data and preparations
	The count table
	The metadata
	Normalisation

	Variance estimation
	Inference: Calling differential expression
	Standard comparison between two experimental conditions
	Working partially without replicates
	Working without any replicates

	Multi-factor designs
	Independent filtering and multiple testing
	Filtering by overall count
	Why does it work?
	Diagnostic plots for multiple testing

	Variance stabilizing transformation
	Application to moderated fold change estimates

	Data quality assessment by sample clustering and visualisation
	Heatmap of the count table
	Heatmap of the sample-to-sample distances
	Principal component plot of the samples
	arrayQualityMetrics

	Further reading
	Changes since publication of the paper
	Session Info

