
Package ‘segmentSeq’
March 26, 2013

Type Package

Title Methods for identifying small RNA loci from high-throughput sequencing data

Version 1.10.1

Date 2010-01-20

Author Thomas J. Hardcastle

Maintainer Thomas J. Hardcastle <tjh48@cam.ac.uk>

Description
High-throughput sequencing technologies allow the production of large volumes of short se-
quences, which can be aligned to the genome to create a set of matches to the genome. By look-
ing for regions of the genome which to which there are high densities of matches, we can in-
fer a segmentation of the genome into regions of biological significance. The meth-
ods in this package allow the simultaneous segmentation of data from multiple samples, tak-
ing into account replicate data, in order to create a consensus segmentation. This has obvious ap-
plications in a number of classes of sequencing experiments, particularly in the discov-
ery of small RNA loci and novel mRNA transcriptome discovery.

License GPL-3

LazyLoad yes

Depends R (>= 2.3.0), methods, baySeq (>= 1.11.1), ShortRead,GenomicRanges, IRanges

Suggests snow

Imports baySeq, graphics, grDevices, IRanges, methods, utils,GenomicRanges

Collate AllClasses.R segData-accessors.R alignmentData-accessors.R
lociData-accessors.R getCounts.R plotGenome.R processAD.R
processTags.R getOverlaps.R heuristicSeg.R classifySeg.R
lociLikelihoods.R processPosteriors.R findChunks.R utilityFunctions.R

biocViews Bioinformatics, HighThroughputSequencing,MultipleComparisons

1

2 segmentSeq-package

R topics documented:
segmentSeq-package . 2
alignmentData-class . 4
classifySeg . 5
findChunks . 7
getCounts . 8
getOverlaps . 10
heuristicSeg . 11
lociData-class . 13
lociLikelihoods . 14
plotGenome . 16
processAD . 17
readMethods . 19
segData-class . 21
SL . 23

Index 24

segmentSeq-package Segmentation of the genome based on multiple samples of high-
throughput sequencing data.

Description

The segmentSeq package is intended to take multiple samples of high-throughput data (together
with replicate information) and identify regions of the genome which have a (reproducibly) high
density of tags aligning to them. The package was developed for use in identifying small RNA
precursors from small RNA sequencing data, but may also be useful in some mRNA-Seq and chIP-
Seq applications.

Details

Package: segmentSeq
Type: Package
Version: 0.0.2
Date: 2010-01-20
License: GPL-3
LazyLoad: yes
Depends: baySeq, ShortRead

To use the package, we construct an alignmentData object from sets of alignment files using either
the readGeneric function to read text files or the readBAM function to read from BAM format
files.

We then use the processAD function to identify all potential subsegments of the data and the num-
ber of tags that align to these subsegments. We then use either a heuristic or empirical Bayesian
approach to segment the genome into ‘loci’ and ‘null’ regions. We can then acquire posterior like-
lihoods for each set of replicates which tell us whether a region is likely to be a locus or a null in
that replicate group.

segmentSeq-package 3

The segmentation is designed to be usable by the baySeq package to allow differential expression
analyses to be carried out on the discovered loci.

The package (optionally) makes use of the ’snow’ package for parallelisation of computationally
intensive functions. This is highly recommended for large data sets.

See the vignette for more details.

Author(s)

Thomas J. Hardcastle

Maintainer: Thomas J. Hardcastle <tjh48@cam.ac.uk>

References

Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

baySeq

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ’alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Process the alignmentData object to produce a ’segData’ object.

sD <- processAD(alignData, cl = NULL)

4 alignmentData-class

alignmentData-class Class "alignmentData"

Description

The alignmentData class records information about a set of alignments of high-throughput se-
quencing data to a genome. Details include the alignments themselves, details on the chromosomes
of the genome to which the data are aligned, and information on the libraries from which the data
come.

Objects from the Class

Objects can be created by calls of the form new("alignmentData", ...), but more usually by using
one of readBAM or readGeneric functions to generate the object from a set of alignment files.

