
Package ‘ChIPpeakAnno’
March 26, 2013

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,ChIP-
chip experiments or any experiments resulted in large
number of chromosome ranges.

Version 2.6.1

Date 2012-09-14

Author Lihua Julie Zhu, Herve Pages, Claude Gazin, Nathan Lawson, Jianhong Ou, Si-
mon Lin, David Lapointe and Michael Green

Maintainer Lihua Julie Zhu <julie.zhu@umassmed.edu>

Depends R (>= 2.10), grid,VennDiagram, BiocGener-
ics (>= 0.1.0),biomaRt, multtest, IRanges, Biostrings, BSgenome,BSgenome.Ecoli.NCBI.20080805, GO.db, org.Hs.eg.db, limma

Imports gplots, BiocGenerics, biomaRt, multtest, IRanges, Biostrings,BSgenome, GO.db, limma, An-
notationDbi

biocViews Annotation, ChIPseq, ChIPchip

Suggests reactome.db

Description The package includes functions to retrieve the sequences around the peak, obtain en-
riched Gene Ontology (GO) terms, find the nearest gene, exon, miRNA or custom fea-
tures such as most conserved elements and other transcription factor binding sites sup-
plied by users. Starting 2.0.5, new functions have been added for finding the peaks with bi-
directional promoters with summary statistics (peaksNearBDP), for summarizing the occur-
rence of motifs in peaks (summarizePatternInPeaks) and for adding other IDs to anno-
tated peaks or enrichedGO (addGeneIDs). This package lever-
ages the biomaRt, IRanges, Biostrings, BSgenome, GO.db, multtest and stat packages

License GPL (>= 2)

LazyLoad yes

R topics documented:
ChIPpeakAnno-package . 2
addAncestors . 4
addGeneIDs . 5

1

2 ChIPpeakAnno-package

annotatedPeak . 6
annotatePeakInBatch . 7
assignChromosomeRegion . 10
BED2RangedData . 12
condenseMatrixByColnames . 13
convert2EntrezID . 13
countPatternInSeqs . 14
enrichedGO . 15
ExonPlusUtr.human.GRCh37 . 16
findOverlappingPeaks . 17
findVennCounts . 18
getAllPeakSequence . 20
getAnnotation . 21
getEnrichedGO . 22
getEnrichedPATH . 24
GFF2RangedData . 25
makeVennDiagram . 26
myPeakList . 27
Peaks.Ste12.Replicate1 . 28
Peaks.Ste12.Replicate2 . 28
Peaks.Ste12.Replicate3 . 29
peaksNearBDP . 30
summarizePatternInPeaks . 32
translatePattern . 33
TSS.human.GRCh37 . 33
TSS.human.NCBI36 . 34
TSS.mouse.NCBIM37 . 35
TSS.rat.RGSC3.4 . 35
TSS.zebrafish.Zv8 . 36
write2FASTA . 37

Index 38

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChIP-seq or ChIP-
chip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene On-
tology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved
elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome,
GO.db, hypergeometric test phyper and multtest package.

Details

Package: ChIPpeakAnno
Type: Package
Version: 2.0.6
Date: 2011-10-31
License: LGPL
LazyLoad: yes

ChIPpeakAnno-package 3

Author(s)

Lihua Julie Zhu, Herve Pages, Claude Gazin, Nathan Lawson, Simon Lin, David Lapointe and
Michael Green

Maintainer: Lihua Julie Zhu <julie.zhu@umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.
2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypoth-
esis testing under dependency. Annals of Statistics. Accepted.
3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.
4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.
5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hy-
pothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc
6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.
7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol.
6: 65-70.
8. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley
9. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

See Also

getAnnotation, annotatePeakInBatch, getAllPeakSequence, write2FASTA, convert2EntrezID, ad-
dAncestors, getEnrichedGO,BED2RangedData, GFF2RangedData, makeVennDiagram,findOverlappingPeaks,
addGeneIDs, peaksNearBDP,summarizePatternInPeaks)

Examples

if (interactive())
{
data(myPeakList)

data(TSS.human.NCBI36)

myPeakList1 = myPeakList[1:6,]

annotatedPeak = annotatePeakInBatch(myPeakList1, AnnotationData=TSS.human.NCBI36)

peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1", "peak2")), space=c("NC_008253", "NC_010468"))
library(BSgenome.Ecoli.NCBI.20080805)

peaksWithSequences = getAllPeakSequence(peaks, upstream = 20,
downstream = 20, genome = Ecoli)

4 addAncestors

write2FASTA(peaksWithSequences, file="testseq.fasta", width=50)

filepath =system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno")
summarizePatternInPeaks(patternFilePath=filepath, format="fasta", skip=0L, BSgenomeName=Ecoli, peaks=peaks)

library(org.Hs.eg.db)
annotatedPeak.withSymbol =addGeneIDs(annotatedPeak,"org.Hs.eg.db",c("symbol"))
enrichedGO = getEnrichedGO(annotatedPeak, orgAnn ="org.Hs.eg.db", maxP=0.01,
multiAdj=FALSE, minGOterm=10, multiAdjMethod="")

enriched.biologicalprocess = enrichedGO$bp
enriched.molecularfunction = enrichedGO$mf
enriched.cellularcomponent = enrichedGO$cc

data(annotatedPeak)
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(y, xlab="Distance To Nearest TSS", main="", breaks=1000,
xlim=c(min(y)-100, max(y)+100))

annotatedBDP = peaksNearBDP(myPeakList1, AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,PeakLocForDistance = "middle", FeatureLocForDistance = "TSS")
c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks, annotatedBDP$n.peaksWithBDP)
}

addAncestors Add GO ids of the ancestors for a given vector of GO ids

Description

Add GO ids of the ancestors for a given vector of GO ids leveraging GO.db package

