Package 'pint'

March 26, 2013

Type Package

Version 1.10.0

Title Pairwise INTegration of functional genomics data

Date 2012-07-23
Author Olli-Pekka Huovilainen <ohuovila@gmail.com> and Leo Lahti <leo.lahti@iki.fi></leo.lahti@iki.fi></ohuovila@gmail.com>
Maintainer Olli-Pekka Huovilainen <ohuovila@gmail.com></ohuovila@gmail.com>
Description Pairwise data integration for functional genomics, including tools for DNA/RNA/miRNA dependency screens.
License FreeBSD
Collate AllClasses.R AllGenerics.R GeneDependencyModel-accessors.R ChromosomeModels-accessors.R GenomeModels-accessors.R imputation.R show-methods.R plot-methods.R screen.cgh.mrna.R screen.cgh.mir.R calculate.genome.R calculate.chr.R calculate.arm.R pick.chr.arm.R fixed.window.R iterative.window.R z.effects.R W.effects.R fit.cgh.mrna.byname.R fit.cgh.mir.byname.R report.R sparse.window.R calculate.arm.sparse.R calculate.chr.sparse.R calculate.genome.sparse.R pint.data.R pint.match.R firstlib.R test.segmented.R centerData.R
LazyLoad yes
Depends mytnorm, methods, graphics, Matrix, dmt
biocViews aCGH, GeneExpression, Genetics, DifferentialExpression, Microarray
R topics documented:
ChromosomeModels-class fit.byname geneCopyNum GeneDependencyModel-class geneExp GenomeModels-class get.neighboring.probes get.neighs join.top.regions 2 2 3 3 3 4 3 5 3 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

2 ChromosomeModels-class

summariz window	_															
screen .		 							 							. 1
plot		 							 							. 1
pint.data		 							 							. 13

ChromosomeModels-class

Class "ChromosomeModels"

Description

Collection of dependency models fitting two data sets in particular chromosome.

Objects from the Class

Function screen.cgh.mrna and screen.cgh.mir returns an object of this class.

Slots

```
models a list of GeneDependencyModelschromosome the number of chromosomemethod a string with name of the method used in dependency modelsparams a list of parameters of the used method
```

Methods

```
\label{eq:chromosomeModels} \begin{tabular}{ll} [[signature (x = "ChromosomeModels"): Returns the model from the list or returns the dependency models of the arm specified with 'p' or 'q' \end{tabular}
```

[[-signature](x = "ChromosomeModels"): Attaches the a model to the list

getChromosome signature(model = "ChromosomeModels"): Returns the chromosome

 $\label{eq:getArm} \textbf{getArm} \ \ \text{signature} (\textbf{model} = "ChromosomeModels") \textbf{:} \ \ \textbf{Returns a vector of arms where corresponding dependency model has been calculated}.$

getLoc signature(model = "ChromosomeModels"): Returns a vector of locations of the genomic dependency models.

getScore signature(model = "ChromosomeModels"): Returns a vector of the scores of the genomic dependency models.

$$\label{eq:getParm} \begin{split} \textbf{getPArm} & \ \operatorname{signature}(\operatorname{model} = \text{"ChromosomeModels"}) \text{: Returns the dependency models of the p} \\ & \ \operatorname{arm which is of class ChromosomeModels} \end{split}$$

getQArm signature(model = "ChromosomeModels"): Returns the dependency models of the q arm which is of class ChromosomeModels

 $\label{eq:getModelMethod} \textbf{getModelMethod} \ \ \textbf{signature} (\textbf{model} = "ChromosomeModels") \textbf{:} \ \ \textbf{Returns} \ \ \textbf{the} \ \ \textbf{name} \ \ \textbf{of} \ \ \textbf{the} \ \ \textbf{used} \\ \textbf{method}$

getParams signature(model = "ChromosomeModels"): Returns a list of used parameters for the method

ChromosomeModels-class 3

getWindowSize signature(model = "ChromosomeModels"): Returns the size of the window used in the dependency models.

- **topGenes** signature(model = "ChromosomeModels",num = "numeric"): Returns a vector of given number of names of the genes which have the highest dependency score. With default value num = NA returns all the genes.
- **topModels** signature(model = "ChromosomeModels", num = "numeric"): Returns a list with given number of dependency models which have the highest dependency score. By default returns one model.
- **isEmpty** signature(model = "ChromosomeModels"): Returns TRUE if model has no dependency models
- **orderGenes** signature(model = "ChromosomeModels"): Returns a data frame with gene names and their model scores sorted
- **findModel** signature(model = "ChromosomeModels"): Finds a dependency model by gene name and returns it.
- **as.data.frame** signature(x = "ChromosomeModels"): converts dependency models as a dataframe with eachs row representing a dependency models for one gene. The columns are: gene-Name,dependencyScore,chr,arm,loc. If arm information has not been given to screening function, arm column is omitted.

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com>

See Also

For calculation of dependency models for chromosomal arm: screen.cgh.mrna. This class holds a number of GeneDependencyModel objects. For plotting dependency scores see dependency score plotting. Dependency models for whole genome: GenomeModels.

```
data(chromosome17)

## calculate dependency models over chromosome 17

model17 <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10, chr = 17)

model17

## Information of the dependency model which has the highest dependency score topGenes(model17, 1)

## Finding a dependency model by its name findModel(model17, "ENSG00000129250")

## Information of the first dependency model model17[[1]]

#Plotting plot(model17)

# genes in p arm with the highest dependency scores topGenes(model17[['p']], 5)
```

4 fit.byname

ο.					
tit	: . I	v	n	ar	ne

Fit dependency model around one gene between two data sets.