Slots

alignments: Object of class "GRanges". Stores information about the alignments. See Details.

data: Object of class "DataFrame". For each alignment described in the alignments slot, contains
the number of times the alignment is seen in each sample.

libnames: Object of class "character". The names of the libraries for which alignment data exists.

libsizes: Object of class "numeric". The library sizes (see Details) for each of the libraries.

replicates: Object of class "factor". Replicate information for each of the libraries. See Details.

Details

The alignments slot is the key element of this class. This is a GRanges object that, in addition
to the usual elements defining the location of aligned objects to a reference genome, also describes
the values ‘tag’, giving the sequence of the tag aligning to the location, ‘matches’, indicating in
how many places that tag matches to the genome, ‘chunk’, an identifier for the sets of tags that
align close enough together to form a potential locus, and ‘chunkDup’, indicating whether that tag
matches to multiple places within the chunk.

The library sizes, defined in the libsizes slot, provide some scaling factor for the observed number
of counts of a tag in different samples.

The replicates slot is a vector of factors such that the ith sample is a replicate of the jth sample if
and only if @replicates[i] == @replicates[j].

Methods

[signature(x = "alignmentData"): ...

dim signature(x = "alignmentData"): ...

initialize signature(.Object = "alignmentData"): ...

show signature(object = "alignmentData"): ...

Author(s)

Thomas J. Hardcastle

classifySeg 5

See Also

readGeneric, which will produce a ’alignmentData’ object from appropriately formatted tab-
delimited files. readBAM, which will produce a ’alignmentData’ object from BAM files. proces-
sAD, which will convert an ’alignmentData’ object into a ’segData’ object for segmentation.

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ’alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens)

classifySeg A method for defining a genome segment map by an empirical
Bayesian classification method

Description

This function acquires empirical distributions of sequence tag density from an already existing (or
heuristically defined) segment map. It uses these to classify potential segments as either segments
or nulls in order to define a new (and improved) segment map.

Usage

classifySeg(sD, cD, aD, lociCutoff = 0.9, nullCutoff = 0.9, subRegion =
NULL, getLikes = TRUE, lR = FALSE, samplesize = 1e5, largeness = 1e8,
tempDir = NULL, cl)

Arguments

sD A segData object derived from the ‘aD’ object.

cD A lociData object containing an already existing segmentation map, or NULL.

aD An alignmentData object.

lociCutoff The minimum posterior likelihood of being a locus for a region to be treated as
a locus.

6 classifySeg

nullCutoff The minimum posterior likelihood of being a null for a region to be treated as a
null.

subRegion A data.frame object defining the subregions of the genome to be segmented. If
NULL (default), the whole genome is segmented.

getLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?

lR If TRUE, locus and null calls are made on the basis of likelihood ratios rather
than posterior likelihoods. Not recommended.

samplesize The sample size to be used when estimating the prior distribution of the data
with the getPriors.NB function.

largeness The maximum size for a split analysis.

tempDir A directory for storing temporary files produced during the segmentation.

cl A SNOW cluster object, or NULL. See Details.

Details

This function acquires empirical distributions of sequence tag density from the segmentation map
defined by the ‘cD’ argument (if ‘cD’ is NULL or missing, then the heuristicSeg function is used
to define a segmentation map. It uses these empirical distributions to acquire posterior likelihoods
on each potential segment being either a true segment or a null region. These posterior likelihoods
are then used to define the segment map.

Value

A lociData object, containing the segmentation map discovered.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

heuristicSeg a fast heuristic alternative to this function. plotGenome, a function for plotting the
alignment of tags to the genome (together with the segments defined by this function). baySeq, a
package for discovering differential expression in lociData objects.

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

findChunks 7

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Process the alignmentData object to produce a ‘segData’ object.

sD <- processAD(alignData, cl = NULL)

Use the classifySeg function on the segData object to produce a lociData object.

pS <- classifySeg(aD = alignData, sD = sD, subRegion = data.frame(chr = ">Chr1", start = 1, end = 1e5), getLikes = TRUE, cl = NULL)

findChunks Identifies ‘chunks’ of data within a set of aligned reads.

