Package 'ChIPpeakAnno'

March 26, 2013

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,ChIPchip experiments or any experiments resulted in large number of chromosome ranges.

Version 2.6.1

Date 2012-09-14

Author Lihua Julie Zhu, Herve Pages, Claude Gazin, Nathan Lawson, Jianhong Ou, Simon Lin, David Lapointe and Michael Green

Maintainer Lihua Julie Zhu <julie.zhu@umassmed.edu>

- **Depends** R (>= 2.10), grid, VennDiagram, BiocGenerics (>= 0.1.0), biomaRt, multtest, IRanges, Biostrings, BSgenome, BSgenome. Ecoli. NCBI. 20080805, GO.db, org. Hs.eg
- Imports gplots, BiocGenerics, biomaRt, multtest, IRanges, Biostrings, BSgenome, GO.db, limma, AnnotationDbi

biocViews Annotation, ChIPseq, ChIPchip

Suggests reactome.db

Description The package includes functions to retrieve the sequences around the peak, obtain enriched Gene Ontology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved elements and other transcription factor binding sites supplied by users. Starting 2.0.5, new functions have been added for finding the peaks with bidirectional promoters with summary statistics (peaksNearBDP), for summarizing the occurrence of motifs in peaks (summarizePatternInPeaks) and for adding other IDs to annotated peaks or enrichedGO (addGeneIDs). This package leverages the biomaRt, IRanges, Biostrings, BSgenome, GO.db, multtest and stat packages

License GPL (>= 2)

LazyLoad yes

R topics documented:

ChIPpeakAnno-pack	cage		 •			 •		 				 •										2
addAncestors			 •			 •		 				 •	•	•								4
addGeneIDs		•	 •	•	•	 •	•	 	•	•	•	 •	•		•	•	•	•		•		5

annotatedPeak
annotatePeakInBatch
assignChromosomeRegion
BED2RangedData
condenseMatrixByColnames
convert2EntrezID
countPatternInSeqs
enrichedGO
ExonPlusUtr.human.GRCh37
findOverlappingPeaks
findVennCounts
getAllPeakSequence
getAnnotation
getEnrichedGO
getEnrichedPATH
GFF2RangedData
makeVennDiagram
myPeakList
Peaks.Ste12.Replicate1
Peaks.Ste12.Replicate2
Peaks.Ste12.Replicate3
peaksNearBDP
summarizePatternInPeaks
translatePattern
TSS.human.GRCh37
TSS.human.NCBI36
TSS.mouse.NCBIM37 35
TSS.rat.RGSC3.4
TSS.zebrafish.Zv8
write2FASTA
38

Index

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChIP-seq or ChIPchip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene Ontology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome, GO.db, hypergeometric test phyper and multtest package.

Details

Package:	ChIPpeakAnno
Type:	Package
Version:	2.0.6
Date:	2011-10-31
License:	LGPL
LazyLoad:	yes

Author(s)

Lihua Julie Zhu, Herve Pages, Claude Gazin, Nathan Lawson, Simon Lin, David Lapointe and Michael Green

Maintainer: Lihua Julie Zhu <julie.zhu@umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypothesis testing under dependency. Annals of Statistics. Accepted.

3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts and microarray data analysis. Bioinformatics, 21, 3439-3440.

4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray experiments.

5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika. Vol. 75: 800-802.

7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol. 6: 65-70.

8. N. L. Johnson, S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition. New York: Wiley

9. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

See Also

getAnnotation, annotatePeakInBatch, getAllPeakSequence, write2FASTA, convert2EntrezID, addAncestors, getEnrichedGO,BED2RangedData, GFF2RangedData, makeVennDiagram,findOverlappingPeaks, addGeneIDs, peaksNearBDP,summarizePatternInPeaks)

Examples

```
if (interactive())
{
data(myPeakList)
data(TSS.human.NCBI36)
```

```
myPeakList1 = myPeakList[1:6,]
```

annotated Peak = annotate Peak In Batch (my Peak List 1, Annotation Data = TSS.human.NCBI36)

```
\label{eq:peaks} \begin{split} peaks &= RangedData(IRanges(start=c(100, 500), end=c(300, 600), \\ names=c("peak1", "peak2")), space=c("NC_008253", "NC_010468")) \\ library(BSgenome.Ecoli.NCBI.20080805) \end{split}
```

```
peaksWithSequences = getAllPeakSequence(peaks, upstream = 20, downstream = 20, genome = Ecoli)
```

write2FASTA(peaksWithSequences, file="testseq.fasta", width=50)

 $\label{eq:constraint} filepath = system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno") \\ summarizePatternInPeaks(patternFilePath=filepath, format="fasta", skip=0L, BSgenomeName=Ecoli, peaks=peaks) \\ \end{tabular}$

```
library(org.Hs.eg.db)
annotatedPeak.withSymbol =addGeneIDs(annotatedPeak,"org.Hs.eg.db",c("symbol"))
enrichedGO = getEnrichedGO(annotatedPeak, orgAnn ="org.Hs.eg.db", maxP=0.01,
multiAdj=FALSE, minGOterm=10, multiAdjMethod="")
```

```
enriched.biologicalprocess = enrichedGO$bp
enriched.molecularfunction = enrichedGO$mf
enriched.cellularcomponent = enrichedGO$cc
```

```
data(annotatedPeak)
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(y, xlab="Distance To Nearest TSS", main="", breaks=1000,
xlim=c(min(y)-100, max(y)+100))
```

```
annotatedBDP = peaksNearBDP(myPeakList1, AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,PeakLocForDistance = "middle", FeatureLocForDistance = "TSS")
c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks, annotatedBDP$n.peaksWithBDP)
}
```

addAncestors Add GO ids of the ancestors for a given vector of GO ids

Description

Add GO ids of the ancestors for a given vector of GO ids leveraging GO.db package

Usage

addAncestors(go.ids, ontology = c("bp", "cc", "mf"))

Arguments

go.ids	matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.
ontology	bp for biological process, cc for cellular component and mf for molecular func- tion

Value

a vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added

Author(s)

Lihua Julie Zhu

4

addGeneIDs

Examples

```
go.ids = cbind(c("GO:0008150", "GO:0005576", "GO:0003674"),c("ND", "IDA", "ND"), c("BP", "BP", "BP"), c("1", "1", "1")) addAncestors(go.ids, ontology="bp")
```

addGeneIDs

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and refseq id leveraging organism annotation dataset! For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse

Usage

 $addGeneIDs (annotatedPeak, orgAnn, IDs2Add = c ("symbol"), feature_id_type = "ensembl_gene_id", silence = c ("symbol"), feature_id_type = c$

Arguments

annotatedPeak	RangedData such as data(annotatedPeak) or a vector of feature IDs
orgAnn	organism annotation dataset such as org.Hs.eg.db
IDs2Add	a vector of annotation identifiers to be added
$feature_id_type$	
	type of ID to be annotated
silence	TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.
mart	mart object, see useMart of biomaRt package for details

Details

One of orgAnn and mart should be assigned.