Description

Takes a window from two datasets around chosen gene and fits a selected dependency model between windows.

Usage

```
fit.cgh.mir.byname(X, Y, geneName, windowSize, ...)
fit.cgh.mrna.byname(X, Y, geneName, windowSize, ...)
```

Arguments

X,Y Data sets. Lists containing the following items:

data Data in a matrix form. Genes are in columns and samples in rows. e.g. gene copy number.

info Data frame which contains following information about genes in data matrix

chr Factor indicating the chrosome for the gene: (1 to 23, or X or Y arm Factor indicating the chromosomal arm for the gene ('p' or 'q')

loc Location of the gene in base pairs.

pint.data can be used to create data sets in this format.

geneName The dependency model is calculated around this gene.

windowSize Size of the data window.

.. Arguments to be passed to function fit.dependency.model

Details

See fit.dependency.model for details about dependency models and parameters.

Value

Dependency Model

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com> and Leo Lahti <leo.lahti@iki.fi>

geneCopyNum 5

References

Dependency Detection with Similarity Constraints, Lahti et al., 2009 Proc. MLSP'09 IEEE International Workshop on Machine Learning for Signal Processing, http://www.cis.hut.fi/lmlahti/publications/mlsp09 preprint.pdf

A Probabilistic Interpretation of Canonical Correlation Analysis, Bach Francis R. and Jordan Michael I. 2005 Technical Report 688. Department of Statistics, University of California, Berkley. http://www.di.ens.fr/~fbach/probacca.pdf

Probabilistic Principal Component Analysis, Tipping Michael E. and Bishop Christopher M. 1999. *Journal of the Royal Statistical Society*, Series B, **61**, Part 3, pp. 611–622. http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-PPCA-JRSS.pdf

EM Algorithms for ML Factorial Analysis, Rubin D. and Thayer D. 1982. *Psychometrika*, vol. 47, no. 1.

See Also

Reults from this function: DependencyModel. fit.dependency.model. Calculating dependency models to chromosomal arm, chromosome or genome screen.cgh.mrna. For calculation of latent variable z: link{z.expectation}.

Examples

```
data(chromosome17)

model <- fit.cgh.mrna.byname(geneExp,geneCopyNum,"ENSG00000132361",10)

## With different model parameters (pCCA)

model2 <- fit.cgh.mrna.byname(geneExp,geneCopyNum,"ENSG00000132361",10,zDimension=5,priors=list(Nm.wxwy.
```

geneCopyNum

Gene copy number data in chromosome 17

Description

Preprocessed gene copy number (aCGH) data for 51 patients in chromosome 17.

Usage

data(chromosome17)

Format

A list which contain the following data:

data gene copy number data in matrix form. Genes are in columns and samples in rows

info Data frame which contains following information about genes in data matrix.

chr Factor indicating the chrosome for the gene (1 to 23, or X or Y **arm** Factor indicating the chromosomal arm for the gene ('p' or 'q') **loc** Location of the gene in base pairs.

Source

Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Myllykangas et al., *International Journal of Cancer*, vol. **123**, **no. 4**, pp. 817–25, 2008.

GeneDependencyModel-class

Class "GeneDependencyModel"

Description

A Genomic Dependency model for two data sets

Objects from the Class

Used to represent individual dependency models for screening inside ChromosomeModels.

Slots

loc middle location of the window in base pairs

geneName name of the gene in the middle of the window

chromosome Chromosome where the dependency model is calculated

arm Chromosome arm where the dependency model is calculated

W a list of X, Y and total components containing the relationship between two data sets; for dependency model for one dataset, only total is given

phi a list of X, Y and total components containing the data set specific covariances; for dependency model for one dataset, only total is given

score score for fitness of model

method name of the used method

params list of parameters used in dependency model

data The data used to calculate the dependency model

z The latent variable Z

Extends

Class DependencyModel directly.

in the middle of window

Methods

```
setLoc<- signature(model = "GeneDependencyModel"): sets models location
setGeneName<- signature(model = "GeneDependencyModel"): sets models gene name
setChromosome<- signature(model = "GeneDependencyModel"): sets models chromosome
setArm<- signature(model = "GeneDependencyModel"): sets models chromosome arm
getLoc signature(model = "GeneDependencyModel"): Returns the middle location of the window
getGeneName signature(model = "GeneDependencyModel"): Returns the name of the gene</pre>
```

geneExp 7

```
getChromosome signature(model = "GeneDependencyModel"): Returns the chromosome
getArm signature(model = "GeneDependencyModel"): Returns the chromosome arm
getWindowSize signature(model = "GeneDependencyModel"): Returns the size of window
getZ signature(model = "GeneDependencyModel"): Calculates the expectation of latent variable Z. The original data is needed as arguments as given to screen function
```

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com>

See Also

For calculation of dependency models for chromosomal arm, chromosome or genome: screen.cgh.mrna. Dependency models for whole chromosome: ChromosomeModels. Dependency models for whole genome: GenomeModels. For plotting dependency scores see dependency score plotting.