Description

This function identifies chunks of data within a set of aligned reads by looking for gaps within the
alignments; regions where no reads align. If we assume that a locus should not contain a gap of
sufficient length, then we can separate the analysis of the data into chunks defined by these gaps,
reducing the complexity of the problem of segmentation.

Usage

findChunks(alignments, gap, checkDuplication = TRUE)

Arguments

alignments A GRanges object defining a set of aligned reads.

gap The minimum length of a gap across which it is assumed that no locus can exist.

checkDuplication
Should we check whether or not reads are duplicated within a chunk? Defaults
to TRUE.

Details

This function is called by the readGeneric and readBAM functions but may usefully be called
again if filtering of an linkS4class{alignmentData} object has altered the data present, or to in-
crease the computational effort required for subsequent analysis. The lower the ‘gap’ parameter
used to define the chunks, the faster (though potentially less accurate) any subsequent analyses will
be.

8 getCounts

Value

A modified GRanges object, now containing columns ‘chunk’ and ‘chunkDup’ (if ’checkDuplica-
tion’ is TRUE), identifying the chunk to which the alignment belongs and whether the alignment of
the tag is duplicated within the chunk respectively.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Read the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Filter the data on number of matches of each tag to the genome

alignData <- alignData[values(alignData@alignments)$matches < 5,]

Redefine the chunking structure of the data.

alignData <- findChunks(alignData@alignments, gap = 100)

getCounts Gets counts from alignment data from a set of genome segments.

Description

A function for extracting count data from an alignmentData object given a set of segments defined
on the genome.

Usage

getCounts(segments, aD, preFiltered = FALSE, as.matrix = FALSE, cl)

getCounts 9

Arguments

segments A GRanges object which defines a set of segments for which counts are re-
quired.

aD An alignmentData object.

preFiltered The function internally cleans the data; however, this may not be needed and
omitting these steps may save computational time. See Details.

as.matrix If TRUE, returns the counts as a matrix. Otherwise, returns the counts as a
DataFrame.

cl A SNOW cluster object, or NULL. See Details.

Details

The function extracts count data from alignmentData object ’aD’ given a set of segments. The
non-trivial aspect of this function is that at a segment which contains a tag that matches to multiple
places in that segment (and thus appears multiple times in the alignmentData object) should count
it only once.

If preFiltered = FALSE then the function allows for missing (NA) data in the segments, unordered
segments and duplicated segments. If the segment list has no missing data, is already ordered, and
contains no duplications, then computational time can be saved by setting preFiltered = TRUE.

A cluster object (package: snow) is recommended for parallelisation of this function when using
large data sets. Passing NULL to this variable will cause the function to run in non-parallel mode.

In general, this function will probably not be accessed by the user as the processAD function
includes a call to getCounts as part of the standard processing of an alignmentData object into a
segData object.

Value

If ‘as.matrix’, a matrix, each column of which corresponds to a library in the alignmentData object
‘aD’ and each row to the segment defined by the corresponding row in ‘segments’. Otherwise an
equivalent DataFrame object.

Author(s)

Thomas J. Hardcastle

See Also

processAD

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

10 getOverlaps

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ’alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Get count data for three arbitrarily chosen segments on chromosome 1.

getCounts(segments = GRanges(seqnames = c(">Chr1"),
IRanges(start = c(1,100,2000), end = c(40,3000,5000))),
aD = alignData, cl = NULL)

getOverlaps Identifies overlaps between two sets of genomic coordinates

Description

This function identifies which of a set of genomic segments overlaps with another set of coordi-
nates; either with partial overlap or with the segments completely contained within the coordinates.
The function is used within the ‘segmentSeq’ package for various methods of constructing a seg-
mentation map, but may also be useful in downstream analysis (e.g. annotation analyses).

Usage

getOverlaps(coordinates, segments, overlapType = "overlapping", whichOverlaps = TRUE, cl)

Arguments

coordinates A GRanges object defining the set of coordinates with which the segments may
overlap.

segments A GRanges object defining the set of segments which may overlap within the
coordinates.

overlapType Which kind of overlaps are being sought? Can be one of ‘overlapping’, ‘con-
tains’ or ‘within’. See Details.

whichOverlaps If TRUE, returns the ‘segments’ overlapping with the ‘coordinates’. If FALSE,
returns a boolean vector specifying which of the ‘coordinates’ overlap with the
‘segments’.

cl A SNOW cluster object, or NULL. See Details.