• When orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id, gene_symbol, gene_alias or refseq_id. And parameter IDs2Add can be set to any combination of identifiers such as "accnum", "ensembl", "ensemblprot", "ensembltrans", "entrez_id", "enzyme", "genename", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene" and "uniprot". Some IDs are unique to a organism, such as "omim" for org.Hs.eg.db and "mgi" for org.Mm.eg.db.

Here is the definition of different IDs :

- accnum: GenBank accession numbers
- ensembl: Ensembl gene accession numbers
- ensemblprot: Ensembl protein accession numbers
- ensembltrans: Ensembl transcript accession numbers
- entrez_id: entrez gene identifiers
- enzyme: EC numbers
- genename: gene name
- pfam: Pfam identifiers

- pmid: PubMed identifiers
- prosite: PROSITE identifiers
- refseq: RefSeq identifiers
- symbol: gene abbreviations
- unigene: UniGene cluster identifiers
- uniprot: Uniprot accession numbers
- omim: OMIM(Mendelian Inheritance in Man) identifiers
- mgi: Jackson Laboratory MGI gene accession numbers
- When mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add parameters, Please refer to getBM in bioMart package. Parameter feature_id_type should be one valid filter name listed by listFilters(mart) and valid attributes name listed by listAttributes(mart) such as ensemble_gene_id. And parameter IDs2Add should be one or more valid attributes name listed by listAttributes(mart) such as external_gene_id, entrezgene, wiki-gene_name, mirbase_transcript_name.

Value

RangedData if the input is a RangedData or dataframe with added IDs if input is a character vector.

Author(s)

Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also

getBM, AnnotationDbi

Examples

```
data(annotatedPeak)
library(org.Hs.eg.db)
addGeneIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db",IDs2Add=c("symbol","omim"))
addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",IDs2Add=c("symbol","genename"))
mart=useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
addGeneIDs(annotatedPeak[1:6,],mart=mart,IDs2Add=c("external_gene_id","entrezgene"))
```

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT1-binding regions that are identified in un-stimulated cells using ChIPseq technology (Robertson et al., 2007)

Usage

data(annotatedPeak)

Format

RangedData with slot start holding the start position of the peak, slot end holding the end position of the peak, slot rownames holding the id of the peak and slot space holding the chromosome location where the peak is located. In addition, the following variables are included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides downstream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature: peak include the feature entirely

distance to Feature distance to the nearest feature such as transcription start site

start position start position of the feature such as gene

end_position end position of the feature such as the gene

strand 1 for positive strand and -1 for negative strand where the feature is located

Details

obtained by data(TSS.human.GRCh37) data(myPeakList) annotatePeakInBatch (myPeakList, AnnotationData = TSS.human.GRCh37, output="b",,multiple=F)

Examples

```
data(annotatedPeak)
str(annotatedPeak)
if (interactive()) {
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)), xlab="Distance To Nearest TSS", main="", breaks=1000,
ylim=c(0, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max(as.numeric(as.character(y)))+100))
}
```

annotate Peak In Batch

obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak intervals

Description

obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging IRanges and biomaRt package

Usage

```
annotatePeakInBatch(myPeakList, mart, featureType = c("TSS", "miRNA", "Exon"), \\ AnnotationData,output=c("nearestStart", "overlapping", "both"), multiple=c(TRUE, FALSE), \\ maxgap=0, PeakLocForDistance = c("start", "middle", "end"), \\ FeatureLocForDistance = c("TSS", "middle", "start", "end", "geneEnd"), select=c("all", "first", "last", "arbitrarest start", "end"), \\ FeatureLocForDistance = c("TSS", "middle", "start", "end", "geneEnd"), \\ Select=c("all", "first", "last", "arbitrarest start", "arbitrarest start", "end"), \\ Select=c("all", "first", "last", "arbitrarest start", "end", "geneEnd"), \\ Select=c("all", "first", "last", "arbitrarest start", "geneEnd"), \\ Select=c("all", "first", "last", "geneEnd"), \\ Select=c("all", "first", "last", "first", "last", "first", "last", "first", "last", "first", "last", "first", "last", "first", "f
```

Arguments

myPeakList	RangedData: See example below
mart	used if AnnotationData not supplied, a mart object, see useMart of bioMaRt package for details
featureType	used if AnnotationData not supplied, TSS, miRNA or exon
AnnotationData	annotation data obtained from getAnnotation or customized annotation of class RangedData containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37), data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an- notation will be obtained from biomaRt automatically using the parameters of mart and featureType
output	nearestStart (default): will output the nearest features calculated as peak start - feature start (feature end if feature resides at minus strand); overlapping: will output overlapping features with maximum gap specified as maxgap between peak range and feature range; both: will output all the nearest features, in addi- tion, will output any features that overlap the peak that is not the nearest features.
multiple	not applicable when output is nearestStart. TRUE: output multiple overlapping features for each peak. FALSE: output at most one overlapping feature for each peak. This parameter is kept for backward compatibility, please use select.
maxgap	Non-negative integer. Intervals with a separation of maxgap or less are consid- ered to be overlapping
PeakLocForDista	nce
	Specify the location of peak for calculating distance, i.e., middle means using middle of the peak to calculate distance to feature, start means using start of the peak to calculate the distance to feature. To be compatible with previous version, by default using start
FeatureLocForDis	stance
	Specify the location of feature for calculating distance, i.e., middle means using middle of the feature to calculate distance of peak to feature, start means using start of the feature to calculate the distance to feature, TSS means using start of feature when feature is on plus strand and using end of feature when feature is on minus strand, geneEnd means using end of feature when feature is on plus strand and using start of feature when feature is on minus strand. To be compatible with previous version, by default using TSS
select	all may return multiple overlapping peaks, first will return the first overlapping peak, last will return the last overlapping peak and arbitrary will return one of the overlapping peaks.