Examples

```
data(chromosome17)

# First genomic dependency model from screening chromosomal arm models <- screen.cgh.mrna(geneExp, geneCopyNum, 10, chr=17, arm='p') model <- models[[1]]

# Printing information of the model model

# Latent variable Z getZ(model, geneExp,geneCopyNum)

# Contributions of samples and variables to model plot(model,geneExp,geneCopyNum)
```

geneExp

Gene expression data in chromosome 17

Description

Preprocessed gene expression levels of 51 patients in chromosome 17.

Usage

```
data(chromosome17)
```

Format

A list which contain the following data:

data gene expression data in matrix form. Genes are in columns and samples in rows
info Data frame which contains following information about genes in data matrix.
chr Factor of chrosome where the gene is. (1 to 23 or X or Y
arm Factor of arm of the chromosome arm where the gene is. ('p' or 'q')

loc Location of the gene from centromere in base pairs.

8 GenomeModels-class

Source

Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Myllykangas et al., *International Journal of Cancer*, vol. **123**, **no. 4**, pp. 817–25, 2008

GenomeModels-class

Class "GenomeModels"

Description

Collection of dependency models fitting two data sets in whole genome. The dependency models are in a list of ChromosomeModelss (which represents each chromosome) that have a list of dependency models in that chromosomal arm.

Objects from the Class

Function screen.cgh.mrna and screen.cgh.mir returns an object of this class.

Slots

chromosomeModels a list of ChromosomeModels of all chromosomesmethod a string with name of the method used in dependency modelparams a list of parameters of the method

Methods

- [[signature(x = "GenomeModels"): Returns a ChromosomeModels from the list. X and Y chromosomes can be accessed with 23 and 24 or 'X' and 'Y'
- [[<- signature(x = "GenomeModels"): Attaches a ChromosomeModels to the list. X and Y chromosomes can be accessed with 23 and 24 or 'X' and 'Y'
- $$\label{eq:getModelMethod} \begin{split} \textbf{getModelMethod} & \operatorname{signature}(\operatorname{model} = "\operatorname{GenomeModels"}) \colon Returns \ the \ name \ of \ the \ used \ method \\ \textbf{getParams} & \operatorname{signature}(\operatorname{model} = "\operatorname{GenomeModels"}) \colon Returns \ a \ list \ of \ used \ parameters \ for \ the \ method \\ \end{split}$$
- **getChr** signature(model = "GenomeModels"): Returns the chromosome
- $\label{eq:getWindowSize} \mathbf{getWindowSize} \ \ \mathbf{signature} (\mathbf{model} = "GenomeModels") : \ \mathbf{Returns} \ \mathbf{the} \ \mathbf{size} \ \mathbf{of} \ \mathbf{the} \ \mathbf{window} \ \mathbf{used} \ \mathbf{in} \\ \mathbf{the} \ \mathbf{dependency} \ \mathbf{models}.$
- $\label{eq:getModelNumbers} \mathbf{getModelNumbers} \ \mathbf{signature} (\mathbf{model} = "GenomeModels") : \ \mathbf{Returns} \ \mathbf{the} \ \mathbf{total} \ \mathbf{number} \ \mathbf{of} \ \mathbf{the} \ \mathbf{dependency} \ \mathbf{models}.$
- **topGenes** signature(model = "GenomeModels", num = "numeric"): Returns a vector of given number of names of the genes which have the highest dependency score. With default value num = NA returns all the genes.
- **topModels** signature(model = "GenomeModels", num = "numeric"): Returns a list with given number of dependency models which have the highest dependency score. By default returns one model.
- orderGenes signature(model = "GenomeModels"): Returns a data frame with gene names and their model scores sorted
- $\label{eq:model} \textbf{findModel} \ \operatorname{signature}(\operatorname{model} = "GenomeModels") : \ Finds \ a \ dependency \ model \ by \ gene \ name \ and \ returns \ it.$
- **as.data.frame** signature(x = "GenomeModels"): converts dependency models as a dataframe with eachs row representing a dependency model for one gene. The columns are: geneName,dependencyScore,chi

get.neighboring.probes 9

Author(s)

Olli-Pekka Huovilainen

See Also

For calculation of dependency models for chromosomal arm: screen.cgh.mrna. This class holds a number of GeneDependencyModel in each ChromosomeModels. For plotting dependency scores see dependency score plotting.

get.neighboring.probes Get neighboring probes

Description

Mainly for internal use. Pick neighboring probes for a given probes based on chromosomal locations.

Usage

get.neighboring.probes(X,Y,chr,max.dist,control.arms = TRUE,remove.duplicates = TRUE)

Arguments

X Data object. See help(screen.cgh.mrna). For instance, geneExp from our exam-

ple data set.

Y Data object. See help(screen.cgh.mrna). For instance, geneCopyNum from our

example data set.

chr chromosome to investigate

max.dist consider probes within this distance

control.arms take chromosomal arm information into account

remove.duplicates

for each probe, list exactly one (the closest) match. This is useful in one-to-many

matching situations where duplicates may not be desired.

Value

A list with matched indices for the X and Y data sets.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("pint")

Examples

Intended for internal use.