Usage

addAncestors(go.ids, ontology = c("bp", "cc", "mf"))

Arguments

go.ids matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.

ontology bp for biological process, cc for cellular component and mf for molecular func-
tion

Value

a vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added

Author(s)

Lihua Julie Zhu

addGeneIDs 5

Examples

go.ids = cbind(c("GO:0008150", "GO:0005576", "GO:0003674"),c("ND", "IDA", "ND"),
c("BP", "BP", "BP"), c("1", "1", "1"))
addAncestors(go.ids, ontology="bp")

addGeneIDs Add common IDs to annotated peaks such as gene symbol, entrez ID,
ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and
refseq id leveraging organism annotation dataset! For example, org.Hs.eg.db is the dataset from
orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db pack-
age for mouse

Usage

addGeneIDs(annotatedPeak, orgAnn, IDs2Add=c("symbol"), feature_id_type="ensembl_gene_id", silence=TRUE, mart)

Arguments

annotatedPeak RangedData such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation dataset such as org.Hs.eg.db

IDs2Add a vector of annotation identifiers to be added
feature_id_type

type of ID to be annotated

silence TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.

mart mart object, see useMart of biomaRt package for details

Details

One of orgAnn and mart should be assigned.

• When orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id,
gene_symbol, gene_alias or refseq_id. And parameter IDs2Add can be set to any com-
bination of identifiers such as "accnum", "ensembl", "ensemblprot", "ensembltrans", "en-
trez_id", "enzyme", "genename", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene"
and "uniprot". Some IDs are unique to a organism, such as "omim" for org.Hs.eg.db and
"mgi" for org.Mm.eg.db.
Here is the definition of different IDs :

– accnum: GenBank accession numbers
– ensembl: Ensembl gene accession numbers
– ensemblprot: Ensembl protein accession numbers
– ensembltrans: Ensembl transcript accession numbers
– entrez_id: entrez gene identifiers
– enzyme: EC numbers
– genename: gene name
– pfam: Pfam identifiers

6 annotatedPeak

– pmid: PubMed identifiers
– prosite: PROSITE identifiers
– refseq: RefSeq identifiers
– symbol: gene abbreviations
– unigene: UniGene cluster identifiers
– uniprot: Uniprot accession numbers
– omim: OMIM(Mendelian Inheritance in Man) identifiers
– mgi: Jackson Laboratory MGI gene accession numbers

• When mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add pa-
rameters, Please refer to getBM in bioMart package. Parameter feature_id_type should be
one valid filter name listed by listFilters(mart) and valid attributes name listed by listAt-
tributes(mart) such as ensemble_gene_id. And parameter IDs2Add should be one or more
valid attributes name listed by listAttributes(mart) such as external_gene_id, entrezgene, wiki-
gene_name, mirbase_transcript_name.

Value

RangedData if the input is a RangedData or dataframe with added IDs if input is a character vector.

Author(s)

Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also

getBM, AnnotationDbi

Examples

data(annotatedPeak)
library(org.Hs.eg.db)
addGeneIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db",IDs2Add=c("symbol","omim"))
addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",IDs2Add=c("symbol","genename"))
mart=useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
addGeneIDs(annotatedPeak[1:6,],mart=mart,IDs2Add=c("external_gene_id","entrezgene"))

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT1-binding regions that are identified in un-stimulated cells using ChIP-
seq technology (Robertson et al., 2007)

Usage

data(annotatedPeak)

annotatePeakInBatch 7

Format

RangedData with slot start holding the start position of the peak, slot end holding the end position of
the peak, slot rownames holding the id of the peak and slot space holding the chromosome location
where the peak is located. In addition, the following variables are included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with
the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature:
peak include the feature entirely

distancetoFeature distance to the nearest feature such as transcription start site

start_position start position of the feature such as gene

end_position end position of the feature such as the gene

strand 1 for positive strand and -1 for negative strand where the feature is located

Details

obtained by data(TSS.human.GRCh37) data(myPeakList) annotatePeakInBatch (myPeakList, An-
notationData = TSS.human.GRCh37, output="b"„multiple=F)

Examples

data(annotatedPeak)
str(annotatedPeak)
if (interactive()) {
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)), xlab="Distance To Nearest TSS", main="", breaks=1000,
ylim=c(0, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max(as.numeric(as.character(y)))+100))
}

annotatePeakInBatch obtain the distance to the nearest TSS, miRNA, exon et al for a list of
peak intervals

Description

obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging
IRanges and biomaRt package

Usage

annotatePeakInBatch(myPeakList, mart, featureType = c("TSS", "miRNA","Exon"),
AnnotationData,output=c("nearestStart", "overlapping","both"),multiple=c(TRUE,FALSE),
maxgap=0,PeakLocForDistance = c("start", "middle", "end"),
FeatureLocForDistance = c("TSS", "middle","start", "end","geneEnd"), select=c("all", "first","last","arbitrary"))

8 annotatePeakInBatch

Arguments

myPeakList RangedData: See example below

mart used if AnnotationData not supplied, a mart object, see useMart of bioMaRt
package for details

featureType used if AnnotationData not supplied, TSS, miRNA or exon

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
RangedData containing additional variable: strand (1 or + for plus strand and -1
or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37),
data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an-
notation will be obtained from biomaRt automatically using the parameters of
mart and featureType

output nearestStart (default): will output the nearest features calculated as peak start -
feature start (feature end if feature resides at minus strand); overlapping: will
output overlapping features with maximum gap specified as maxgap between
peak range and feature range; both: will output all the nearest features, in addi-
tion, will output any features that overlap the peak that is not the nearest features.

multiple not applicable when output is nearestStart. TRUE: output multiple overlapping
features for each peak. FALSE: output at most one overlapping feature for each
peak. This parameter is kept for backward compatibility, please use select.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping

PeakLocForDistance
Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance
Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

select all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Value

RangedData with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot space holding the chromosome location where the peak is located, slot rownames
holding the id of the peak. In addition, the following variables are included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak
overlaps with the start of the feature; overlapEnd: peak overlaps with the end of
the feature; includeFeature: peak include the feature entirely

annotatePeakInBatch 9

distancetoFeature
distance to the nearest feature such as transcription start site. By default, the
distance is calculated as the distance between the start of the binding site and the
TSS that is the gene start for genes located on the forward strand and the gene
end for genes located on the reverse strand. The user can specify the location of
peak and location of feature for calculating this

start_position start position of the feature such as gene

end_position end position of the feature such as the gene

strand 1 or + for positive strand and -1 or - for negative strand where the feature is
located

shortestDistance The shortest distance from either end of peak to either end the feature.
fromOverlappingOrNearest

NearestStart: indicates this feature’s start (feature’s end for features at minus
strand) is closest to the peak start; Overlapping: indicates this feature overlaps
with this peak although it is not the nearest feature start

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

findOverlappingPeaks, makeVennDiagram,addGeneIDs, peaksNearBDP,summarizePatternInPeaks

Examples

if (interactive())
{
example 1: annotate myPeakList (RangedData) with TSS.human.NCBI36 (RangedData)
data(myPeakList)
data(TSS.human.NCBI36)
annotatedPeak = annotatePeakInBatch(myPeakList[1:6,], AnnotationData=TSS.human.NCBI36)
as.data.frame(annotatedPeak)
example 2: you have a list of transcription factor biding sites from literature and
are interested in determining the extent of the overlap to the list of peaks from
your experiment. Prior calling the function annotatePeakInBatch, need to represent
both dataset as RangedData where start is the start of the binding site, end is
the end of the binding site, names is the name of the binding site,
space and strand are the chromosome name and strand where the binding site is located.

myexp = RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600,100,1000),
end=c(1555199,1560599,1565199,1573799,167893599,200,1200),
names=c("p1","p2","p3","p4","p5","p6", "p7")),strand=as.integer(1),space=c(6,6,6,6,5,4,4))
literature = RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600,120,800),
end=c(1550599,1560799,1565399,1571199,167888999,140,1400),
names=c("f1","f2","f3","f4","f5","f6","f7")),strand=c(1,1,1,1,1,-1,-1),space=c(6,6,6,6,5,4,4))
annotatedPeak1= annotatePeakInBatch(myexp, AnnotationData = literature)
pie(table(as.data.frame(annotatedPeak1)$insideFeature))

10 assignChromosomeRegion

as.data.frame(annotatedPeak1)
use BED2RangedData or GFF2RangedData to convert BED format or GFF format
to RangedData before calling annotatePeakInBatch
test.bed = data.frame(cbind(chrom = c("4", "6"), chromStart=c("100", "1000"),
chromEnd=c("200", "1100"), name=c("peak1", "peak2")))
test.rangedData = BED2RangedData(test.bed)
annotatePeakInBatch(test.rangedData, AnnotationData = literature)
test.GFF = data.frame(cbind(seqname = c("chr4", "chr4"), source=rep("Macs", 2),
feature=rep("peak", 2), start=c("100", "1000"), end=c("200", "1100"),
score=c(60, 26), strand=c(1, 1), frame=c(".", 2), group=c("peak1", "peak2")))
test.rangedData = GFF2RangedData(test.GFF)
as.data.frame(annotatePeakInBatch(test.rangedData, AnnotationData = literature))
}

assignChromosomeRegion
Summarizing peak distribution over exon, intron, enhancer, proximal
promoter, 5 prime UTR and 3 prime UTR

Description

Summarizing peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and
3 prime UTR

Usage

assignChromosomeRegion(peaks.RD, exon, TSS, utr5, utr3, proximal.promoter.cutoff = 1000, immediate.downstream.cutoff = 1000)

Arguments

peaks.RD peaks in RangedData: See example below

exon exon data obtained from getAnnotation or customized annotation of class Ranged-
Data containing additional variable: strand (1 or + for plus strand and -1 or - for
minus strand)

TSS TSS data obtained from getAnnotation or customized annotation of class Ranged-
Data containing additional variable: strand (1 or + for plus strand and -1 or - for
minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37),
data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8).

utr5 5 prime UTR data obtained from getAnnotation or customized annotation of
class RangedData containing additional variable: strand (1 or + for plus strand
and -1 or - for minus strand).

utr3 3 prime UTR data obtained from getAnnotation or customized annotation of
class RangedData containing additional variable: strand (1 or + for plus strand
and -1 or - for minus strand).

proximal.promoter.cutoff
Specify the cutoff in bases to be classified as proximal promoter region. Peaks
that reside within proximal.promoter.cutoff upstream from or overlap with tran-
scription start site are classified as proximal promoters. Peaks that reside up-
stream over proximal.promoter.cutoff from gene start are classified as enhancers.
The default is 1000 bases.

assignChromosomeRegion 11

immediate.downstream.cutoff
Specify the cutoff in bases to be classified as immediate downstream. Peaks
that reside within immediate.downstream.cutoff downstream of gene end but not
overlap 3 prime UTR are classified as immediate downstream. Peaks that reside
downstream over immediate.downstreatm.cutoff from gene end are classified as
enhancers. The default is 1000 bases.

Value

Exon Percent of peaks reside in exon regions.

Intron Percent of peaks reside in intron regions.

5UTR Percent of peaks reside in 5 prime UTR regions.

3UTR Percent of peaks reside in 3 prime UTR regions.

Proximal Promoter
Percent of peaks reside in proximal promoter regions.