Value

RangedData with slot start holding the start position of the peak, slot end holding the end position of the peak, slot space holding the chromosome location where the peak is located, slot rownames holding the id of the peak. In addition, the following variables are included.

- feature id of the feature such as ensembl gene ID
- insideFeature upstream: peak resides upstream of the feature; downstream: peak resides downstream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature: peak include the feature entirely

distancetoFeature

	distance to the nearest feature such as transcription start site. By default, the distance is calculated as the distance between the start of the binding site and the
	TSS that is the gene start for genes located on the forward strand and the gene end for genes located on the reverse strand. The user can specify the location of peak and location of feature for calculating this
$start_position$	start position of the feature such as gene
$end_{position}$	end position of the feature such as the gene
strand	1 or + for positive strand and -1 or - for negative strand where the feature is located
shortestDistance	The shortest distance from either end of peak to either end the feature.
fromOverlapping	OrNearest
	NearestStart: indicates this feature's start (feature's end for features at minus strand) is closest to the peak start; Overlapping: indicates this feature overlaps

with this peak although it is not the nearest feature start

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

findOverlappingPeaks, makeVennDiagram, addGeneIDs, peaksNearBDP, summarizePatternInPeaks

Examples

if (interactive())

{

example 1: annotate myPeakList (RangedData) with TSS.human.NCBI36 (RangedData) data(myPeakList)

data(TSS.human.NCBI36)

 $annotated Peak = annotatePeak InBatch(myPeakList[1:6,], AnnotationData=TSS.human.NCBI36) \\ as.data.frame(annotatedPeak)$

example 2: you have a list of transcription factor biding sites from literature and

are interested in determining the extent of the overlap to the list of peaks from

your experiment. Prior calling the function annotate PeakInBatch, need to represent

both dataset as RangedData where start is the start of the binding site, end is

the end of the binding site, names is the name of the binding site,

space and strand are the chromosome name and strand where the binding site is located.

 $\begin{array}{l} myexp = \ RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600,100,1000),\\ end=c(1555199,1560599,1565199,1573799,167893599,200,1200),\\ names=c("p1","p2","p3","p4","p5","p6","p7")),strand=as.integer(1),space=c(6,6,6,6,5,4,4))\\ literature = \ RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600,120,800),\\ end=c(1550599,1560799,1565399,1571199,167888999,140,1400),\\ names=c("f1","f2","f3","f4","f5","f6","f7")),strand=c(1,1,1,1,1,-1,-1),space=c(6,6,6,6,5,4,4))\\ annotatedPeak1= annotatePeakInBatch(myexp, AnnotationData = literature)\\ pie(table(as.data.frame(annotatedPeak1)$insideFeature)) \end{array}$

```
as.data.frame(annotatedPeak1)
#### use BED2RangedData or GFF2RangedData to convert BED format or GFF format
#### to RangedData before calling annotatePeakInBatch
test.bed = data.frame(cbind(chrom = c("4", "6"), chromStart=c("100", "1000"),
chromEnd=c("200", "1100"), name=c("peak1", "peak2")))
test.rangedData = BED2RangedData(test.bed)
annotatePeakInBatch(test.rangedData, AnnotationData = literature)
test.GFF = data.frame(cbind(seqname = c("chr4", "chr4"), source=rep("Macs", 2),
feature=rep("peak", 2), start=c("100", "1000"), end=c("200", "1100"),
score=c(60, 26), strand=c(1, 1), frame=c(".", 2), group=c("peak1", "peak2")))
test.rangedData = GFF2RangedData(test.GFF)
as.data.frame(annotatePeakInBatch(test.rangedData, AnnotationData = literature))
}
```

assignChromosomeRegion

Summarizing peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and 3 prime UTR

Description

Summarizing peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and 3 prime UTR

Usage

assignChromosomeRegion(peaks.RD, exon, TSS, utr3, proximal.promoter.cutoff = 1000, immediate.downsolution and the second secon

Arguments

peaks.RD	peaks in RangedData: See example below
exon	exon data obtained from getAnnotation or customized annotation of class Ranged- Data containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand)
TSS	TSS data obtained from getAnnotation or customized annotation of class Ranged- Data containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37), data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8).
utr5	5 prime UTR data obtained from getAnnotation or customized annotation of class RangedData containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand).
utr3	3 prime UTR data obtained from getAnnotation or customized annotation of class RangedData containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand).
proximal.prome	ter.cutoff
	Specify the cutoff in bases to be classified as proximal promoter region. Peaks that reside within proximal.promoter.cutoff upstream from or overlap with transcription start site are classified as proximal promoters. Peaks that reside upstream over proximal.promoter.cutoff from gene start are classified as enhancers. The default is 1000 bases.

10

immediate.downstream.cutoff

Specify the cutoff in bases to be classified as immediate downstream. Peaks that reside within immediate.downstream.cutoff downstream of gene end but not overlap 3 prime UTR are classified as immediate downstream. Peaks that reside downstream over immediate.downstreatm.cutoff from gene end are classified as enhancers. The default is 1000 bases.

Value

Exon	Percent of peaks reside in exon regions.
Intron	Percent of peaks reside in intron regions.
5UTR	Percent of peaks reside in 5 prime UTR regions.
3UTR	Percent of peaks reside in 3 prime UTR regions.
Proximal Promot	ter
	Percent of peaks reside in proximal promoter regions.
Immediate Down	stream
	Percent of peaks reside in immediate downstream regions.
Enhancer	Percent of peaks reside in enhancer regions.