10 get.neighs

get.neighs	get.neighs			
------------	------------	--	--	--

Description

Matching function called by the get.neighboring.probes

Usage

```
get.neighs(X, Y, xchrinds, ychrinds, max.dist, remove.duplicates = TRUE)
```

Arguments

X	Data object. See help(screen.cgh.mrna). For instance, geneExp from our example data set.
Y	Data object. See help(screen.cgh.mrna). For instance, geneCopyNum from our example data set.
xchrinds	chromosomal indices for the probes in X data set
ychrinds	chromosomal indices for the probes in Y data set
max.dist	consider probes within this chromosomal distance
remove.duplicate	es es

remove duplicate probes in many-to-one matching cases, use the closest match

Value

List of matched X and Y indices.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("pint")

Examples

Intended for internal use.

join.top.regions 11

join.top.regions	Merge the overlapping top chromosomal regions.	

Description

Select the top models that exceed the threshold and merge the overlapping windows. Useful for interpreting the results.

Usage

```
join.top.regions(model, feature.info, quantile.th = 0.95, augment = FALSE)
```

Arguments

model	Object of ChromosomeModels or GenomeModels class.
feature.info	A data frame containing annotations for genes. For instance the geneExp\$info table from our example data set (see data(chromosome17)).
quantile.th	Threshold to define what quantile of the genes to include in the top region list, based on dependency scores for each gene.
augment	If TRUE, list also genes that were not used for modeling but available in the annotations (feature.info) and residing within the same region.

Value

A list; each element is a vector of gene names that correspond to one continuous region.

Author(s)

```
Leo Lahti <leo.lahti@iki.fi>
```

References

```
See citation("pint")
```

See Also

summarize.region.parameters

12 pint.data

order.feature.info

Order the gene information table by chromosomal locations.

Description

Order the gene information table by chromosomal locations. Removes genes with no location information.

Usage

```
order.feature.info(feature.info)
```

Arguments

feature.info

A data frame containing at least the following fields: geneName, chr, and loc.

Value

An ordered data frame.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("pint")

Examples

```
## NOT RUN
#feature.info.ordered <- order.feature.info(feature.info)
```

pint.data

Forms a data set and pairs samples in two data sets.

Description

Forms a data set for use in functions in 'pint' package (e.g. screen.cgh.mrna). Pairs samples in two data sets.

Usage

```
\begin{array}{l} pint.data(data, info, impute = TRUE, replace.inf = TRUE, remove.duplicates) \\ pint.match(X, Y, max.dist = 1e7, chrs = NULL, useSegmentedData = FALSE, impute = TRUE, replace.inf = TRUE, remove.duplicates = TRUE) \end{array}
```

pint.data 13

Arguments

data Probe-level data in a matrix or data frame.

info Location, chromosome, and chromosome arm. Information of the probes as data

frame. Location can be given either as loc or bp, which is middle location of probe, or as start and end. Chromosome arm is given as arm and chromosome

as chr.

X, Y Data sets to be paired.

max.dist maximum distance between paired genes in base pairs.

chrs Use to pick a subset of chromosomes in the data. By default, all chromosomes

will be used.

useSegmentedData

Logical. If FALSE, rows with identical data are removed (option for pint.match)

remove.duplicates

Logical. If TRUE, rows with identical data are removed (in pint.data), or dupli-

cate signals from many-to-one matches are removed (in pint.match)

impute Logical. If TRUE, missing values are imputed by replacing them with random

samples from a Gaussian distribution following the mean and standard deviation

of the non-missing data points from the same sample.

replace.inf Logical. If TRUE, replace infinite values with highest non-infinite values seen

in the data. Otherwise the calculation will halt.

Details

Function pint.match goes through every sample in X and finds the nearest sample in Y which is in the same chromosome arm. If more than one sample in X has same nearest sample in Y, all but one is discarded. Samples with longer distance than max.dist are discarded.

Value

pint.data returns a list with a matrix with sample data and a data frame with chr (chromosome), arm (chromosome arm) and loc (location).

pint.match return a list with two data sets. These can be used in screen.cgh.mrna function.

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com>

See Also

screen.cgh.mrna, screen.cgh.mir, fit.cgh.mir.byname

Examples

```
data(chromosome17)
```

newData <- pint.match(geneExp,geneCopyNum,max.dist=1000)

14 plot

plot Dependency	score plotting
-----------------	----------------

Description

Plot the contribution of the samples and variables to the dependency model or dependency model fitting scores of chromosome or genome.

Usage

Arguments

hilightGenes

X	$\label{thm:class} Gene Dependency Model-class, Chromosome Models-class, Genome Models-class; models to be plotted.$
X, Y	data sets used in dependency modeling.
ann.types	a factor for annotation types for samples. Each value corresponds one sample in datasets. Colors are used to indicate different types.
ann.cols	colors used to indicate different annotation types. Gray scale is used if 'NULL' given.
legend.x, legend.	y
	the x and y co-ordinates to be used to position the legend for annotation types.
legend.xjust, lege	end.yjust
	how the legend is to be justified relative to the legend x and y location. A value of 0 means left or top justified, 0.5 means centered and 1 means right or bottom justified.
order cex.z, cex.WX, c	logical; if 'TRUE', values for sample contributions are ordered according to their values. ex.WY

vector of strings; Name of genes to be hilighted with dots.