Immediate Downstream
Percent of peaks reside in immediate downstream regions.

Enhancer Percent of peaks reside in enhancer regions.

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks,getEnrichedGO, getEnrichedPATH, makeVennDiagram,addGeneIDs,
peaksNearBDP,summarizePatternInPeaks

Examples

if (interactive())
{
library(ChIPpeakAnno)
data(myPeakList)
mart<-useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
TSS <- getAnnotation(mart, featureType ="TSS")
utr5 = getAnnotation(mart, featureType = "5utr")
utr3 = getAnnotation(mart, featureType="3utr")
exon = getAnnotation(mart, featureType="Exon")
Feature.distribution = assignChromosomeRegion(myPeakList, exon, TSS, utr5, utr3)
barplot(unlist(Feature.distribution),cex.names=1, xlab="Chromosome Region", ylab="Percent Binding Sites", main="")
}

12 BED2RangedData

BED2RangedData convert BED format to RangedData

Description

convert BED format to RangedData

Usage

BED2RangedData(data.BED,header=FALSE)

Arguments

data.BED BED format data frame, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format1
for details

header TRUE or FALSE, default to FALSE, indicates whether data.BED file has BED
header

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.
Default to 1 if not present in the BED formated data frame

Note

For converting the peakList in BED format to RangedData before calling annotatePeakInBatch
function

Author(s)

Lihua Julie Zhu

Examples

test.bed = data.frame(cbind(chrom = c("1", "2"), chromStart=c("100", "1000"),
chromEnd=c("200", "1100"), name=c("peak1", "peak2")))
test.rangedData = BED2RangedData(test.bed)

condenseMatrixByColnames 13

condenseMatrixByColnames
condense matrix by colnames

Description

condense matrix by colnames

Usage

condenseMatrixByColnames(mx,iname,sep=";",cnt=FALSE)

Arguments

mx a matrix to be condensed

iname the name of the column to be condensed

sep separator for condensed values,default ;

cnt TRUE/FALSE specifying whether adding count column or not?

Value

dataframe of condensed matrix

Author(s)

Jianhong Ou, Lihua Julie Zhu

Examples

a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)
colnames(a)<-c("con.1","con.2","index.1","index.2")
condenseMatrixByColnames(a,"con.1")
condenseMatrixByColnames(a,2)

convert2EntrezID Convert other common IDs such as ensemble gene id, gene symbol,
refseq id to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID lever-
aging organism annotation dataset! For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db
package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

Usage

convert2EntrezID(IDs, orgAnn, ID_type="ensembl_gene_id")

14 countPatternInSeqs

Arguments

IDs a vector of IDs such as ensembl gene ids

orgAnn organism annotation dataset such as org.Hs.eg.db

ID_type type of ID: can be ensemble_gene_id, gene_symbol or refseq_id

Value

vector of entrez ids

Author(s)

Lihua Julie Zhu

Examples

ensemblIDs = c("ENSG00000115956", "ENSG00000071082", "ENSG00000071054",
"ENSG00000115594", "ENSG00000115594", "ENSG00000115598", "ENSG00000170417")
library(org.Hs.eg.db)
entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

countPatternInSeqs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

countPatternInSeqs(pattern, sequences)

Arguments

pattern DNAstringSet object

sequences a vector of sequences

Value

Total number of occurrence of the pattern in the sequences

Author(s)

Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

enrichedGO 15

Examples

filepath = system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno")
dict = readDNAStringSet(filepath = filepath, format="fasta", use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT", "AAAAAACCCCTTTTGGCCATCCCGGGACGGGCCCAT", "ATCGAAAATTTCC")
countPatternInSeqs(pattern=dict[1], sequences=sequences)
countPatternInSeqs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet("ATNGMAA")
countPatternInSeqs(pattern=pattern, sequences=sequences)

enrichedGO Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage

data(enrichedGO)

Format

A list of 3 variables.

bp enriched biological process with 9 variables
go.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

mf enriched molecular function with the following 9 variables
go.id:GO molecular function id
go.term:GO molecular function term
go.Definition:GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

16 ExonPlusUtr.human.GRCh37

cc enriched cellular component the following 9 variables
go.id:GO cellular component id
go.term:GO cellular component term
go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)

Lihua Julie Zhu

Examples

data(enrichedGO)
dim(enrichedGO$mf)
dim(enrichedGO$cc)
dim(enrichedGO$bp)

ExonPlusUtr.human.GRCh37
Gene model with exon, 5’ UTR and 3’ UTR information for human
sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5’ UTR and 3’ UTR information for human sapiens (GRCh37) obtained
from biomaRt

Usage

data(ExonPlusUtr.human.GRCh37)

Format

RangedData with slot start holding the start position of the exon, slot end holding the end position
of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome
location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the transcript

ensembl_gene_id gene id

utr5start 5’ UTR start

utr5end 5’ UTR end

utr3start 3’ UTR start

utr3end 3’ UTR end

findOverlappingPeaks 17

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset
= "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-
Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37)
slotNames(ExonPlusUtr.human.GRCh37)

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

Usage

findOverlappingPeaks(Peaks1, Peaks2, maxgap = 0L,minoverlap=1L, multiple = c(TRUE, FALSE),
NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2",
select=c("all", "first","last","arbitrary"), annotate = 0)

Arguments

Peaks1 RangedData: See example below.

Peaks2 RangedData: See example below.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaks1. This parameter is kept for backward compatibility,
please use select.

NameOfPeaks1 Name of the Peaks1, used for generating column name.

NameOfPeaks2 Name of the Peaks2, used for generating column name.

select all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

annotate Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

Details

Efficiently perform overlap queries with an interval tree implemented in IRanges.

