
Package ‘BSgenome’
March 25, 2013

Title Infrastructure for Biostrings-based genome data packages

Description Infrastructure shared by all the Biostrings-based genome data packages

Version 1.26.1

Author Herve Pages

Maintainer H. Pages <hpages@fhcrc.org>

biocViews Genetics, Infrastructure, DataRepresentation,SequenceMatching, Annotation, SNP

Depends R (>= 2.8.0), methods, BiocGenerics (>= 0.1.2), IRanges (>=
1.13.6), GenomicRanges (>= 1.7.5), Biostrings (>= 2.23.3)

Import methods, BiocGenerics, IRanges, GenomicRanges, Biostrings

Suggests
RUnit, BSgenome.Celegans.UCSC.ce2 (>= 1.3.11),BSgenome.Hsapiens.UCSC.hg19 (>= 1.3.11),SNPlocs.Hsapiens.dbSNP.20100427, hgu95av2probe, Biobase

License Artistic-2.0

LazyLoad yes

Collate utils.R available.genomes.R GenomeDescription-class.R
SNPlocs-class.R InjectSNPsHandler-class.R BSgenome-class.R
injectSNPs.R getSeq-methods.R bsapply.R BSgenome-utils.R
GenomeData-class.R GenomeDataList-class.R gdapply.R gdReduce.R BSgenomeForge.R

R topics documented:
available.genomes . 2
bsapply . 3
BSgenome-class . 5
BSgenome-utils . 8
BSgenomeForge . 10
BSParams-class . 11
gdapply . 12
gdReduce . 13
GenomeData-class . 14
GenomeDataList-class . 16
GenomeDescription-class . 17
getSeq-methods . 18
injectSNPs . 22

1

2 available.genomes

Index 25

available.genomes Find available/installed genomes

Description

available.genomes gets the list of BSgenome data packages that are currently available on the
Bioconductor repositories for your version of R/Bioconductor. installed.genomes gets the list of
BSgenome data packages that are already installed on your machine.

Usage

available.genomes(splitNameParts=FALSE, type=getOption("pkgType"))
installed.genomes(splitNameParts=FALSE)

Arguments

splitNameParts Whether to split or not the package names in parts. In that case the result is
returned in a data frame.

type Character string indicating the type of package ("source", "mac.binary" or
"win.binary") to look for.

Details

A BSgenome data package contains the full genome for a given organism. Its name has 4 parts
separated by a dot (e.g. BSgenome.Celegans.UCSC.ce2). The 1st part is always BSgenome,
the 2nd part is the name of the organism (abbreviated), the 3rd part is the name of the organi-
sation who assembled the genome and the 4th part is the release string or number used by this
organisation for this genome. A BSgenome data package contains a single top-level object (a
BSgenome object) named like the second part of the package name (e.g. Celegans in the case
of BSgenome.Celegans.UCSC.ce2) where all the sequences for this genome are stored.

Value

A character vector containing the names of the BSgenome data packages that are currently available
(for available.genomes), or already installed (for installed.genomes).

Author(s)

H. Pages

See Also

BSgenome-class, available.packages

bsapply 3

Examples

What genomes are already installed:
installed.genomes()

What genomes are available:
available.genomes()

Split the package names in parts:
ag <- available.genomes(TRUE)
table(ag$organism)
table(ag$provider)

Make your choice and install with:
source("http://bioconductor.org/biocLite.R")
biocLite("BSgenome.Scerevisiae.UCSC.sacCer1")

Have a coffee ;-)

Load the package and display the index of sequences for this genome:
library(BSgenome.Scerevisiae.UCSC.sacCer1)
Scerevisiae

bsapply bsapply

Description

Apply a function to each chromosome in a genome.

Usage

bsapply(BSParams, ...)

Arguments

BSParams a BSParams object that holds the various parameters needed to configure the
bsapply function

... optional arguments to ’FUN’.

Details

By default the exclude parameter is set to not exclude anything. A popular option will probably be
to set this to "rand" so that random bits of unassigned contigs are filtered out.

Value

If BSParams sets simplify = FALSE, a GenomeData object is returned containing the results
generated using the remaining BSParams specifications. If BSParams sets simplify = TRUE, an
sapply-like simplification is used on the results.