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks,getEnrichedGO, getEnrichedPATH, makeVennDiagram,addGeneIDs, peaksNearBDP,summarizePatternInPeaks

```
if (interactive())
{
    library(ChIPpeakAnno)
    data(myPeakList)
    mart<-useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
    TSS <- getAnnotation(mart, featureType ="TSS")
    utr5 = getAnnotation(mart, featureType = "5utr")
    utr3 = getAnnotation(mart, featureType="3utr")
    exon = getAnnotation(mart, featureType="Exon")
    Feature.distribution = assignChromosomeRegion(myPeakList, exon, TSS, utr5, utr3)
    barplot(unlist(Feature.distribution),cex.names=1, xlab="Chromosome Region", ylab="Percent Binding Sites", main="
}</pre>
```

BED2RangedData

Description

convert BED format to RangedData

Usage

BED2RangedData(data.BED,header=FALSE)

Arguments

data.BED	BED format data frame, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format for details
header	TRUE or FALSE, default to FALSE, indicates whether data.BED file has BED header

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position of the feature, slot names holding the id of the feature, slot space holding the chromosome location where the feature is located. In addition, the following variables are included.

strand	1 for positive strand and -1 for negative strand where the feature is located.
	Default to 1 if not present in the BED formated data frame

Note

For converting the peakList in BED format to RangedData before calling annotatePeakInBatch function

Author(s)

Lihua Julie Zhu

```
\label{eq:constant} \begin{array}{l} test.bed = data.frame(cbind(chrom = c("1", "2"), chromStart=c("100", "1000"), chromEnd=c("200", "1100"), name=c("peak1", "peak2"))) \\ test.rangedData = BED2RangedData(test.bed) \end{array}
```

 ${\rm condense} Matrix By Colnames$

condense matrix by colnames

Description

condense matrix by colnames

Usage

condenseMatrixByColnames(mx,iname,sep=";",cnt=FALSE)

Arguments

mx	a matrix to be condensed
iname	the name of the column to be condensed
sep	separator for condensed values, default;
cnt	TRUE/FALSE specifying whether adding count column or not?

Value

dataframe of condensed matrix

Author(s)

Jianhong Ou, Lihua Julie Zhu

Examples

```
\label{eq:alpha} \begin{array}{l} a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)\\ colnames(a)<-c("con.1","con.2","index.1","index.2")\\ condenseMatrixByColnames(a,"con.1")\\ condenseMatrixByColnames(a,2) \end{array}
```

convert2EntrezID	Convert other common IDs such as ensemble gene id, gene symbo
	refseq id to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID leveraging organism annotation dataset! For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

Usage

```
convert2EntrezID(IDs, orgAnn, ID_type="ensembl_gene_id")
```

Arguments

IDs	a vector of IDs such as ensembl gene ids
orgAnn	organism annotation dataset such as org.Hs.eg.db
ID_type	type of ID: can be ensemble_gene_id, gene_symbol or refseq_id

Value

vector of entrez ids

Author(s)

Lihua Julie Zhu

Examples

```
ensemblIDs = c("ENSG00000115956", "ENSG0000071082", "ENSG00000071054",
"ENSG00000115594", "ENSG00000115594", "ENSG00000115598", "ENSG00000170417")
library(org.Hs.eg.db)
entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")
```

countPatternInSeqs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

```
countPatternInSeqs(pattern, \, sequences)
```

Arguments

pattern	DNAstringSet object
sequences	a vector of sequences

Value

Total number of occurrence of the pattern in the sequences

Author(s)

Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

enrichedGO

Examples

```
filepath = system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno")
dict = readDNAStringSet(filepath = filepath, format="fasta", use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT", "AAAAAAACCCCCTTTTGGCCATCCCGGGACGGGCC
countPatternInSeqs(pattern=dict[1], sequences=sequences)
countPatternInSeqs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet("ATNGMAA")
countPatternInSeqs(pattern=pattern, sequences=sequences)
```

enrichedGO

Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage

data(enrichedGO)

Format

A list of 3 variables.

bp enriched biological process with 9 variables
go.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

go.term:GO molecular function term go.Definition:GO molecular function description Ontology: Ontology branch, i.e. MF for molecular function count.InDataset: count of this GO term in this dataset count.InGenome: count of this GO term in the genome pvalue: pvalue from the hypergeometric test totaltermInDataset: count of all GO terms in this dataset totaltermInGenome: count of all GO terms in the genome cc enriched cellular component the following 9 variables
 go.id:GO cellular component id
 go.term:GO cellular component term
 go.Definition:GO cellular component description
 Ontology: Ontology type, i.e. CC for cellular component
 count.InDataset: count of this GO term in this dataset
 count.InGenome: count of this GO term in the genome
 pvalue: pvalue from the hypergeometric test
 totaltermInDataset: count of all GO terms in the genome

Author(s)

Lihua Julie Zhu

Examples

```
data(enrichedGO)
dim(enrichedGO$mf)
dim(enrichedGO$cc)
dim(enrichedGO$bp)
```

ExonPlusUtr.human.GRCh37

Gene model with exon, 5' UTR and 3' UTR information for human sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5' UTR and 3' UTR information for human sapiens (GRCh37) obtained from biomaRt

Usage

data(ExonPlusUtr.human.GRCh37)

Format

RangedData with slot start holding the start position of the exon, slot end holding the end position of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the transcript

ensembl_gene_id gene id

utr5start 5' UTR start

utr5end 5' UTR end

utr3start 3' UTR start

utr3end 3' UTR end

findOverlappingPeaks

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37) slotNames(ExonPlusUtr.human.GRCh37)

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

Usage

$$\label{eq:starses} \begin{split} & findOverlappingPeaks(Peaks1, Peaks2, maxgap = 0L, minoverlap=1L, multiple = c(TRUE, FALSE), \\ & NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2", \\ & select=c("all", "first", "last", "arbitrary"), annotate = 0) \end{split}$$

Arguments

Peaks1	RangedData: See example below.
Peaks2	RangedData: See example below.
maxgap	Non-negative integer. Intervals with a separation of maxgap or less are considered to be overlapping.
minoverlap	Non-negative integer. Intervals with an overlapping of minoverlap or more are considered to be overlapping.
multiple	TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2 for one peak in Peaks1. This parameter is kept for backward compatibility, please use select.
NameOfPeaks1	Name of the Peaks1, used for generating column name.
NameOfPeaks2	Name of the Peaks2, used for generating column name.
select	all may return multiple overlapping peaks, first will return the first overlapping peak, last will return the last overlapping peak and arbitrary will return one of the overlapping peaks.
annotate	Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1 means yes and 0 means no. Default to 0.

Details

Efficiently perform overlap queries with an interval tree implemented in IRanges.