Details

If overlapType = "overlapping" then any overlap between the ‘coordinates’ and the ‘segments’ is
sufficient. If overlapType = "contains" then a region defined in ‘coordinates’ must completely
contain at least one of the ‘segments’ to count as an overlap. If overlapType = "within" then a
region defined in ‘coordinates’ must be completely contained by at least one of the ‘segments’ to
count as an overlap.

heuristicSeg 11

A ’cluster’ object (package: snow) may usefully be used for parallelisation of this function when
examining large data sets. Passing NULL to this variable will cause the function to run in non-
parallel mode.

Value

If whichOverlaps = TRUE, then the function returns a list object with length equal to the number
of rows of the ‘coordinates’ argument. The ‘i’th member of the list will be a numeric vector giving
the row numbers of the ‘segments’ object which overlap with the ‘i’th row of the ‘coordinates’
object, or NA if no segments overlap with this coordinate region.

If whichOverlaps = FALSE, then the function returns a boolean vector with length equal to the
number of rows of the ‘coordinates’ argument, indicating which of the regions defined in coordi-
nates have the correct type of overlap with the ‘segments’.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Find which tags overlap with an arbitrary set of coordinates.

getOverlaps(coordinates = GRanges(seqnames = c(">Chr1"),
IRanges(start = c(1,100,2000), end = c(40,3000,5000))),
segments = alignData@alignments, overlapType = "overlapping",
whichOverlaps = TRUE, cl = NULL)

heuristicSeg A (fast) heuristic method for creation of a genome segment map.

12 heuristicSeg

Description

This method identifies by heuristic methods a set of loci from a segData object. It does this by
identifying within replicate groups regions of the genome that satisfy the criteria for being a locus
and have no region within them that satisfies the criteria for being a null. These criteria can be
defined by the user or inferred from the data.

Usage

heuristicSeg(sD, aD, RKPM = 1000, gap = 100, subRegion =
NULL, largeness = 1e8, getLikes = TRUE, verbose = TRUE, cl = NULL)

Arguments

aD An alignmentData object.

sD A segData object derived from the ‘aD’ object.

RKPM What RKPM (reads per kilobase per million reads) distinguishes between a lo-
cus and a null region? Ignored if bimodality = TRUE.

gap What is the minimum length of a null region? Ignored if bimodality = TRUE.

subRegion A ’data.frame’ object defining the subregions of the genome to be segmented.
If NULL (default), the whole genome is segmented.

largeness The maximum size for a split analysis.

getLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?

verbose Should the function be verbose? Defaults to TRUE.

cl A SNOW cluster object, or NULL. Defaults to NULL. See Details.

Details

A ’cluster’ object (package: snow) may be used for parallelisation of parts of this function when
examining large data sets. Passing NULL to this variable will cause the function to run in non-
parallel mode.

Value

A lociData object, containing count information on all the segments discovered.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., Kelly, K.A. and Balcombe D.C. (2011). Identifying small RNA loci from high-
throughput sequencing data. In press.

See Also

classifySeg, an alternative approach to this problem using an empirical Bayes approach to classify
segments. plotGenome, a function for plotting the alignment of tags to the genome (together with
the segments defined by this function). baySeq, a package for discovering differential expression
in lociData objects.

lociData-class 13

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Process the alignmentData object to produce a ‘segData’ object.

sD <- processAD(alignData, cl = NULL)

Use the segData object to produce a segmentation of the genome.

segD <- heuristicSeg(sD = sD, aD = alignData,
subRegion = data.frame(chr = ">Chr1", start = 1, end = 1e5),
cl = NULL)

lociData-class Class "lociData"

Description

The lociData class is based on the lociData class defined in the ‘baySeq’ package, but includes
a ‘coordinates’ slot giving the coordinates of genomic loci and a ‘locLikelihoods’ slot which con-
tains the estimated likelihoods that each annotated region is a locus in each replicate group and a
coordinates structure giving the locations of the loci.