Author(s)

Marc Carlson

4 bsapply

See Also

BSParams-class, BSgenome-class, BSgenome-utils, GenomeData-class

Examples

Load the Worm genome:
library("BSgenome.Celegans.UCSC.ce2")

Count the alphabet frequencies for every chromosome but exclude
mitochrondrial ones:
params <- new("BSParams", X = Celegans, FUN = alphabetFrequency,
exclude = "M")
bsapply(params)

Or we can do this same function with simplify = TRUE:
params <- new("BSParams", X = Celegans, FUN = alphabetFrequency,
exclude = "M", simplify = TRUE)
bsapply(params)

Examples to show how we might look for a string (in this case an
ebox motif) across the whole genome.
Ebox <- DNAStringSet("CACGTG")
pdict0 <- PDict(Ebox)

params <- new("BSParams", X = Celegans, FUN = countPDict, simplify = TRUE)
bsapply(params, pdict = pdict0)

params@FUN <- matchPDict
bsapply(params, pdict = pdict0)

And since its really overkill to use matchPDict to find a single pattern:
params@FUN <- matchPattern
bsapply(params, pattern = "CACGTG")

Examples on how to use the masks
library("BSgenome.Hsapiens.UCSC.hg19")
I can make things verbose if I want to see the chromosomes getting processed.
options(verbose=TRUE)
For the 1st example, lets use default masks
params <- new("BSParams", X = Hsapiens, FUN = alphabetFrequency,
exclude = c(1:8,"M","X","random","hap"), simplify = TRUE)
bsapply(params)

if (interactive()) {
Set up the motifList to filter out all double T’s and all double C’s
params@motifList <-c("TT","CC")
bsapply(params)

Get rid of the motifList
params@motifList=as.character()

}

##Enable all standard masks
params@maskList <- c("RM"=TRUE,"TRF"=TRUE)

BSgenome-class 5

bsapply(params)

##Disable all standard masks
params@maskList <- c("AGAPS"=FALSE,"AMB"=FALSE)
bsapply(params)

BSgenome-class BSgenome objects

Description

The BSgenome class is a container for the complete genome sequence of a given organism.

Accessor methods

In the code snippets below, x is a BSgenome object. Note that, because the BSgenome class contains
the GenomeDescription class, then all the accessor methods for GenomeDescription objects can
also be used on x.

sourceUrl(x) Returns the source URL i.e. the permanent URL to the place where the FASTA files
used to produce the sequences contained in x can be found (and downloaded).

seqnames(x) Returns the names of the single sequences contained in x. Each single sequence is
stored in a DNAString or MaskedDNAString object and typically comes from a source file
(FASTA) with a single record. The names returned by seqnames(x) usually reflect the names
of those source files but a common prefix or suffix was eventually removed in order to keep
them as short as possible.

seqlengths(x) Returns the lengths of the single sequences contained in x.
See ?‘length,XVector-method‘ and ?‘length,MaskedXString-method‘ for the definition of
the length of a DNAString or MaskedDNAString object. Note that the length of a masked
sequence (MaskedXString object) is not affected by the current set of active masks but the
nchar method for MaskedXString objects is.
names(seqlengths(x)) is guaranteed to be identical to seqnames(x).

mseqnames(x) Returns the index of the multiple sequences contained in x. Each multiple se-
quence is stored in a DNAStringSet object and typically comes from a source file (FASTA)
with multiple records. The names returned by mseqnames(x) usually reflect the names of
those source files but a common prefix or suffix was eventually removed in order to keep them
as short as possible.

names(x) Returns the index of all sequences contained in x. This is the same as c(seqnames(x), mseqnames(x)).
length(x) Returns the length of x, i.e., the total number of sequences in it (single and multiple

sequences). This is the same as length(names(x)).
x[[name]] Returns the sequence (single or multiple) in x named name (name must be a single

string). No sequence is actually loaded into memory until this is explicitely requested with a
call to x[[name]] or x$name. When loaded, a sequence is kept in a cache. It will be automati-
cally removed from the cache at garbage collection if it’s not in use anymore i.e. if there are no
reference to it (other than the reference stored in the cache). With options(verbose=TRUE),
a message is printed each time a sequence is removed from the cache.

x$name Same as x[[name]] but name is not evaluated and therefore must be a literal character
string or a name (possibly backtick quoted).