Value

OverlappingPeaks

a data frame consists of input peaks information with added information: overlapFeature (upstream: peak1 resides upstream of the peak2; downstream: peak1 resides downstream of the peak2; inside: peak1 resides inside the peak2 entirely; overlapStart: peak1 overlaps with the start of the peak2; overlapEnd: peak1 overlaps with the end of the peak2; includeFeature: peak1 include the peak2 entirely) and shortestDistance (shortest distance between the overlapping peaks)

MergedPeaks RangedData contains merged overlapping peaks

Author(s)

Lihua Julie Zhu

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-262-53196-8 2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, makeVennDiagram

Examples

```
 \begin{array}{l} \label{eq:start} if (interactive()) \\ \{ \\ peaks1 = RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600), \\ end=c(1555199,1560599,1565199,1573799,167893599),names=c("p1","p2","p3","p4","p5")), \\ strand=as.integer(1),space=c(6,6,6,5)) \\ peaks2 = RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600), \\ end=c(1550599,1560799,1565399,1571199,167888999),names=c("f1","f2","f3","f4","f5")), \\ strand=as.integer(1),space=c(6,6,6,5)) \\ t1 = findOverlappingPeaks(peaks1, peaks2, maxgap=1000, \\ NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all", annotate=1) \\ r = t1\$OverlappingPeaks \\ pie(table(r\$overlapFeature)) \\ as.data.frame(t1\$MergedPeaks) \\ \end{array}
```

find Venn Counts Obtain Venn Counts for Venn Diagram, internal function for make VennDigram

Description

Obtain Venn Counts for two peak ranges using chromosome ranges or feature field, internal function for makeVennDigram

18

findVennCounts

Usage

find Venn Counts (Peaks, NameOfPeaks, maxgap = 0L, minoverlap = 1L, totalTest, useFeature=FALSE)

Arguments

Peaks	RangedDataList: See example below.
NameOfPeaks	Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will be used as label in the Venn Diagram.
maxgap	Non-negative integer. Intervals with a separation of maxgap or less are considered to be overlapping.
minoverlap	Non-negative integer. Intervals with an overlapping of minoverlap or more are considered to be overlapping.
totalTest	Numeric value to specify the total number of tests performed to obtain the list of peaks.
useFeature	TRUE or FALSE, default FALSE, true means using feature field in the Ranged- Data for calculating overlap, false means using chromosome range for calculat- ing overlap.

Value

p.value	hypergeometric testing result
vennCounts	vennCounts objects containing counts for Venn Diagram generation, see details in limma package vennCounts

Note

if (interactive())

peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704), end = c(967754, 2010997, 2496804), names = c("Site1", "Site2", "Site3")), space = c("1", "2", "3"), strand=as.integer(1), feature=c("a","b", "c")) peaks2 = RangedData(IRanges(start = c(967659, 2010898, 2496700, 3075866, 3123260), end = c(967869, 2011108, 2496920, 3076166, 3123470), names = c("t1", "t2", "t3", "t4", "t5")), space = c("1", "2", "3", "1", "2"), strand = c(1, 1, -1, -1, 1), feature=c("a","c","d","e", "a")) findVennCounts(RangedDataList(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"), maxgap=0,totalTest=100, useFeature=TRUE)

Author(s)

Lihua Julie Zhu

See Also

makeVennDiagram

getAllPeakSequence

Description

Obtain genomic sequences around the peaks leveraging BSgenome and biomaRt package

Usage

getAllPeakSequence(myPeakList, upstream = 200, downstream = 200, genome, AnnotationData)

Arguments

myPeakList	RangedData: See example below
upstream	upstream offset from the peak start, e.g., 200
downstream	downstream offset from the peak end, e.g., 200
genome	BSgenome object or mart object. Please refer to available.genomes in BSgenome package and useMart in bioMaRt package for details
AnnotationData	RangedData used if mart object is parsed in which can be obtained from getAn- notation with featureType="TSS". For example, data(TSS.human.NCBI36), data(TSS.mouse.NCBIM data(GO.rat.RGSC3.4) and data(TSS.zebrafish.Zv8). If not supplied, then anno- tation will be obtained from biomaRt automatically using the mart object

Value

RangedData with slot start holding the start position of the peak, slot end holding the end position of the peak, slot rownames holding the id of the peak and slot space holding the chromosome location where the peak is located. In addition, the following variables are included.

upstream	upstream offset from the peak start
downstream	downstream offset from the peak end
sequence	the sequence obtained

Author(s)

Lihua Julie Zhu

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts and microarray data analysis. Bioinformatics, 21, 3439-3440.

```
##### use Annotation data from BSgenome
peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600), names=c("peak1", "peak2")), space=c("NC_008253
library(BSgenome.Ecoli.NCBI.20080805)
seq = getAllPeakSequence(peaks, upstream = 20, downstream = 20, genome = Ecoli)
write2FASTA(seq, file="test.fa")
```

getAnnotation

Description

Obtain the TSS, exon or miRNA annotation for the specified species using biomaRt package

Usage

```
getAnnotation(mart,
featureType=c("TSS","miRNA", "Exon", "5utr", "3utr", "ExonPlusUtr", "transcript"))
```

Arguments

mart	mart object, see useMart of bioMaRt package for details
featureType	TSS, miRNA, Exon, 5'UTR, 3'UTR, transcript or Exon plus UTR

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position of the feature, slot names holding the id of the feature, slot space holding the chromosome location where the feature is located. In addition, the following variables are included.

strand	1 for positive strand and -1 for negative strand where the feature is located
description	description of the feeature such as gene

Note

For featureType of TSS, start is the transcription start site if strand is 1 (plus strand), otherwise, end is the transcription start site

Author(s)

Lihua Julie Zhu

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts and microarray data analysis. Bioinformatics, 21, 3439-3440.

```
if (interactive())
{
mart<-useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
Annotation = getAnnotation(mart, featureType="TSS")
}</pre>
```

getEnrichedGO

Description

Obtain enriched gene ontology (GO) terms that are near the peaks using GO.db package and GO gene mapping package such as org.Hs.db.eg to obtain the GO annotation and using hypergeometric test (phyper) and multtest package for adjusting p-values

Usage

```
getEnrichedGO(annotatedPeak, orgAnn, feature\_id\_type="ensembl\_gene\_id", maxP=0.01, multiAdj=FALSE, minGOterm=10, multiAdjMethod="")
```

Arguments

annotatedPeak	RangedData such as data(annotatedPeak) or a vector of feature IDs
orgAnn	organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and org.Dr.eg.db for zebrafish
$feature_id_type$	
	the feature type in annotated PeakRanges such as <code>ensembl_gene_id</code> , <code>refseq_id</code> , <code>gene_symbol</code> or <code>entrez_id</code>
maxP	maximum p-value to be considered to be significant
multiAdj	Whether apply multiple hypothesis testing adjustment, TURE or FALSE
minGOterm	minimum count in a genome for a GO term to be included
${\rm multi} Adj Method$	
	multiple testing procedures, for details, see mt.rawp2adjp in multtest package