Slots

locLikelihoods: Object of class "matrix" describing estimated likelihoods that each region de-
fined in ‘coordinates’ is a locus in each replicate group.

coordinates: Object of class "GRanges" defining the coordinates of the genomic loci.

data: Object of class "matrix" defining count data for each locus defined in ‘coordinates’

replicates: Object of class "factor" defining the replicate structure of the data.

libsizes: Object of class "numeric" describing the library size (scaling factor) for each sample.

groups: Object of class "list" defing the group (model) structure of the data (see the baySeq package).

annotation: Object of class "data.frame" giving any additional annotation information for each
locus.

14 lociLikelihoods

priorType: Object of class "character" describing the type of prior information available in slot
’priors’.

priors: Object of class "list" defing the prior parameter information. Calculated by the baySeq
package.

posteriors: Object of class "matrix" giving the estimated posterior likelihoods for each replicate
group. Calculated by the baySeq package.

nullPosts: Object of class "numeric" which, if calculated, defines the posterior likelihoods for the
data having no true expression of any kind. Calculated by the baySeq package.

estProps: Object of class "numeric" giving the estimated proportion of tags belonnging to each
group. Calculated by the baySeq package.

seglens: Object of class "matrix" defining the lengths of each segment containing the counts de-
scribed in the ’data’ slot. May be initialised with a vector, or ignored altogether.

Extends

Class "lociData", directly.

Details

The seglens slot describes, for each row of the data object, the length of the segment that contains
the number of counts described by that row. For example, if we are looking at the number of hits
matching genes, the seglens object would consist of transcript lengths. Exceptionally, we may want
to use different segment lengths for different samples and so the slot takes the form of a matrix.
If the matrix has only one column, it is duplicated for all samples. Otherwise, it should have the
same number of columns as the ’data’ slot. If the slot is the empty matrix, then it is assumed that
all segments have the same length.

Methods

Methods ‘new’, ‘dim’, ‘[’ and ‘show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

lociLikelihoods Evaluates the posterior likelihoods of each region defined by a seg-
mentation map as a locus.

Description

An empirical Bayesian approach that takes a segmentation map and uses this to bootstrap posterior
likelihoods on each region being a locus for each replicate group.

Usage

lociLikelihoods(cD, aD, newCounts = FALSE, bootStraps = 1,
inferNulls = TRUE, nasZero = FALSE, usePosteriors =

TRUE, cl)

lociLikelihoods 15

Arguments

cD A lociData object that defines a segmentation map.

aD An alignmentData object.

newCounts Should new counts be evaluated for the segmentation map in ‘cD’ before calcu-
lating loci likelihoods? Defaults to FALSE

bootStraps What level of bootstrapping should be carried out on the inference of posterior
likelihoods? See the baySeq function getLikelihoods.NB for a discussion of
bootstrapping.

inferNulls Should null regions be inferred from the gaps between segments defined by the
‘cD’ object?

nasZero If FALSE, any locus with a posterior likelihood ‘NA’ in the existing segmenta-
tion map is treated as a null region for the first bootstrap; If TRUE, it is ignored
for the first bootstrap.

usePosteriors If TRUE, the function uses the existing likelihoods to weight the prior estimation
of parameters. Defaults to TRUE.

cl A SNOW cluster object, or NULL. See Details.

Details

A ’cluster’ object (package: snow) may be used for parallelisation of this function when examining
large data sets. Passing NULL to this variable will cause the function to run in non-parallel mode.

Value

A lociData object.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

16 plotGenome

Process the alignmentData object to produce a ‘segData’ object.

sD <- processAD(alignData, cl = NULL)

Use the segData object to produce a segmentation of the genome, but
without evaluating posterior likelihoods.

segD <- heuristicSeg(sD = sD, aD = alignData,
subRegion = data.frame(chr= ">Chr1", start = 1, end = 1e5),
getLikes = FALSE, cl = NULL)

Use the lociData function to evaluate the posterior likelihoods directly.

lociData <- lociLikelihoods(segD, aD = alignData, bootStraps = 5,
inferNulls = TRUE, cl = NULL)

plotGenome Plots the alignment of sequence tags on the genome given an ‘alig-
mentData’ object and (optionally) a set of segments found.