6 BSgenome-class

masknames(x) The names of the built-in masks that are defined for all the single sequences. There
can be up to 4 built-in masks per sequence. These will always be (in this order): (1) the mask
of assembly gaps, aka "the AGAPS mask";
(2) the mask of intra-contig ambiguities, aka "the AMB mask";
(3) the mask of repeat regions that were determined by the RepeatMasker software, aka "the
RM mask";
(4) the mask of repeat regions that were determined by the Tandem Repeats Finder software
(where only repeats with period less than or equal to 12 were kept), aka "the TRF mask".
All the single sequences in a given package are guaranteed to have the same collection of
built-in masks (same number of masks and in the same order).
masknames(x) gives the names of the masks in this collection. Therefore the value returned
by masknames(x) is a character vector made of the first N elements of c("AGAPS", "AMB", "RM", "TRF"),
where N depends only on the BSgenome data package being looked at (0 <= N <= 4). The man
page for most BSgenome data packages should provide the exact list and permanent URLs of
the source data files that were used to extract the built-in masks. For example, if you’ve
installed the BSgenome.Hsapiens.UCSC.hg19 package, load it and see the Note section in
?‘BSgenome.Hsapiens.UCSC.hg19‘.

Author(s)

H. Pages

See Also

available.genomes, GenomeDescription-class, BSgenome-utils, DNAString-class, DNAStringSet-
class, MaskedDNAString-class, getSeq,BSgenome-method, injectSNPs, subseq,XVector-method,
rm, gc

Examples

Loading a BSgenome data package doesn’t load its sequences
into memory:
library(BSgenome.Celegans.UCSC.ce2)

Number of sequences in this genome:
length(Celegans)

Display a summary of the sequences:
Celegans

Index of single sequences:
seqnames(Celegans)

Lengths (i.e. number of nucleotides) of the sequences:
seqlengths(Celegans)

Load chromosome I from disk to memory (hence takes some time)
and keep a reference to it:
chrI <- Celegans[["chrI"]] # equivalent to Celegans$chrI

chrI

class(chrI) # a DNAString instance
length(chrI) # with 15080483 nucleotides

BSgenome-class 7

Multiple sequences:
mseqnames(Celegans)
upstream1000 <- Celegans$upstream1000
upstream1000
class(upstream1000) # a DNAStringSet instance
Character vector containing the description lines of the first
4 sequences in the original FASTA file:
names(upstream1000)[1:4]

PASS-BY-ADDRESS SEMANTIC, CACHING AND MEMORY USAGE

We want a message to be printed each time a sequence is removed
from the cache:
options(verbose=TRUE)

gc() # nothing seems to be removed from the cache
rm(chrI, upstream1000)
gc() # chrI and upstream1000 are removed from the cache (they are

not in use anymore)

options(verbose=FALSE)

Get the current amount of data in memory (in Mb):
mem0 <- gc()["Vcells", "(Mb)"]

system.time(chrV <- Celegans[["chrV"]]) # read from disk

gc()["Vcells", "(Mb)"] - mem0 # chrV occupies 20Mb in memory

system.time(tmp <- Celegans[["chrV"]]) # much faster! (sequence
is in the cache)

gc()["Vcells", "(Mb)"] - mem0 # we’re still using 20Mb (sequences
have a pass-by-address semantic
i.e. the sequence data are not
duplicated)

subseq() doesn’t copy the sequence data either, hence it is very
fast and memory efficient (but the returned object will hold a
reference to chrV):
y <- subseq(chrV, 10, 8000000)
gc()["Vcells", "(Mb)"] - mem0

We must remove all references to chrV before it can be removed from
the cache (so the 20Mb of memory used by this sequence are freed).
options(verbose=TRUE)
rm(chrV, tmp)
gc()

Remember that ’y’ holds a reference to chrV too:
rm(y)
gc()

options(verbose=FALSE)

8 BSgenome-utils

gc()["Vcells", "(Mb)"] - mem0

BSgenome-utils BSgenome utilities

Description

Utilities for BSgenome objects.