Text size for variable names.

plot 15

showDensity logical; if 'TRUE' small vertical lines are drwan in the bottom of the plot under each gene.

showTop numeric; Number of models with highest dependencies to be hilighted. A hori-

zontal dashed line is drawn to show threshold value. With 0 no line is drawn.

logical; If TRUE, gene names are printed to hilighted models with highest de-

pendecies. Otherwise hilighted models are numbered according to their rank in

dependency score.

type, xlab, ylab, main

topName

plot type and labels. See plot for details. A text for chromosome (and arm if only models from one arm is plotted) is used in main if NULL is given. In

plot.GenomeModels, ylab and xlab affect only if onePlot is TRUE.

onePlot If TRUE, all dependency scores are plotted in one plot window. Otherwise one

plot window is used for each chromosome.

pch, cex symbol type and size for hilightGenes. See points for details.

tpch, tcex symbol type and size for genes with highest scores. See points for details.

ylim, xlim axis limits. Default values are calculated from data. Lower limit for y is 0 and

upper limit is either 1 or maximum score value. X limits are gene location range.

See plot for details.

mfrow, mar, ps, mgp

chromosome plots' layout, marginals, text size and margin line. See par for

details.

.. optional plotting parameters

Details

Function plots scores of each dependency model of a gene for the whole chromosome or genome according to used method. plot(x, cancerGenes = NULL, showDensity = FALSE, ...) is also usable and chosen according to class of models.

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com>

References

Dependency Detection with Similarity Constraints Lahti et al., MLSP'09. See http://www.cis.hut.fi/lmlahti/publications/mlsp09 preprint.pdf

See Also

 $\label{lem:comemodels-class} Dependency Model-class, Chromosome Models-class, Genome Models-class, screen.cgh.mrna, screen.cgh.mir$

```
data(chromosome17)

## pSimCCA model on chromosome 17p

models17ppSimCCA <- screen.cgh.mrna(geneExp, geneCopyNum, 10, 17, 'p')

plot(models17ppSimCCA,

hilightGenes=c("ENSG00000108342", "ENSG00000108298"), showDensity = TRUE)
```

16 screen

```
## Dependency model around 50th gene model <- models17ppSimCCA[[50]]

## example annnotation types ann.types <- factor(c(rep("Samples 1 - 10", 10), rep("Samples 11 - 51", 41)))
plot(model, geneExp, geneCopyNum, ann.types, legend.x = 40, legend.y = -4, order = TRUE)
```

screen

Fits dependency models to chromosomal arm, chromosome or the whole genome.

Description

Fits dependency models for whole chromosomal arm, chromosome or genome depending on arguments with chosen window size between two data sets.

Usage

```
screen.cgh.mrna(X, Y, windowSize = NULL, chromosome, arm, method =
"pSimCCA", params =
list(), max.dist = 1e7, outputType = "models", useSegmentedData =
TRUE, match.probes = TRUE, regularized = FALSE)
screen.cgh.mir(X, Y, windowSize, chromosome, arm, method = "", params = list(), outputType = "models")
```

Arguments

X,Y

Data sets. It is recommended to place gene/mirna expression data in X and copy number data in Y. Each is a list with the following items:

data Data in a matrix form. Genes are in rows and samples in columnss. e.g. gene copy number.

info Data frame which contains following information about genes in data matrix

chr Number indicating the chrosome for the gene: (1 to 24). Characters 'X' or 'Y' can be used also.

arm Character indicating the chromosomal arm for the gene ('p' or 'q') loc Location of the gene in base pairs.

pint.data can be used to create data sets in this format.

chromosome

arm

windowSize

Specify the chromosome for model fitting. If missing, whole genome is screened. Specify chromosomal arm for model fitting. If missing, both arms are modeled.

Determine the window size. This specifies the number of nearest genes to be included in the chromosomal window of the model, and therefore the scale of the investigated chromosomal region. If not specified, using the default ratio of 1/3 between features and samples or 15 if the ratio would be greater than 15

screen 17

method

Dependency screening can utilize any of the functions from the package dmt (at CRAN). Particular options include

'pSimCCA' probabilistic similarity constrained canonical correlation analysis *Lahti et al. 2009.* This is the default method.

'pCCA' probabilistic canonical correlation analysis Bach & Jordan 2005

'pPCA' probabilistic principal component analysis Tipping & Bishop 1999

'pFA' probabilistic factor analysis Rubin & Thayer 1982

'TPriorpSimCCA' probabilistic similarity constrained canonical correlation analysis with possibility to tune T prior (Lahti et al. 2009)

If anything else, the model is specified by the given parameters.

params

List of parameters for the dependency model.

sigmas Variance parameter for the matrix normal prior distribution of the transformation matrix T. This describes the deviation of T from H

H Mean parameter for the matrix normal prior distribution prior of transformation matrix T

zDimension Dimensionality of the latent variable

mySeed Random seed.

covLimit Convergence limit. Default depends on the selected method: 1e-3 for pSimCCA with full marginal covariances and 1e-6 for pSimCCA in other cases.

max.dist

Maximum allowed distance between probes. Used in automated matching of the probes between the two data sets based on chromosomal location information.

outputType

Specifies the output type of the function. possible values are "models" and

"data.frame"

useSegmentedData

Logical. Determines the useage of the method for segmented data

match.probes

To be used with segmented data, or nonmatched probes in general. Using nonmatched features (probes) between the data sets. Development feature, to be

documented later.

regularized

Regularization by nonnegativity constraints on the projections. Development feature, to be documented later.