Value

A list of 3	
bp	enriched biological process with the following 9 variables
	go.id:GO biological process id
	go.term:GO biological process term
	go.Definition:GO biological process description
	Ontology: Ontology branch, i.e. BP for biological process
	count.InDataset: count of this GO term in this dataset
	count.InGenome: count of this GO term in the genome
	pvalue: pvalue from the hypergeometric test
	totaltermInDataset: count of all GO terms in this dataset
	totaltermInGenome: count of all GO terms in the genome
${ m mf}$	enriched molecular function with the following 9 variables
	go.id:GO molecular function id
	go.term:GO molecular function term
	go.Definition:GO molecular function description

cc

Ontology: Ontology branch, i.e. MF for molecular function	1
count.InDataset: count of this GO term in this dataset	
count.InGenome: count of this GO term in the genome	
pvalue: pvalue from the hypergeometric test	
totaltermInDataset: count of all GO terms in this dataset	
totaltermInGenome: count of all GO terms in the genome	
enriched cellular component the following 9 variables	
go.id:GO cellular component id	
go.term:GO cellular component term	
go.Definition:GO cellular component description	
Ontology: Ontology type, i.e. CC for cellular component	
count.InDataset: count of this GO term in this dataset	
count.InGenome: count of this GO term in the genome	
pvalue: pvalue from the hypergeometric test	
totaltermInDataset: count of all GO terms in this dataset	
totaltermInGenome: count of all GO terms in the genome	

Author(s)

Lihua Julie Zhu

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition. New York: Wiley

See Also

phyper, hyperGtest

```
data(enrichedGO)
enrichedGO$mf[1:10,]
enrichedGO$cc
if (interactive()) {
data(annotatedPeak)
library(org.Hs.eg.db)
enriched.GO = getEnrichedGO(annotatedPeak[1:6,], orgAnn="org.Hs.eg.db", maxP=0.01,
multiAdj=FALSE, minGOterm=10, multiAdjMethod="")
dim(enriched.GO$mf)
colnames(enriched.GO$mf)
dim(enriched.GO$bp)
enriched.GO$cc
}
```

```
getEnrichedPATH
```

Description

Obtain enriched PATH that are near the peaks using path package such as reactome.db and path mapping package such as org.Hs.db.eg to obtain the path annotation and using hypergeometric test (phyper) and multtest package for adjusting p-values

Usage

 $getEnrichedPATH (annotatedPeak, orgAnn, pathAnn, feature_id_type="ensembl_gene_id", maxP=0.01, minPATH term=10, multiAdjMethod=NULL)$

Arguments

annotatedPeak	RangedData such as data(annotatedPeak) or a vector of feature IDs
orgAnn	organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and org.Dr.eg.db for zebrafish
pathAnn	pathway annotation package such as KEGG.db, reactome.db
$feature_id_type$	
	the feature type in annotated PeakRanges such as <code>ensembl_gene_id</code> , <code>refseq_id</code> , <code>gene_symbol</code> or <code>entrez_id</code>
maxP	maximum p-value to be considered to be significant
\min PATHterm	minimum count in a genome for a path to be included
${\rm multi} Adj Method$	

multiple testing procedures, for details, see mt.rawp2adjp in multtest package

Value

A dataframe of enriched path with the following variables.

path.id	KEGG PATH ID
EntrezID	Entrez ID
${\rm count. In Dataset}$	count of this PATH in this dataset
$\operatorname{count.InGenome}$	count of this PATH in the genome
pvalue	pvalue from the hypergeometric test
totaltermInDatas	set
	count of all PATH in this dataset
totaltermInGenor	me
	count of all PATH in the genome
PATH	PATH name

Author(s)

Jianhong Ou

GFF2RangedData

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition. New York: Wiley

See Also

phyper, hyperGtest

Examples

```
if (interactive()) {
    data(annotatedPeak)
    library(org.Hs.eg.db)
    library(reactome.db)
    enriched.PATH = getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db", pathAnn="reactome.db", maxP=0.01,
    minPATHterm=10, multiAdjMethod=NULL)
    head(enriched.PATH)
}
```

GFF2RangedData convert GFF format to RangedData

Description

convert GFF format to RangedData

Usage

GFF2RangedData(data.GFF,header=FALSE)

Arguments

data.GFF	GFF format data frame, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format3
	for details
header	TRUE or FALSE, default to FALSE, indicates whether data.GFF file has GFF header

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position of the feature, slot names holding the id of the feature, slot space holding the chromosome location where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.

Note

For converting the peakList in GFF format to RangedData before calling annotatePeakInBatch function

Author(s)

Lihua Julie Zhu

Examples

```
 \begin{array}{l} test.GFF = data.frame(cbind(seqname \ = c("chr1", "chr2"), \ source=rep("Macs", 2), \\ feature=rep("peak", 2), \ start=c("100", "1000"), \ end=c("200", "1100"), \ score=c(60, 26), \\ strand=c(1, -1), \ frame=c(".", 2), \ group=c("peak1", "peak2"))) \\ test.rangedData = GFF2RangedData(test.GFF) \end{array}
```

makeVennDiagram Make Venn Diagram from two peak ranges

Description

Make Venn Diagram from two peak ranges and also calculate p-value for determining whether two peak ranges overlap significantly.

Usage

makeVennDiagram(Peaks, NameOfPeaks, maxgap=0L, minoverlap=1L, totalTest, useFeature=FALSE, ...)

Arguments

Peaks	RangedDataList: See example below.
NameOfPeaks	Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will be used as label in the Venn Diagram.
maxgap	Non-negative integer. Intervals with a separation of maxgap or less are considered to be overlapping.
minoverlap	Non-negative integer. Intervals with an overlapping of minoverlap or more are considered to be overlapping.
totalTest	Numeric value to specify the total number of tests performed to obtain the list of peaks. It should be much larger than the number of peaks in the largest peak set.
useFeature	TRUE or FALSE, default FALSE, true means using feature field in the Ranged- Data for calculating overlap, false means using chromosome range for calculat- ing overlap.
	Additional arguments to be passed to venn.diagram

Details

For customized graph options, please see venn.diagram in VennDiagram package.