Usage

S4 method for signature ’BSgenome’
matchPWM(pwm, subject, min.score = "80%", exclude = "",

maskList = logical(0), asRangedData = FALSE)
S4 method for signature ’BSgenome’
countPWM(pwm, subject, min.score = "80%", exclude = "",

maskList = logical(0))
S4 method for signature ’BSgenome’
vmatchPattern(pattern, subject, max.mismatch = 0, min.mismatch = 0,

with.indels = FALSE, fixed = TRUE, algorithm = "auto",
exclude = "", maskList = logical(0), userMask =
RangesList(), invertUserMask = FALSE, asRangedData = FALSE)

S4 method for signature ’BSgenome’
vcountPattern(pattern, subject, max.mismatch = 0, min.mismatch = 0,

with.indels = FALSE, fixed = TRUE, algorithm = "auto",
exclude = "", maskList = logical(0), userMask =
RangesList(), invertUserMask = FALSE)

S4 method for signature ’BSgenome’
vmatchPDict(pdict, subject, max.mismatch = 0, min.mismatch = 0,

fixed = TRUE, algorithm = "auto", verbose = FALSE,
exclude = "", maskList = logical(0), asRangedData = FALSE)

S4 method for signature ’BSgenome’
vcountPDict(pdict, subject, max.mismatch = 0, min.mismatch = 0,

fixed = TRUE, algorithm = "auto", collapse = FALSE,
weight = 1L, verbose = FALSE, exclude = "", maskList = logical(0))

Arguments

pwm A numeric matrix with row names A, C, G and T representing a Position Weight
Matrix.

pattern A DNAString object containing the pattern sequence.

pdict A DNAStringSet object containing the pattern sequences.

subject A BSgenome object containing the subject sequences.

min.score The minimum score for counting a match. Can be given as a character string
containing a percentage (e.g. "85%") of the highest possible score or as a single
number.

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ?‘lowlevel-matching‘
for the details). If non-zero, an inexact matching algorithm is used.

BSgenome-utils 9

with.indels If TRUE then indels are allowed. In that case, min.mismatch must be 0 and
max.mismatch is interpreted as the maximum "edit distance" allowed between
any pattern and any of its matches (see ?‘matchPattern‘ for the details).

fixed If FALSE then IUPAC extended letters are interpreted as ambiguities (see ?‘lowlevel-matching‘
for the details).

algorithm For vmatchPattern and vcountPattern one of the following: "auto", "naive-exact",
"naive-inexact", "boyer-moore", "shift-or", or "indels".
For vmatchPDict and vcountPDict one of the following: "auto", "naive-exact",
"naive-inexact", "boyer-moore", or "shift-or".

collapse, weight ignored arguments.

verbose TRUE or FALSE.

exclude A character vector with strings that will be used to filter out chromosomes whose
names match these strings.

maskList A named logical vector of maskStates preferred when used with a BSGenome
object. When using the bsapply function, the masks will be set to the states in
this vector.

userMask A RangesList, containing a mask to be applied to each chromosome. See bsapply.

invertUserMask Whether the userMask should be inverted.

asRangedData A logical value to assist in migrating output type from RangedData (defunct) to
GRanges. Should be FALSE.

Value

A GRanges object for matchPWM with two elementMetadata columns: "score" (numeric), and
"string" (DNAStringSet).

A GRanges object for vmatchPattern.

A GRanges object for vmatchPDict with one elementMetadata column: "index", which represents
a mapping to a position in the original pattern dictionary.

A data.frame object for countPWM and vcountPattern with three columns: "seqname" (factor),
"strand" (factor), and "count" (integer).

A DataFrame object for vcountPDict with four columns: "seqname" (’factor’ Rle), "strand" (’fac-
tor’ Rle), "index" (integer) and "count" (’integer’ Rle). As with vmatchPDict the index column
represents a mapping to a position in the original pattern dictionary.

Author(s)

P. Aboyoun

See Also

matchPWM, matchPattern, matchPDict, bsapply

Examples

library(BSgenome.Celegans.UCSC.ce2)
data(HNF4alpha)

pwm <- PWM(HNF4alpha)
matchPWM(pwm, Celegans)
countPWM(pwm, Celegans)

10 BSgenomeForge

pattern <- consensusString(HNF4alpha)
vmatchPattern(pattern, Celegans, fixed = "subject")
vcountPattern(pattern, Celegans, fixed = "subject")

vmatchPDict(HNF4alpha[1:10], Celegans)
vcountPDict(HNF4alpha[1:10], Celegans)

BSgenomeForge The BSgenomeForge functions

Description

A set of functions for making a BSgenome data package.