Details

Function screen.cgh.mrna assumes that data is already paired. This can be done with pint.match. It takes sliding gene windows with fixed.window and fits dependency models to each window with fit.dependency.model function. If the window exceeds start or end location (last probe) in the chromosome in the fixed.window function, the last window containing the given probe and not exceeding the chromosomal boundaries is used. In practice, this means that dependency score for the last n/2 probes in each end of the chromosome (arm) will be calculated with an identical window, which gives identical scores for these end position probes. This is necessary since the window size has to be fixed to allow direct comparability of the dependency scores across chromosomal windows.

Function screen.cgh.mir calculates dependencies around a chromosomal window in each sample in X; only one sample from X will be used. Data sets do not have to be of the same size andX can be considerably smaller. This is used with e.g. miRNA data.

If method name is specified, this overrides the corresponding model parameters, corresponding to the modeling assumptions of the specified model. Otherwise method for dependency models is determined by parameters.

Dependency scores are plotted with dependency score plotting.

18 screen

Value

The type of the return value is defined by the the function argument output Type.

With the argument outputType = "models", the return value depends on the other arguments; returns a ChromosomeModels which contains all the models for dependencies in chromosome or a GenomeModels which contains all the models for dependencies in genome.

With the argument outputType = "data.frame", the function returns a data frame with eachs row representing a dependency model for one gene. The columns are: geneName, dependencyScore, chr, arm, loc.

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com> and Leo Lahti <leo.lahti@iki.fi>

References

Dependency Detection with Similarity Constraints, Lahti et al., 2009 Proc. MLSP'09 IEEE International Workshop on Machine Learning for Signal Processing, See http://www.cis.hut.fi/lmlahti/publications/mlsp09 preprint.pdf

A Probabilistic Interpretation of Canonical Correlation Analysis, Bach Francis R. and Jordan Michael I. 2005 Technical Report 688. Department of Statistics, University of California, Berkley. http://www.di.ens.fr/~fbach/probacca.pdf

Probabilistic Principal Component Analysis, Tipping Michael E. and Bishop Christopher M. 1999. *Journal of the Royal Statistical Society*, Series B, **61**, Part 3, pp. 611–622. http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-PPCA-JRSS.pdf

EM Algorithms for ML Factoral Analysis, Rubin D. and Thayer D. 1982. *Psychometrika*, vol. 47, no. 1.

See Also

To fit a dependency model: fit.dependency.model. ChromosomeModels holds dependency models for chromosome, GenomeModels holds dependency models for genome. For plotting, see: dependency score plotting

```
data(chromosome17)

## pSimCCA model on chromosome 17

models17pSimCCA <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10, chr = 17)

plot(models17pSimCCA)

## pCCA model on chromosome 17p with 3-dimensional latent variable z models17ppCCA <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10, chromosome = 17, arm = 'p',method="pCCA", params = list(zDimension = 3))

plot(models17ppCCA)
```

summarize.region.parameters

Summarize overlapping models.

Description

Given a chromosomal region, summarize the model parameters from overlapping models. This heuristics gives a brief summary on average sample and probe effects within the region and aids interpretation. If multiple alteration profiles are detected within the region, the models are grouped and summarization is applied separately for each group containing overlapping models with high similarity.

Usage

summarize.region.parameters (region.genes, model, X, Y, grouping.th = 0.9, rm.na = TRUE)

Arguments

region.genes A vector of gene names determining the investigated region.
model Object of ChromosomeModels or GenomeModels class.

X Data object. See help(screen.cgh.mrna). For instance, geneExp from our exam-

ple data set.

Y Data object. See help(screen.cgh.mrna). For instance, geneCopyNum from our

example data set.

grouping.th Similarity threshold for joining neighboring models. rm.na Remove genes with NA values from the output.

Details

Grouping of the models is based on heuristics where highly correlating models (>grouping.th) are merged. Will be improved later.

Value

z Mean sample effects, averaged over the overlapping models for each sample.

W Mean probe effects, averaged over the overlapping models for each probe. This

is a list with elements X, Y, corresponding to the two data sets.

Author(s)

Leo Lahti@iki.fi>

References

See citation("pint")

See Also

merge.top.regions

20 window

Examples

```
\# tmp <- summarize.region.parameters
(top.region.genes, model, geneExp, geneCopyNum) \# wx <- tmp
$W$X \# z <- tmp$z
```

window

Form data with a selected window size for the model fitting

Description

Forms a chosen window of two data matrices to use for fit.dependency.model either iteratively picking nearest genes or picking same number of genes from both directions. sparse.window forms a window around one sample in the first data set with a number of samples from the second data set.

Usage

```
\label{eq:mindow} \begin{split} & \text{fixed.window}(X,\,Y,\,\text{middleIndex},\,\text{windowSize}) \\ & \text{iterative.window}(X,\,Y,\,\text{middleIndex},\,\text{windowSize}) \\ & \text{sparse.window}(X,\,Y,\,\text{xIndex},\,\text{windowSize}) \end{split}
```

Arguments

X First data set. In sparse.window windows will be formed around each sample

in this data set.

Y Second data set.

middleIndex Index of middle position for window.

xIndex Index of middle position in X for window.

windowSize Number of genes in window. In sparse.window X has always one sample in

window.