18 findVennCounts

Value
OverlappingPeaks

a data frame consists of input peaks information with added information: over-
lapFeature (upstream: peak1 resides upstream of the peak2; downstream: peak1
resides downstream of the peak2; inside: peak1 resides inside the peak2 en-
tirely; overlapStart: peak1 overlaps with the start of the peak2; overlapEnd:
peak1 overlaps with the end of the peak2; includeFeature: peak1 include the
peak2 entirely) and shortestDistance (shortest distance between the overlapping
peaks)

MergedPeaks RangedData contains merged overlapping peaks

Author(s)

Lihua Julie Zhu

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-
262-53196-8 2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq
and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, makeVennDiagram

Examples

if (interactive())
{
peaks1 = RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600),
end=c(1555199,1560599,1565199,1573799,167893599),names=c("p1","p2","p3","p4","p5")),
strand=as.integer(1),space=c(6,6,6,6,5))
peaks2 = RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600),
end=c(1550599,1560799,1565399,1571199,167888999),names=c("f1","f2","f3","f4","f5")),
strand=as.integer(1),space=c(6,6,6,6,5))
t1 =findOverlappingPeaks(peaks1, peaks2, maxgap=1000,
NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all", annotate=1)
r = t1$OverlappingPeaks
pie(table(r$overlapFeature))
as.data.frame(t1$MergedPeaks)
}

findVennCounts Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram

Description

Obtain Venn Counts for two peak ranges using chromosome ranges or feature field, internal function
for makeVennDigram

findVennCounts 19

Usage

findVennCounts(Peaks, NameOfPeaks, maxgap = 0L, minoverlap = 1L, totalTest, useFeature=FALSE)

Arguments

Peaks RangedDataList: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

totalTest Numeric value to specify the total number of tests performed to obtain the list
of peaks.

useFeature TRUE or FALSE, default FALSE, true means using feature field in the Ranged-
Data for calculating overlap, false means using chromosome range for calculat-
ing overlap.

Value

p.value hypergeometric testing result

vennCounts vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts

Note

if (interactive())

peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704), end = c(967754, 2010997,
2496804), names = c("Site1", "Site2", "Site3")), space = c("1", "2", "3"), strand=as.integer(1), fea-
ture=c("a","b", "c")) peaks2 = RangedData(IRanges(start = c(967659, 2010898, 2496700, 3075866,
3123260), end = c(967869, 2011108, 2496920, 3076166, 3123470), names = c("t1", "t2", "t3", "t4",
"t5")), space = c("1", "2", "3", "1", "2"), strand = c(1, 1, -1,-1,1), feature=c("a","c","d","e", "a"))
findVennCounts(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"), maxgap=0,totalTest=100,
useFeature=FALSE) findVennCounts(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"),
maxgap=0,totalTest=100, useFeature=TRUE)

Author(s)

Lihua Julie Zhu

See Also

makeVennDiagram

20 getAllPeakSequence

getAllPeakSequence Obtain genomic sequences around the peaks

Description

Obtain genomic sequences around the peaks leveraging BSgenome and biomaRt package

Usage

getAllPeakSequence(myPeakList, upstream = 200, downstream = 200, genome, AnnotationData)

Arguments

myPeakList RangedData: See example below

upstream upstream offset from the peak start, e.g., 200

downstream downstream offset from the peak end, e.g., 200

genome BSgenome object or mart object. Please refer to available.genomes in BSgenome
package and useMart in bioMaRt package for details

AnnotationData RangedData used if mart object is parsed in which can be obtained from getAn-
notation with featureType="TSS". For example, data(TSS.human.NCBI36), data(TSS.mouse.NCBIM37),
data(GO.rat.RGSC3.4) and data(TSS.zebrafish.Zv8). If not supplied, then anno-
tation will be obtained from biomaRt automatically using the mart object

Value

RangedData with slot start holding the start position of the peak, slot end holding the end position of
the peak, slot rownames holding the id of the peak and slot space holding the chromosome location
where the peak is located. In addition, the following variables are included.

upstream upstream offset from the peak start

downstream downstream offset from the peak end

sequence the sequence obtained

Author(s)

Lihua Julie Zhu

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

use Annotation data from BSgenome
peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600), names=c("peak1", "peak2")), space=c("NC_008253", "NC_010468"))
library(BSgenome.Ecoli.NCBI.20080805)
seq = getAllPeakSequence(peaks, upstream = 20,downstream = 20, genome = Ecoli)

write2FASTA(seq, file="test.fa")

getAnnotation 21

getAnnotation Obtain the TSS, exon or miRNA annotation for the specified species

Description

Obtain the TSS, exon or miRNA annotation for the specified species using biomaRt package

Usage

getAnnotation(mart,
featureType=c("TSS","miRNA", "Exon", "5utr", "3utr", "ExonPlusUtr", "transcript"))

Arguments

mart mart object, see useMart of bioMaRt package for details

featureType TSS, miRNA, Exon, 5’UTR, 3’UTR, transcript or Exon plus UTR

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located

description description of the feeature such as gene

Note

For featureType of TSS, start is the transcription start site if strand is 1 (plus strand), otherwise, end
is the transcription start site

Author(s)

Lihua Julie Zhu

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

if (interactive())
{
mart<-useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
Annotation = getAnnotation(mart, featureType="TSS")
}

22 getEnrichedGO

getEnrichedGO Obtain enriched gene ontology (GO) terms that near the peaks

Description

Obtain enriched gene ontology (GO) terms that are near the peaks using GO.db package and GO
gene mapping package such as org.Hs.db.eg to obtain the GO annotation and using hypergeometric
test (phyper) and multtest package for adjusting p-values

Usage

getEnrichedGO(annotatedPeak, orgAnn, feature_id_type="ensembl_gene_id",
maxP=0.01, multiAdj=FALSE, minGOterm=10, multiAdjMethod="")