Usage

Top-level BSgenomeForge function:

forgeBSgenomeDataPkg(x, seqs_srcdir=".", masks_srcdir=".", destdir=".", verbose=TRUE)

Low-level BSgenomeForge functions:

forgeSeqlengthsFile(seqnames, prefix="", suffix=".fa",
seqs_srcdir=".", seqs_destdir=".", verbose=TRUE)

forgeSeqFiles(seqnames, mseqnames=NULL, prefix="", suffix=".fa",
seqs_srcdir=".", seqs_destdir=".", verbose=TRUE)

forgeMasksFiles(seqnames, nmask_per_seq,
seqs_destdir=".", masks_srcdir=".", masks_destdir=".",
AGAPSfiles_type="gap", AGAPSfiles_name=NA,
AGAPSfiles_prefix="", AGAPSfiles_suffix="_gap.txt",
RMfiles_name=NA, RMfiles_prefix="", RMfiles_suffix=".fa.out",
TRFfiles_name=NA, TRFfiles_prefix="", TRFfiles_suffix=".bed",
verbose=TRUE)

Arguments

x A BSgenomeDataPkgSeed object or the name of a BSgenome data package seed
file. See the BSgenomeForge vignette in this package for more information.

seqs_srcdir, masks_srcdir
Single strings indicating the path to the source directories i.e. to the directories
containing the source data files. Only read access to these directories is needed.
See the BSgenomeForge vignette in this package for more information.

destdir A single string indicating the path to the directory where the source tree of the
target package should be created. This directory must already exist. See the
BSgenomeForge vignette in this package for more information.

verbose TRUE or FALSE.

BSParams-class 11

seqnames, mseqnames
A character vector containing the names of the single (for seqnames) and mul-
tiple (for mseqnames) sequences to forge. See the BSgenomeForge vignette in
this package for more information.

prefix, suffix See the BSgenomeForge vignette in this package for more information, in par-
ticular the description of the seqfiles_prefix and seqfiles_suffix fields of a
BSgenome data package seed file.

seqs_destdir, masks_destdir
During the forging process the source data files are converted into serialized
Biostrings objects. seqs_destdir and masks_destdir must be single strings
indicating the path to the directories where these serialized objects should be
saved. These directories must already exist.
forgeSeqlengthsFile will produce a single .rda file. Both forgeSeqFiles and
forgeMasksFiles will produce one .rda file per sequence.

nmask_per_seq A single integer indicating the desired number of masks per sequence. See the
BSgenomeForge vignette in this package for more information.

AGAPSfiles_type, AGAPSfiles_name, AGAPSfiles_prefix, AGAPSfiles_suffix, RMfiles_name, RMfiles_prefix, RMfiles_suffix, TRFfiles_name, TRFfiles_prefix, TRFfiles_suffix
These arguments are named accordingly to the corresponding fields of a BSgenome
data package seed file. See the BSgenomeForge vignette in this package for
more information.

Details

These functions are intended for Bioconductor users who want to make a new BSgenome data
package, not for regular users of these packages. See the BSgenomeForge vignette in this package
(vignette("BSgenomeForge")) for an extensive coverage of this topic.

Author(s)

H. Pages

Examples

forgeSeqFiles("chrM", prefix="ce2", suffix=".fa",
seqs_srcdir=system.file("extdata", package="BSgenome"),
seqs_destdir=tempdir())

load(file.path(tempdir(), "chrM.rda"))
chrM

BSParams-class Class "BSParams"

Description

A parameter class for representing all parameters needed for running the bsapply method.

Objects from the Class

Objects can be created by calls of the form new("BSParams", ...).

12 gdapply

Slots

X: a BSgenome object that contains chromosomes that you wish to apply FUN on

FUN: the function to apply to each chromosome in the BSgenome object ’X’

exclude: this is a character vector with strings that will be used to filter out chromosomes whose
names match these strings.

simplify: TRUE/FALSE value to indicate whether or not the function should try to simplify the
output for you.

maskList: A named logical vector of maskStates preferred when used with a BSGenome object.
When using the bsapply function, the masks will be set to the states in this vector.

motifList: A character vector which should contain motifs that the user wishes to mask from the
sequence.

userMask: A RangesList object, where each element masks the corresponding chromosome in X.
This allows the user to conveniently apply masks besides those included in X.

invertUserMask: A logical indicating whether to invert each mask in userMask.

Methods

bsapply(p) Performs the function FUN using the parameters contained within BSParams.

Author(s)

Marc Carlson

See Also

bsapply

gdapply Applies a function to elements of a GenomeData

Description

Returns a list of values obtained by applying a function to elements of a GenomeData or Genome-
DataList object.

Usage

gdapply(X, FUN, ...)

Arguments

X An object of class GenomeData or GenomeDataList.

FUN A function to be applied to each chromosome-level sub-element of X.