Value

In addition to a Venn Diagram produced, p.value is obtained from hypergeometric test for determining whether the two peak ranges or features overlap significantly.

Author(s)

Lihua Julie Zhu, Jianhong Ou

26

myPeakList

See Also

findOverlappingPeaks, venn.diagram

Examples

makeVennDiagram(RangedDataList(peaks1,peaks2), NameOfPeaks=c("TF1", "TF2"), totalTest=100,useFeature=FALSE)

4-way diagram using annotated feature instead of chromosome ranges

makeVennDiagram(RangedDataList(peaks1,peaks2, peaks1, peaks2), NameOfPeaks=c("TF1", "TF2", "TF3", "TF4"), train = "Venn Diagram for 4 peak lists", fill=c(1,2,3,4))

```
myPeakList
```

ChIP-seq peak dataset

Description

the putative STAT1-binding regions identified in un-stimulated cells using ChIP-seq technology (Robertson et al., 2007)

Usage

data(myPeakList)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the start position of the peak, slot end containing the end position of the peak and space containing the chromosome where the peak is located.

Source

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651-7

```
data(myPeakList)
slotNames(myPeakList)
```

Peaks.Ste12.Replicate1 Ste12-binding sites from biological replicate 1 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Usage

```
data(Peaks.Ste12.Replicate1)
```

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the start position of the peak, slot end containing the end position of the peak and space containing the chromosome where the peak is located.

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson, Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing BMC Genomics 10:37

Examples

```
data(Peaks.Ste12.Replicate1)
str(Peaks.Ste12.Replicate1)
```

Peaks.Ste12.Replicate2 Ste12-binding sites from biological replicate 2 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Usage

```
data(Peaks.Ste12.Replicate2)
```

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the start position of the peak, slot end containing the end position of the peak and space containing the chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson, Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

```
data(Peaks.Ste12.Replicate2)
str(Peaks.Ste12.Replicate2)
```

Peaks.Ste12.Replicate3 Ste12-binding sites from biological replicate 3 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Usage

```
data(Peaks.Ste12.Replicate3)
```

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the start position of the peak, slot end containing the end position of the peak and space containing the chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson, Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

```
data(Peaks.Ste12.Replicate3)
str(Peaks.Ste12.Replicate3)
```

peaksNearBDP

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional promoters.

Usage

peaksNearBDP(myPeakList, mart, AnnotationData, MaxDistance=5000, PeakLocForDistance = c("start", "midFeatureLocForDistance = c("TSS", "middle", "start", "end", "geneEnd"))

Arguments

myPeakList	RangedData: See example below
mart	used if AnnotationData not supplied, a mart object, see useMart of bioMaRt package for details
AnnotationData	annotation data obtained from getAnnotation or customized annotation of class RangedData containing additional variable: strand (1 or + for plus strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37), data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8) . If not supplied, then an- notation will be obtained from biomaRt automatically using the parameters of mart and featureType TSS
MaxDistance	Specify the maximum gap allowed between the peak and nearest gene
PeakLocForDista	ince
	Specify the location of peak for calculating distance, i.e., middle means using middle of the peak to calculate distance to feature, start means using start of the peak to calculate the distance to feature. To be compatible with previous version, by default using start
FeatureLocForDi	stance
	Specify the location of feature for calculating distance, i.e., middle means using middle of the feature to calculate distance of peak to feature, start means using start of the feature to calculate the distance to feature, TSS means using start of feature when feature is on plus strand and using end of feature when feature is on plus strand, geneEnd means using end of feature when feature is on plus strand and using start of feature when feature is on minus strand. To be compatible with previous version, by default using TSS
Value	
A list of 4	
peaksWithBDP	annotated Peaks containing bi-directional promoters.
	RangedData with slot start holding the start position of the peak, slot end holding the end position of the peak, slot space holding the chromosome location where the peak is located, slot rownames holding the id of the peak. In addition, the

following variables are included.

feature: id of the feature such as ensembl gene ID

insideFeature: upstream: peak resides upstream of the feature; downstream: peak resides downstream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature: peak include the feature entirely.

distancetoFeature: distance to the nearest feature such as transcription start site. By default, the distance is calculated as the distance between the start of the binding site and the TSS that is the gene start for genes located on the forward strand and the gene end for genes located on the reverse strand. The user can specify the location of peak and location of feature for calculating this

start_position: start position of the feature such as gene

end_position: end position of the feature such as the gene

strand: 1 or + for positive strand and -1 or - for negative strand where the feature is located

shortestDistance: The shortest distance from either end of peak to either end the feature

fromOverlappingOrNearest: NearestStart: indicates this PeakLocForDistance is closest to the FeatureLocForDistance

percentPeaksWithBDP

The percent of input peaks containing bi-directional promoters

n.peaks The total number of input peaks

n.peaksWithBDP

The # of input peaks containing bi-directional promoters

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

```
if (interactive())
{
    data(myPeakList)
    data(TSS.human.NCBI36)
    annotatedBDP = peaksNearBDP(myPeakList[1:6,], AnnotationData=TSS.human.NCBI36,
    MaxDistance=5000,PeakLocForDistance = "middle",
    FeatureLocForDistance = "TSS")
    c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks, annotatedBDP$n.peaksWithBDP)
}
```

summarizePatternInPeaks

Output a summary of the occurrence of each pattern in the sequences.

Description

Output a summary of the occurrence of each pattern in the sequences.

Usage

summarize Pattern In Peaks (pattern File Path, format = "fasta", skip = 0L, BS genome Name, peaks, outfile, append to the state of th

Arguments

patternFilePath	A character vector containing the path to the file to read the patterns from.
format	Either "fasta" (the default) or "fastq"
skip	Single non-negative integer. The number of records of the pattern file to skip before beginning to read in records.
BSgenomeName	BSgenome object. Please refer to available.genomes in BSgenome package for details
peaks	RangedData containing the peaks
outfile	A character vector containing the path to the file to write the summary output.
append	TRUE or FALSE, default FALSE

Value

A data frame with 3 columns as n.peaksWithPattern (number of peaks with the pattern), n.totalPeaks (total number of peaks in the input) and Pattern (the corresponding pattern).