Arguments

annotatedPeak RangedData such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

feature_id_type
the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

maxP maximum p-value to be considered to be significant

multiAdj Whether apply multiple hypothesis testing adjustment, TURE or FALSE

minGOterm minimum count in a genome for a GO term to be included
multiAdjMethod

multiple testing procedures, for details, see mt.rawp2adjp in multtest package

Value

A list of 3

bp enriched biological process with the following 9 variables
go.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

mf enriched molecular function with the following 9 variables
go.id:GO molecular function id
go.term:GO molecular function term
go.Definition:GO molecular function description

getEnrichedGO 23

Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

cc enriched cellular component the following 9 variables
go.id:GO cellular component id
go.term:GO cellular component term
go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)

Lihua Julie Zhu

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

Examples

data(enrichedGO)
enrichedGO$mf[1:10,]
enrichedGO$bp[1:10,]
enrichedGO$cc
if (interactive()) {
data(annotatedPeak)
library(org.Hs.eg.db)
enriched.GO = getEnrichedGO(annotatedPeak[1:6,], orgAnn="org.Hs.eg.db", maxP=0.01,
multiAdj=FALSE, minGOterm=10, multiAdjMethod="")
dim(enriched.GO$mf)
colnames(enriched.GO$mf)
dim(enriched.GO$bp)
enriched.GO$cc
}

24 getEnrichedPATH

getEnrichedPATH Obtain enriched PATH that near the peaks

Description

Obtain enriched PATH that are near the peaks using path package such as reactome.db and path
mapping package such as org.Hs.db.eg to obtain the path annotation and using hypergeometric test
(phyper) and multtest package for adjusting p-values

Usage

getEnrichedPATH(annotatedPeak, orgAnn, pathAnn, feature_id_type="ensembl_gene_id",
maxP=0.01, minPATHterm=10, multiAdjMethod=NULL)

Arguments

annotatedPeak RangedData such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

pathAnn pathway annotation package such as KEGG.db, reactome.db
feature_id_type

the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

maxP maximum p-value to be considered to be significant

minPATHterm minimum count in a genome for a path to be included
multiAdjMethod

multiple testing procedures, for details, see mt.rawp2adjp in multtest package

Value

A dataframe of enriched path with the following variables.

path.id KEGG PATH ID

EntrezID Entrez ID

count.InDataset count of this PATH in this dataset

count.InGenome count of this PATH in the genome

pvalue pvalue from the hypergeometric test
totaltermInDataset

count of all PATH in this dataset
totaltermInGenome

count of all PATH in the genome

PATH PATH name

Author(s)

Jianhong Ou

GFF2RangedData 25

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

Examples

if (interactive()) {
data(annotatedPeak)
library(org.Hs.eg.db)
library(reactome.db)
enriched.PATH= getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db", pathAnn="reactome.db", maxP=0.01,
minPATHterm=10, multiAdjMethod=NULL)
head(enriched.PATH)
}

GFF2RangedData convert GFF format to RangedData

Description

convert GFF format to RangedData

Usage

GFF2RangedData(data.GFF,header=FALSE)

Arguments

data.GFF GFF format data frame, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format3
for details

header TRUE or FALSE, default to FALSE, indicates whether data.GFF file has GFF
header

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.

Note

For converting the peakList in GFF format to RangedData before calling annotatePeakInBatch func-
tion

Author(s)

Lihua Julie Zhu

26 makeVennDiagram

Examples

test.GFF = data.frame(cbind(seqname = c("chr1", "chr2"), source=rep("Macs", 2),
feature=rep("peak", 2), start=c("100", "1000"), end=c("200", "1100"), score=c(60, 26),
strand=c(1, -1), frame=c(".", 2), group=c("peak1", "peak2")))
test.rangedData = GFF2RangedData(test.GFF)

makeVennDiagram Make Venn Diagram from two peak ranges

Description

Make Venn Diagram from two peak ranges and also calculate p-value for determining whether two
peak ranges overlap significantly.

Usage

makeVennDiagram(Peaks, NameOfPeaks, maxgap=0L, minoverlap=1L, totalTest, useFeature=FALSE, ...)

Arguments

Peaks RangedDataList: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

totalTest Numeric value to specify the total number of tests performed to obtain the list
of peaks. It should be much larger than the number of peaks in the largest peak
set.

useFeature TRUE or FALSE, default FALSE, true means using feature field in the Ranged-
Data for calculating overlap, false means using chromosome range for calculat-
ing overlap.

... Additional arguments to be passed to venn.diagram

Details

For customized graph options, please see venn.diagram in VennDiagram package.

Value

In addition to a Venn Diagram produced, p.value is obtained from hypergeometric test for deter-
mining whether the two peak ranges or features overlap significantly.

Author(s)

Lihua Julie Zhu, Jianhong Ou

myPeakList 27

See Also

findOverlappingPeaks, venn.diagram

Examples

if (interactive())
{
peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704),
end = c(967754, 2010997, 2496804), names = c("Site1", "Site2", "Site3")),
space = c("1", "2", "3"), strand=as.integer(1),feature=c("a","b","f"))
peaks2 = RangedData(IRanges(start = c(967659, 2010898,2496700,3075866,3123260),
end = c(967869, 2011108, 2496920, 3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),
space = c("1", "2", "3", "1", "2"), strand = c(1, 1, -1,-1,1), feature=c("a","b","c","d","a"))
makeVennDiagram(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100,scaled=F, euler.d=F)

makeVennDiagram(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100,useFeature=FALSE)