Description

Plots the data from an alignmentData object for a given set of samples. Can optionally include in
the plot the annotation data from a lociData object containing segment information.

Usage

plotGenome(aD, locData, chr = 1, limits = c(0, 1e4), samples = NULL,
plotType = "pileup", plotDuplicated = FALSE, density = 0, showNumber =
TRUE, logScale = FALSE, cap = Inf, ...)

Arguments

aD An alignmentData object.

locData A lociData object (produced by the heuristicSeg or classifySeg function and
therefore) containing appropriate annotation information. Can be omitted if this
annotation is not known/required.

chr The name of the chromosome to be plotted. Should correspond to a chromosome
name in the alignmentData object.

limits The start and end point of the region to be plotted.

samples The sample numbers of the samples to be plotted. If NULL, plots all samples.

plotType The manner in which the plot is created. Currently only plotType = pileup is
recommended.

plotDuplicated If TRUE, then any duplicated sequence tags (i.e., sequence tags that match to
multiple places in the genome) in the ‘aD’ object will be plotted on a negative
scale for each sample. Defaults to FALSE (recommended).

density The density of the shading lines to be used in plotting each segment.

showNumber Should the row number of each segment be shown?

logScale Should a log scale be used for the number of sequence tags found at each base?

processAD 17

cap A numeric value defining a cap on the maximum number of reads to be plotted
at any one point. Useful if a large number of reads at one location prevent a
clear signal being seen elsewhere.

... Any additional graphical parameters for passing to plot.

Value

Plotting function.

Author(s)

Thomas J. Hardcastle

See Also

alignmentData, heuristicSeg, classifySeg

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Plot the alignments to the genome on chromosome 1 between bases 1 and 10000

plotGenome(alignData, chr = ">Chr1", limits = c(1, 1e5))

processAD Processes an ‘alignmentData’ object into a ‘segData’ object for seg-
mentation.

Description

In order to discover segments of the genome with a high density of sequenced data, a ‘segData’
object must be produced. This is an object containing a set of potential segments, together with the
counts for each sample in each potential segment.

18 processAD

Usage

processAD(aD, gap = NULL, verbose = TRUE, cl)

Arguments

aD An alignmentData object.

gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. See Details.

verbose Should processing information be displayed? Defaults to TRUE.

cl A SNOW cluster object, or NULL. See Details.

Details

This function takes an alignmentData object and constructs a segData object from it. The function
creates a set of potential segments by looking for all locations on the genome where the start of a
region of overlapping alignments exists in the alignmentData object. A potential segment then
exists from this start point to the end of all regions of overlapping alignments such that there is
no region in the segment of at least length ‘gap’ where no tag aligns. The number of potential
segments can therefore be increased by increasing this limit, or (usually more usefully) decreased
by decreasing this limit in order to save computational effort.

The ‘gap’ argument is now by default specified in the readGeneric and readBAM functions used
to create the ‘aD’ object, and so ‘gap’ can be left as NULL providing this has been done.

A ’cluster’ object (package: snow) is recommended for parallelisation of this function when using
large data sets. Passing NULL to this variable will cause the function to run in non-parallel mode.

Value

A segData object.

Author(s)

Thomas J. Hardcastle

See Also

getCounts, which produces the count data for each potential segment. heuristicSeg and classifySeg,
which segment the genome based on the segData object produced by this function segData alignmentData

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")

readMethods 19

replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Process the alignmentData object to produce a ‘segData’ object.

sD <- processAD(alignData, gap = 100, cl = NULL)

readMethods Functions for processing files of various formats into an ‘alignment-
Data’ object.

Description

These functions take alignment files of various formats to produce an object (see Details) describ-
ing the alignment of sequencing tags from different libraries. At present, BAM and text files are
supported.