Author(s)

Lihua Julie Zhu

Examples

 $peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600), names=c("peak1", "peak2")), space=c("NC_008253; filepath = system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno") library(BSgenome.Ecoli.NCBI.20080805) summarizePatternInPeaks(patternFilePath=filepath, format="fasta", skip=0L, BSgenomeName=Ecoli, peaks=peaks)$

translatePattern translate pattern from IUPAC Extended Genetic Alphabet to regular expression

Description

translate pattern containing the IUPAC nucleotide ambiguity codes to regular expression. For example, Y->[C|T], R-> [A|G], S-> [G|C], W-> [A|T], K-> [T|U|G], M-> [A|C], B-> [C|G|T], D-> [A|G|T], H-> [A|C|T], V-> [A|C|G] and N-> [A|C|T|G].

Usage

translatePattern(pattern)

Arguments

pattern a character vector with the IUPAC nucleotide ambiguity codes

Value

a character vector with the pattern represented as regular expression

Author(s)

Lihua Julie Zhu

See Also

countPatternInSeqs, summarizePatternInPeaks

Examples

pattern1 = "AACCNWMK"
translatePattern(pattern1)

TSS.human.GRCh37 TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Usage

data(TSS.human.GRCh37)

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

```
getAnnotation(mart, featureType = "TSS")
```

Examples

```
data(TSS.human.GRCh37)
slotNames(TSS.human.GRCh37)
```

TSS.human.NCBI36 TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Description

TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Usage

```
data(TSS.human.NCBI36)
```

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

used in the examples Annotation data obtained by:

```
mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
getAnnotation(mart, featureType = "TSS")
```

Examples

data(TSS.human.NCBI36) slotNames(TSS.human.NCBI36)

34

TSS.mouse.NCBIM37 TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Description

TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Usage

```
data(TSS.mouse.NCBIM37)
```

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.NCBIM37) slotNames(TSS.mouse.NCBIM37)

TSS.rat.RGSC3.4 TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Description

TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Usage

```
data(TSS.rat.RGSC3.4)
```

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

Annotation data obtained by:

```
mart = useMart(biomart = "ensembl", dataset = "rnorvegicus_gene_ensembl")
```

getAnnotation(mart, featureType = "TSS")

Examples

```
data(TSS.rat.RGSC3.4)
slotNames(TSS.rat.RGSC3.4)
```

TSS.zebrafish.Zv8 TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Description

TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Usage

```
data(TSS.zebrafish.Zv8)
```

Format

RangedData with slot start holding the start position of the gene, slot end holding the end position of the gene, slot rownames holding ensembl gene id and slot space holding the chromosome location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

```
data(TSS.zebrafish.Zv8)
slotNames(TSS.zebrafish.Zv8)
```

36

write2FASTA

Description

write the sequences obtained from getAllPeakSequence to a file in fasta format leveraging write-FASTA in Biostrings package. FASTA is a simple file format for biological sequence data. A FASTA format file contains one or more sequences and there is a header line which begins with a > proceeding each sequence.

Usage

write2FASTA(mySeq, file="", width=80)

Arguments

mySeq	RangedData with varibles name and sequence ,e.g., results obtained from getAll-PeakSequence
file	Either a character string naming a file or a connection open for reading or writ- ing. If "" (the default for write2FASTA), then the function writes to the standard output connection (the console) unless redirected by sink
width	The maximum number of letters per line of sequence

Value

Output as FASTA file format to the naming file or the console.

Author(s)

Lihua Julie Zhu

```
\label{eq:constraint} \begin{array}{l} peaksWithSequences = RangedData(IRanges(start=c(1000,\ 2000),\ end=c(1010,\ 2010), \\ names=c("id1",\ "id2")),\ sequence=c("CCCCCCCGGGGGG",\ "TTTTTTTTAAAAAA"))\\ write2FASTA(peaksWithSequences,\ file="testseq.fasta",\ width=50) \end{array}
```

Index

*Topic \textasciitildekwd1 assignChromosomeRegion, 10 *Topic \textasciitildekwd2 assignChromosomeRegion, 10 *Topic datasets annotatedPeak, 6 enrichedGO, 15 ExonPlusUtr.human.GRCh37, 16 myPeakList, 27 Peaks.Ste12.Replicate1, 28 Peaks.Ste12.Replicate2, 28 Peaks.Ste12.Replicate3, 29 TSS.human.GRCh37, 33 TSS.human.NCBI36, 34 TSS.mouse.NCBIM37, 35 TSS.rat.RGSC3.4, 35 TSS.zebrafish.Zv8, 36 *Topic graph makeVennDiagram, 26 *Topic **misc** addAncestors, 4 addGeneIDs, 5 annotatePeakInBatch, 7 BED2RangedData, 12 condenseMatrixByColnames, 13 convert2EntrezID, 13 countPatternInSeqs, 14 findOverlappingPeaks, 17 ${\rm findVennCounts,\,18}$ getAllPeakSequence, 20 getAnnotation, 21 getEnrichedGO, 22 getEnrichedPATH, 24 GFF2RangedData, 25 peaksNearBDP, 30 summarizePatternInPeaks, 32 ${\rm translatePattern, 33}$ write2FASTA, 37 *Topic **package** ChIPpeakAnno-package, 2

addAncestors, 4 addGeneIDs, 5 annotatedPeak, 6 annotatePeakInBatch, 7 AnnotationDbi, 6 assignChromosomeRegion, 10 BED2RangedData, 12 ChIPpeakAnno (ChIPpeakAnno-package), 2 ChIPpeakAnno-package, 2 condenseMatrixByColnames, 13 convert2EntrezID, 13 countPatternInSeqs, 14 enrichedGO, 15 ExonPlusUtr.human.GRCh37, 16 findOverlappingPeaks, 17, 27 findVennCounts, 18 getAllPeakSequence, 20 getAnnotation, 21 getBM, 6 getEnrichedGO, 22 getEnrichedPATH, 24 GFF2RangedData, 25 listAttributes(mart), 6 listFilters(mart), 6 makeVennDiagram, 26myPeakList, 27 Peaks.Ste12.Replicate1, 28 Peaks.Ste12.Replicate2, 28 Peaks.Ste12.Replicate3, 29 peaksNearBDP, 30 summarizePatternInPeaks, 32 translatePattern, 33 TSS.human.GRCh37, 33 TSS.human.NCBI36, 34 TSS.mouse.NCBIM37, 35 TSS.rat.RGSC3.4, 35 TSS.zebrafish.Zv8, 36

INDEX

 ${\rm useMart}, 5$

venn.diagram, **26**, **27**

write2FASTA, 37