Details

Window contains windowSize nearest genes. Warning is given if windowSize genes is not found in the same chromosomal arm. Data of both data sets is normalised so that each genes data has zero mean.

Value

List of window data:

X window of the first data setY window of the second data set

 $\begin{array}{ll} loc & location \ of \ gene \\ gene Name & name \ of \ the \ gene \end{array}$

edge logical; TRUE if iteration to one direction has stopped because edge of data in

chromosomal arm has been found.

fail logical; TRUE if chromosomal arm contains less than windowSize genes.

z.effects 21

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com>

See Also

Dependency model fitting: fit.dependency.model

Examples

```
data(chromosome17)
window <- iterative.window(geneExp, geneCopyNum, 30, 10)
model <- fit.dependency.model(window$X, window$Y)

# Conversion from DependencyModel to GeneDependencyModel so that gene name and location can be stored model <- as(model,"GeneDependencyModel")
setGeneName(model) <- window$geneName
setLoc(model) <- window$loc
model

window <- fixed.window(geneExp, geneCopyNum, 10, 10)
model <- fit.dependency.model(window$X, window$Y)
model
```

z.effects

The model parameters z and W

Description

Contribution of each sample to a dependency model, and contribution of each variable.

Usage

```
\begin{aligned} &z. effects(model, \, X, \, Y = NULL) \\ &W. effects(model, \, X, \, Y = NULL) \end{aligned}
```

Arguments

model

The fitted dependency model.

X, Y

Data sets used in fitting the dependency modeling functions (screen.cgh.mrna or link{fit.dependency.model}). Note: Arguments must be given in the same order as in fit.dependency.model or screen.cgh.mrna. Only X is needed for dependency model for one data set.

Details

z.effects gives the contribution of each sample to the dependency score. This is approximated by projecting original data to first principal component of Wz. This is possible only when the data window is smaller than half the number of samples.

W.effects gives the contribution of each variable to the observed dependency. This is approximated with the loadings of the first principal component of Wz

Original data can be retrieved by locating the row in X (or Y) which has the same variable (gene) name than model.

22 z.effects

Value

z.effects gives a projection vector over the samples and W.effects gives a projection vector over the variables.

Author(s)

Olli-Pekka Huovilainen <ohuovila@gmail.com> and Leo Lahti <leo.lahti@iki.fi>

References

Dependency Detection with Similarity Constraints, Lahti et al., 2009 Proc. MLSP'09 IEEE International Workshop on Machine Learning for Signal Processing, See http://www.cis.hut.fi/lmlahti/publications/mlsp09 preprint.pdf

A Probabilistic Interpretation of Canonical Correlation Analysis, Bach Francis R. and Jordan Michael I. 2005 Technical Report 688. Department of Statistics, University of California, Berkley. http://www.di.ens.fr/~fbach/probacca.pdf

Probabilistic Principal Component Analysis, Tipping Michael E. and Bishop Christopher M. 1999. *Journal of the Royal Statistical Society*, Series B, **61**, Part 3, pp. 611–622. http://research.microsoft.com/en-us/um/people/cmbishop/downloads/Bishop-PPCA-JRSS.pdf

See Also

DependencyModel-class, screen.cgh.mrna

```
data(chromosome17)
window <- fixed.window(geneExp, geneCopyNum, 150, 10)

## pSimCCA model around one gene
depmodel <- fit.dependency.model(window$X, window$Y)

# Conversion from DependencyModel to GeneDependencyModel so that gene name and location can be stored
depmodel <- as(depmodel, "GeneDependencyModel")
setGeneName(depmodel) <- window$geneName
setLoc(depmodel) <- window$loc
barplot(z.effects(depmodel, geneExp, geneCopyNum))

## Plot the contribution of each genes to the model. Only the X component is plotted
## here since Wx = Wy (in SimCCA)
barplot(W.effects(depmodel, geneExp, geneCopyNum)$X)

## plot.DpenendencyModel shows also sample and variable effects
plot(depmodel,geneExp,geneCopyNum)
```