Usage

readGeneric(files, dir = ".", replicates, libnames, chrs, chrlens, cols,
header = TRUE, gap = 200, polyLength, estimationType = "quantile",
verbose = TRUE, ...)

readBAM(files, dir = ".", replicates, libnames, chrs, chrlens, countID = NULL,
gap = 200, polyLength, estimationType = "quantile", verbose = TRUE)

Arguments

files Filenames of the files to be read in.

dir Directory (or directories) in which the files can be found.

replicates A vector defining the replicate structure if the group. If and only if the ith
library is a replicate of the jth library then @replicates[i] == @replicates[j].
This argument may be given in any form but will be stored as a factor.

libnames Names of the libraries defined by the file names.

chrs A chracter vector defining (a selection of) the chromosome names used in the
alignment files.

chrlens Lengths of the chromosomes to which the alignments were made.

cols A named character vector which describes which column of the input files con-
tains which data. See Details.

countID A (two-character) string used by the BAM file to identify the ‘counts’ of in-
dividual sequenced reads; that is, how many times a given read appears in the
sequenced library. If NULL, it is assumed that the data are redundant (see De-
tails).

20 readMethods

header Do the input files have a header line? Defaults to TRUE. See Details.

gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. See findChunks.

polyLength If given, an integer value N defining the length of (approximate) homopolymers
which will be removed from the data. If a tag contains a sequence of N+1 reads
consisting of at least N identical bases, it will be removed. If not given, all data
is used.

estimationType The estimationType that will be used by the ‘baySeq’ function getLibsizes to
infer the library sizes of the samples.

verbose Should processing information be displayed? Defaults to TRUE.

... Additional parameters to be passed to read.table. In particular, the ‘sep’ and
‘skip’ arguments may be useful.

Details

readBAM: This function takes a set of BAM files and generates the ’alignmentData’ object from
these. If a character string for ‘countID’ is given, the function assumes the data are non-redundant
and that ‘countID’ identifies the count data (i.e., how many times each read appears in the sequenced
library) in each BAM file. If ‘countID’ is NULL, then it is assumed that the data are redundant, and
the count data are inferred from the file.

readGeneric: The purpose of this function is to take a set of plain text files and produce an ’alignmentData’
object. The function uses read.table to read in the columns of data in the files and so by default
columns are separated by any white space. Alternative separators can be used by passing the appro-
priate value for ’sep’ to read.table.

The files may contain columns with column names ’chr’, ’tag’, ’count’, ’start’, ’end’, ’strand’ in
which case the ‘cols’ argument can be ommitted and ‘header’ set to TRUE. If this is the case, there
is no requirement for all the files to have the same ordering of columns (although all must have
these column names).

Alternatively, the columns of data in the input files can be specified by the ‘cols’ argument in the
form of a named character vector (e.g; ’cols = c(chr = 1, tag = 2, count = 3, start = 4, end = 5, strand = 6)’
would cause the function to assume that the first column contains the chromosome information, the
second column contained the tag information, etc. If ‘cols’ is specified then information in the
header is ignored. If ‘cols’ is missing and ‘header’ is FALSE, then it is assumed that the data takes
the form described in the example above.

The ’tag’, ’count’ and ’strand’ columns may optionally be omitted from either the file column
headers or the ‘cols’ argument. If the ’tag’ column is omitted, then the data will not account
for duplicated sequences when estimating the number of counts in loci. If the ’count’ column is
omitted, the ’readGeneric’ function will assume that the file contains the alignments of each copy
of each sequence tag, rather than an aggregated alignment of each unique sequence. The unique
alignments will be identified and the number of sequence tags aligning to each position will be
calculated. If ’strand’ is omitted, the strand will simply be ignored.

Value

An alignmentData object.

Author(s)

Thomas J. Hardcastle

segData-class 21

See Also

alignmentData

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ‘alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

segData-class Class "segData"

Description

The segData class contains data about potential segments on the genome containing data about
each potential subsegment.

Objects from the Class

Objects can be created by calls of the form new("segData", ..., seglens). However, more usually
they will be created by calling the processAD function.

Slots

data: Object of class DataFrame. Contains the number of counts observed for each sample in
each potential segment.

libsizes: Object of class "numeric". The library sizes for each sample.

replicates: Object of class "factor". The replicate structure for the samples.

coordinates: A GRanges object defining the coordinates of the segments.

locLikelihoods: Object of class "DataFrame" describing estimated likelihoods that each region
defined in ‘coordinates’ is a locus in each replicate group.