4-way diagram using annotated feature instead of chromosome ranges

makeVennDiagram(RangedDataList(peaks1,peaks2, peaks1, peaks2), NameOfPeaks=c("TF1", "TF2","TF3", "TF4"), totalTest=100,useFeature=TRUE,
main = "Venn Diagram for 4 peak lists",fill=c(1,2,3,4))
}

myPeakList ChIP-seq peak dataset

Description

the putative STAT1-binding regions identified in un-stimulated cells using ChIP-seq technology
(Robertson et al., 2007)

Usage

data(myPeakList)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of
STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.
Nat Methods 4:651-7

Examples

data(myPeakList)
slotNames(myPeakList)

28 Peaks.Ste12.Replicate2

Peaks.Ste12.Replicate1 Ste12-binding sites from biological replicate 1 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate1)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37

Examples

data(Peaks.Ste12.Replicate1)
str(Peaks.Ste12.Replicate1)

Peaks.Ste12.Replicate2 Ste12-binding sites from biological replicate 2 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate2)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

Peaks.Ste12.Replicate3 29

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Ste12.Replicate2)
str(Peaks.Ste12.Replicate2)

Peaks.Ste12.Replicate3 Ste12-binding sites from biological replicate 3 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate3)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Ste12.Replicate3)
str(Peaks.Ste12.Replicate3)

30 peaksNearBDP

peaksNearBDP obtain the peaks near bi-directional promoters

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional
promoters.

Usage

peaksNearBDP(myPeakList, mart,AnnotationData, MaxDistance=5000,PeakLocForDistance = c("start", "middle", "end"),
FeatureLocForDistance = c("TSS", "middle","start", "end","geneEnd"))

Arguments

myPeakList RangedData: See example below

mart used if AnnotationData not supplied, a mart object, see useMart of bioMaRt
package for details

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
RangedData containing additional variable: strand (1 or + for plus strand and -1
or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37),
data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an-
notation will be obtained from biomaRt automatically using the parameters of
mart and featureType TSS

MaxDistance Specify the maximum gap allowed between the peak and nearest gene
PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance
Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

Value

A list of 4

peaksWithBDP annotated Peaks containing bi-directional promoters.
RangedData with slot start holding the start position of the peak, slot end holding
the end position of the peak, slot space holding the chromosome location where
the peak is located, slot rownames holding the id of the peak. In addition, the
following variables are included.
feature: id of the feature such as ensembl gene ID

peaksNearBDP 31

insideFeature: upstream: peak resides upstream of the feature; downstream:
peak resides downstream of the feature; inside: peak resides inside the fea-
ture; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak
overlaps with the end of the feature; includeFeature: peak include the feature
entirely.
distancetoFeature: distance to the nearest feature such as transcription start site.
By default, the distance is calculated as the distance between the start of the
binding site and the TSS that is the gene start for genes located on the forward
strand and the gene end for genes located on the reverse strand. The user can
specify the location of peak and location of feature for calculating this
start_position: start position of the feature such as gene
end_position: end position of the feature such as the gene
strand: 1 or + for positive strand and -1 or - for negative strand where the feature
is located
shortestDistance: The shortest distance from either end of peak to either end the
feature
fromOverlappingOrNearest: NearestStart: indicates this PeakLocForDistance is
closest to the FeatureLocForDistance

percentPeaksWithBDP
The percent of input peaks containing bi-directional promoters

n.peaks The total number of input peaks

n.peaksWithBDP
The # of input peaks containing bi-directional promoters

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

Examples

if (interactive())
{
data(myPeakList)
data(TSS.human.NCBI36)
annotatedBDP = peaksNearBDP(myPeakList[1:6,], AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,PeakLocForDistance = "middle",
FeatureLocForDistance = "TSS")
c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks, annotatedBDP$n.peaksWithBDP)
}

32 summarizePatternInPeaks

summarizePatternInPeaks
Output a summary of the occurrence of each pattern in the sequences.

Description

Output a summary of the occurrence of each pattern in the sequences.

Usage

summarizePatternInPeaks(patternFilePath, format = "fasta",skip=0L, BSgenomeName, peaks, outfile, append = FALSE)

Arguments

patternFilePath A character vector containing the path to the file to read the patterns from.

format Either "fasta" (the default) or "fastq"

skip Single non-negative integer. The number of records of the pattern file to skip
before beginning to read in records.

BSgenomeName BSgenome object. Please refer to available.genomes in BSgenome package for
details

peaks RangedData containing the peaks

outfile A character vector containing the path to the file to write the summary output.

append TRUE or FALSE, default FALSE

Value

A data frame with 3 columns as n.peaksWithPattern (number of peaks with the pattern), n.totalPeaks
(total number of peaks in the input) and Pattern (the corresponding pattern).

Author(s)

Lihua Julie Zhu

Examples

peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600), names=c("peak1", "peak2")), space=c("NC_008253", "NC_010468"))
filepath =system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno")
library(BSgenome.Ecoli.NCBI.20080805)
summarizePatternInPeaks(patternFilePath=filepath, format="fasta", skip=0L, BSgenomeName=Ecoli, peaks=peaks)

translatePattern 33

translatePattern translate pattern from IUPAC Extended Genetic Alphabet to regular
expression

Description

translate pattern containing the IUPAC nucleotide ambiguity codes to regular expression. For
example,Y->[C|T], R-> [A|G], S-> [G|C], W-> [A|T], K-> [T|U|G], M-> [A|C], B-> [C|G|T], D-
> [A|G|T], H-> [A|C|T], V-> [A|C|G] and N-> [A|C|T|G].