Index

*Topic classes	findModel (ChromosomeModels-class), 2
ChromosomeModels-class, 2	findModel,ChromosomeModels-method
GeneDependencyModel-class, 6	(ChromosomeModels-class), 2
GenomeModels-class, 8	findModel,GenomeModels-method
*Topic datasets	(GenomeModels-class), 8
geneCopyNum, 5	fit.byname, 4
geneExp, 7	fit.cgh.mir.byname, 13
*Topic hplot	fit.cgh.mir.byname (fit.byname), 4
plot, 14	fit.cgh.mrna.byname (fit.byname), 4
*Topic iteration	fit.dependency.model, 4, 5, 17, 18, 21
fit.byname, 4	fixed.window, 17
screen, 16	fixed.window (window), 20
*Topic math	· · · · · · · · · · · · · · · · · · ·
fit.byname, 4	geneCopyNum, 5
screen, 16	GeneDependencyModel, 2, 3, 9
z.effects, 21	GeneDependencyModel-class, 6
*Topic utilities	geneExp, 7
get.neighboring.probes, 9	GenomeModels, 3, 7, 11, 18, 19
get.neighs, 10	GenomeModels-class, 8
join.top.regions, 11	get.neighboring.probes, 9
order.feature.info, 12	get.neighs, 10
summarize.region.parameters, 19	getArm (ChromosomeModels-class), 2
[[(ChromosomeModels-class), 2	getArm,ChromosomeModels-method
[[,ChromosomeModels-method	(ChromosomeModels-class), 2
(ChromosomeModels-class), 2	getArm,GeneDependencyModel-method
[[,GenomeModels-method	(GeneDependencyModel-class), 6
(GenomeModels-class), 8	getChromosome
[[<- (ChromosomeModels-class), 2	(ChromosomeModels-class), 2
[[<-,ChromosomeModels-method	getChromosome,ChromosomeModels-method
(ChromosomeModels-class), 2	(ChromosomeModels-class), 2
[[<-,GenomeModels-method	getChromosome,GeneDependencyModel-method
(GenomeModels-class), 8	(GeneDependencyModel-class), 6
as.data.frame,ChromosomeModels-method	getGeneName (ChromosomeModels-class),
(ChromosomeModels-class), 2	2
as.data.frame,GenomeModels-method	getGeneName,ChromosomeModels-method
(GenomeModels-class), 8	(ChromosomeModels-class), 2
(Genomewodels class), 6	getGeneName,GeneDependencyModel-method
ChromosomeModels, 2, 6–9, 11, 18, 19	(GeneDependencyModel-class), 6
ChromosomeModels-class, 2	getLoc (GeneDependencyModel-class), 6
, , , , , , , , , , , , , , , , , , , ,	getLoc,ChromosomeModels-method
dependency score plotting, 3, 7, 17, 18	(ChromosomeModels-class), 2
dependency score plotting (plot), 14	${\it getLoc}, Gene Dependency Model-method$
DependencyModel 4-6	(GeneDependencyModel-class) 6

24 INDEX

getModelMethod	pint.data, 4, 12, 16
(ChromosomeModels-class), 2	pint.match, 17
${\tt getModelMethod, ChromosomeModels-method}$	pint.match (pint.data), 12
(ChromosomeModels-class), 2	plot, 14, 15
${\tt getModelMethod,} Genome {\tt Models-method}$	plot.ChromosomeModels (plot), 14
(GenomeModels-class), 8	plot.GeneDependencyModel (plot), 14
getModelNumbers	plot.GenomeModels (plot), 14
(ChromosomeModels-class), 2	points, <i>15</i>
getModelNumbers,ChromosomeModels-method	
(ChromosomeModels-class), 2	screen, 16
getModelNumbers,GenomeModels-method	screen.cgh.mir, 2, 8, 13, 15
(GenomeModels-class), 8	screen.cgh.mrna, 2, 3, 5, 7–9, 12, 13, 15, 21,
getParams (ChromosomeModels-class), 2	22
getParams,ChromosomeModels-method	setArm<- (GeneDependencyModel-class), 6
(ChromosomeModels-class), 2	setArm<-,GeneDependencyModel-method
getParams,GenomeModels-method	(GeneDependencyModel-class), 6
(GenomeModels-class), 8	setChromosome<-
getPArm (ChromosomeModels-class), 2	(GeneDependencyModel-class), 6
getPArm,ChromosomeModels-method	setChromosome<-,GeneDependencyModel-method
(ChromosomeModels-class), 2	(GeneDependencyModel-class), 6
getQArm (ChromosomeModels-class), 2	setGeneName<-
getQArm,ChromosomeModels-method	(GeneDependencyModel-class), 6
(ChromosomeModels-class), 2	setGeneName<-,GeneDependencyModel-method
getScore (GeneDependencyModel-class), 6	(GeneDependencyModel-class), 6
getScore, ChromosomeModels-method	setLoc<- (GeneDependencyModel-class), 6
~	setLoc<-,GeneDependencyModel-method
(ChromosomeModels-class), 2	(GeneDependencyModel-class), 6
getScore,GeneDependencyModel-method	sparse.window (window), 20
(GeneDependencyModel-class), 6	summarize.region.parameters, 19
getWindowSize	summarize.region.parameters, 19
(ChromosomeModels-class), 2	topGenes (ChromosomeModels-class), 2
getWindowSize,ChromosomeModels-method	topGenes,ChromosomeModels-method
(ChromosomeModels-class), 2	(ChromosomeModels-class), 2
getWindowSize,GeneDependencyModel-method	topGenes,GenomeModels-method
(GeneDependencyModel-class), 6	(GenomeModels-class), 8
getWindowSize,GenomeModels-method	topModels (ChromosomeModels-class), 2
(GenomeModels-class), 8	topModels,ChromosomeModels-method
${\it get Z}, {\it Gene Dependency Model-method}$	(ChromosomeModels-class), 2
(GeneDependencyModel-class), 6	
:-Et (Clauser - Madala alaa) 2	topModels,GenomeModels-method (GenomeModels-class), 8
isEmpty (ChromosomeModels-class), 2	(Genomewoders-crass), o
isEmpty,ChromosomeModels-method	W.effects (z.effects), 21
(ChromosomeModels-class), 2	window, 20
iterative.window (window), 20	window, 20
join.top.regions, 11	z.effects, 21
•	
order.feature.info, 12	
orderGenes (ChromosomeModels-class), 2	
orderGenes,ChromosomeModels-method	
(ChromosomeModels-class), 2	
orderGenes,GenomeModels-method	
(GenomeModels-class), 8	

par, *15*