22 segData-class

Details

The @coordinates slot contains information on each of the potential segments; specifically, chro-
mosome, start and end of the segment, together. Each row of the @coordinates slot should corre-
spond to the same row of the @data slot.

In almost all cases objects of this class should be produced by the processAD function.

Methods

Methods ’new’, ’dim’, ’[’ and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

See Also

processAD, the function that will most often be used to create objects of this class. classifySeg, an
empirical Bayesian method for defining a segmentation based on a segData object.

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1e6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an ’alignmentData’ object.

alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)

Process the alignmentData object to produce a ’segData’ object.

sD <- processAD(alignData, cl = NULL)

Estimate prior parameters for the segData object.

SL 23

SL Example data selected from a set of Illumina sequencing experiments.

Description

Each of the files ’SL9’, ’SL10’, ’SL26’ and ’SL32’ represents a subset of the data from an Illumina
sequencing experiment. These data consist of alignment information; the tag sequence, and the
number of times that each sequence is observed.

Usage

SL

Format

A set of tab-delimited files containing data from four sequencing experiments.

Source

In-house Illumina sequencing experiments

Index

∗Topic classes
alignmentData-class, 4
lociData-class, 13
segData-class, 21

∗Topic classif
classifySeg, 5
heuristicSeg, 11

∗Topic datasets
SL, 23

∗Topic files
readMethods, 19

∗Topic hplot
plotGenome, 16

∗Topic manip
classifySeg, 5
findChunks, 7
getCounts, 8
getOverlaps, 10
heuristicSeg, 11
lociLikelihoods, 14
processAD, 17

∗Topic package
segmentSeq-package, 2

[,alignmentData,ANY,ANY-method
(alignmentData-class), 4

[,alignmentData-method
(alignmentData-class), 4

[,lociData,ANY,ANY-method
(lociData-class), 13

[,lociData-method (lociData-class), 13
[,segData,ANY,ANY-method

(segData-class), 21
[,segData-method (segData-class), 21

alignmentData, 2, 5, 9, 12, 15–18, 21
alignmentData (alignmentData-class), 4
alignmentData-class, 4

baySeq, 3, 6, 12–14

cbind (alignmentData-class), 4
cbind,alignmentData-method

(alignmentData-class), 4
classifySeg, 5, 12, 16–18, 22

DataFrame, 9, 21
dim,alignmentData-method

(alignmentData-class), 4
dim,lociData-method (lociData-class), 13
dim,segData-method (segData-class), 21

findChunks, 7, 20

getCounts, 8, 18
getLibsizes, 20
getLikelihoods.NB, 15
getOverlaps, 10
getPriors.NB, 6
GRanges, 7, 8, 21

heuristicSeg, 6, 11, 16–18

initialize,alignmentData-method
(alignmentData-class), 4

initialize,segData-method (segData-class),
21

lociData, 5, 6, 12–16
lociData (lociData-class), 13
lociData-class, 13
lociLikelihoods, 14

plotGenome, 6, 12, 16
processAD, 2, 5, 9, 17, 21, 22

read.table, 20
readBAM, 2, 4, 5, 7, 18
readBAM (readMethods), 19
readGeneric, 2, 4, 5, 7, 18
readGeneric (readMethods), 19
readMethods, 19

segData, 5, 12, 18
segData-class, 21
segmentSeq (segmentSeq-package), 2
segmentSeq-package, 2
show,alignmentData-method

(alignmentData-class), 4
show,lociData-method (lociData-class), 13
show,segData-method (segData-class), 21

24

INDEX 25

SL, 23
SL10 (SL), 23
SL26 (SL), 23
SL32 (SL), 23
SL9 (SL), 23

	segmentSeq-package
	alignmentData-class
	classifySeg
	findChunks
	getCounts
	getOverlaps
	heuristicSeg
	lociData-class
	lociLikelihoods
	plotGenome
	processAD
	readMethods
	segData-class
	SL
	Index