Usage

translatePattern(pattern)

Arguments

pattern a character vector with the IUPAC nucleotide ambiguity codes

Value

a character vector with the pattern represented as regular expression

Author(s)

Lihua Julie Zhu

See Also

countPatternInSeqs, summarizePatternInPeaks

Examples

pattern1 = "AACCNWMK"
translatePattern(pattern1)

TSS.human.GRCh37 TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Usage

data(TSS.human.GRCh37)

34 TSS.human.NCBI36

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of
the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location
where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh37)
slotNames(TSS.human.GRCh37)

TSS.human.NCBI36 TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Description

TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Usage

data(TSS.human.NCBI36)

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of
the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location
where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.NCBI36)
slotNames(TSS.human.NCBI36)

TSS.mouse.NCBIM37 35

TSS.mouse.NCBIM37 TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Description

TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Usage

data(TSS.mouse.NCBIM37)

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of
the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location
where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.NCBIM37)
slotNames(TSS.mouse.NCBIM37)

TSS.rat.RGSC3.4 TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Description

TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Usage

data(TSS.rat.RGSC3.4)

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of
the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location
where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

36 TSS.zebrafish.Zv8

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.RGSC3.4)
slotNames(TSS.rat.RGSC3.4)

TSS.zebrafish.Zv8 TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Description

TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Usage

data(TSS.zebrafish.Zv8)

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of
the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location
where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv8)
slotNames(TSS.zebrafish.Zv8)

write2FASTA 37

write2FASTA write sequences to a file in fasta format

Description

write the sequences obtained from getAllPeakSequence to a file in fasta format leveraging write-
FASTA in Biostrings package. FASTA is a simple file format for biological sequence data. A
FASTA format file contains one or more sequences and there is a header line which begins with a >
proceeding each sequence.

Usage

write2FASTA(mySeq, file="", width=80)

Arguments

mySeq RangedData with varibles name and sequence ,e.g., results obtained from getAll-
PeakSequence

file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for write2FASTA), then the function writes to the standard
output connection (the console) unless redirected by sink

width The maximum number of letters per line of sequence

Value

Output as FASTA file format to the naming file or the console.

Author(s)

Lihua Julie Zhu

Examples

peaksWithSequences = RangedData(IRanges(start=c(1000, 2000), end=c(1010, 2010),
names=c("id1", "id2")), sequence= c("CCCCCCCCGGGGG", "TTTTTTTAAAAAA"))
write2FASTA(peaksWithSequences, file="testseq.fasta", width=50)

Index

∗Topic \textasciitildekwd1
assignChromosomeRegion, 10

∗Topic \textasciitildekwd2
assignChromosomeRegion, 10

∗Topic datasets
annotatedPeak, 6
enrichedGO, 15
ExonPlusUtr.human.GRCh37, 16
myPeakList, 27
Peaks.Ste12.Replicate1, 28
Peaks.Ste12.Replicate2, 28
Peaks.Ste12.Replicate3, 29
TSS.human.GRCh37, 33
TSS.human.NCBI36, 34
TSS.mouse.NCBIM37, 35
TSS.rat.RGSC3.4, 35
TSS.zebrafish.Zv8, 36

∗Topic graph
makeVennDiagram, 26

∗Topic misc
addAncestors, 4
addGeneIDs, 5
annotatePeakInBatch, 7
BED2RangedData, 12
condenseMatrixByColnames, 13
convert2EntrezID, 13
countPatternInSeqs, 14
findOverlappingPeaks, 17
findVennCounts, 18
getAllPeakSequence, 20
getAnnotation, 21
getEnrichedGO, 22
getEnrichedPATH, 24
GFF2RangedData, 25
peaksNearBDP, 30
summarizePatternInPeaks, 32
translatePattern, 33
write2FASTA, 37

∗Topic package
ChIPpeakAnno-package, 2

addAncestors, 4
addGeneIDs, 5
annotatedPeak, 6

annotatePeakInBatch, 7
AnnotationDbi, 6
assignChromosomeRegion, 10

BED2RangedData, 12

ChIPpeakAnno (ChIPpeakAnno-package),
2

ChIPpeakAnno-package, 2
condenseMatrixByColnames, 13
convert2EntrezID, 13
countPatternInSeqs, 14

enrichedGO, 15
ExonPlusUtr.human.GRCh37, 16

findOverlappingPeaks, 17, 27
findVennCounts, 18

getAllPeakSequence, 20
getAnnotation, 21
getBM, 6
getEnrichedGO, 22
getEnrichedPATH, 24
GFF2RangedData, 25

listAttributes(mart), 6
listFilters(mart), 6

makeVennDiagram, 26
myPeakList, 27

Peaks.Ste12.Replicate1, 28
Peaks.Ste12.Replicate2, 28
Peaks.Ste12.Replicate3, 29
peaksNearBDP, 30

summarizePatternInPeaks, 32

translatePattern, 33
TSS.human.GRCh37, 33
TSS.human.NCBI36, 34
TSS.mouse.NCBIM37, 35
TSS.rat.RGSC3.4, 35
TSS.zebrafish.Zv8, 36

38

INDEX 39

useMart, 5

venn.diagram, 26, 27

write2FASTA, 37

	ChIPpeakAnno-package
	addAncestors
	addGeneIDs
	annotatedPeak
	annotatePeakInBatch
	assignChromosomeRegion
	BED2RangedData
	condenseMatrixByColnames
	convert2EntrezID
	countPatternInSeqs
	enrichedGO
	ExonPlusUtr.human.GRCh37
	findOverlappingPeaks
	findVennCounts
	getAllPeakSequence
	getAnnotation
	getEnrichedGO
	getEnrichedPATH
	GFF2RangedData
	makeVennDiagram
	myPeakList
	Peaks.Ste12.Replicate1
	Peaks.Ste12.Replicate2
	Peaks.Ste12.Replicate3
	peaksNearBDP
	summarizePatternInPeaks
	translatePattern
	TSS.human.GRCh37
	TSS.human.NCBI36
	TSS.mouse.NCBIM37
	TSS.rat.RGSC3.4
	TSS.zebrafish.Zv8
	write2FASTA
	Index