... Further arguments; passed to FUN

Value

Typically an object of the same class as X.

gdReduce 13

Author(s)

Deepayan Sarkar

See Also

GenomeData-class, GenomeDataList-class

gdReduce Reduces arguments to a single GenomeData instance

Description

This function accepts one or more objects that are reduced, with a user-specified function, to a
single GenomeData instance.

Usage

gdReduce(f, ..., init, right = FALSE, accumulate = FALSE, gdArgs = list())

Arguments

f An object of class "function", accepting two instances of classes appropriate
for the ... arguments, and returning an object suitable for subsequent use in f
and incorporation into GenomeData.

... Objects to be reduced. All objects should be of the same class, as dictated by
methods defined on gdReduce A function to be applied to each chromosome-
level sub-element of X.

init An R object of the same kind as the elements of

right A logical indicating whether to proceed from left to right (default) or right to
left.

accumulate A logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

gdArgs Additional arguments passed to the GenomeData constructor used to assemble
the final object.

Details

The gdReduce method for GenomeData objects successively combines GenomeData elements of
... using f; all arguments assigned to ... must be of class GenomeData. f is a function accepting two
objects returned by "[[" applied to the successive elements of ..., returning a single GenomeData
object to be used in subsequent calls to f . init, right, and accumulate are as described for Reduce.
gdArgs can be used to provide metadata information to the constructor used to create the final
GenomeData object.

Currently the gdReduce method for GenomeDataList objects works when a single GenomeDataList
object x is provided as ... and it does gdReduce(f, x[[1]], x[[2]] ... x[[N]], init, right, accumulate, gdArgs)
where N is the length of x i.e. the number of GenomeData objects in it.

14 GenomeData-class

Value

An object of class GenomeData, containing elements corresponding to the intersection of all
named elements of ... (in the case of the method for GenomeData objects) or all elements in the
single GenomeDataList object passed to it (in the case of the method for GenomeDataList objects).

Author(s)

Martin Morgan

See Also

Reduce, GenomeData-class, GenomeDataList-class

Examples

gdReduce
showMethods("gdReduce")

gd <- GenomeData(list(chr1 = IRanges(1, 10), chrX = IRanges(2, 5)),
organism = "Mmusculus", provider = "UCSC",
providerVersion = "mm9")

gdr <- gdReduce(function(x, y) {
"[[" returns IRanges instances, construct a synthetic version
IRanges(c(start(x), start(y)), c(end(x), end(y)))

}, GenomeDataList(list(gd, gd[2])))
gdr[["chr1"]]
gdr[["chrX"]]

GenomeData-class Data on the genome

Description

GenomeData formally represents genomic data as a list, with one element per chromosome in the
genome.

Details

This class facilitates storing data on the genome by formalizing a set of metadata fields for storing
the organism (e.g. Mmusculus), genome build provider (e.g. UCSC), and genome build version
(e.g. mm9).

The data is represented as a list, with one element per chromosome (or really any sequence, like a
gene). There are no constraints as to the data type of the elements.

Note that as a SimpleList, it is possible to store chromosome-level data (e.g. the lengths) in
the elementMetadata slot. The organism, provider and providerVersion are all stored in the
SimpleList metadata, so they may be retrieved in list form by calling metadata(x).

GenomeData-class 15

Accessor methods

In the code snippets below, x is a GenomeData object.

organism(x): Get the single string indicating the organism, if specified, otherwise NULL.

provider(x): Get the single string indicating the genome build provider, if specified, otherwise
NULL.

providerVersion(x): Get the single string indicating the genome build version, if specified, other-
wise NULL.

Constructor

GenomeData(listData = list(), providerVersion = metadata[["providerVersion"]], organism =metadata[["organism"]], provider = metadata[["provider"]], metadata = list(), elementMetadata = NULL, ...):
Creates a GenomeData with the elements from the listData parameter, a list. The other argu-
ments correspond to the metadata fields, and, with the exception of elementMetadata, should
all be either single strings or NULL (unspecified). Additional global metadata elements may
be passed in metadata, in list-form, and via The elements in metadata are always over-
ridden by the explicit arguments, like organism and those in elementMetadata should be
an DataTable or NULL.

Coercion

as(from, "data.frame"): Coerces each subelement to a data frame, and binds them into a single
data frame with an additional column indicating chromosome

as(from, "RangesList"): Coerces each subelement to a Ranges and combines them into a RangesList
with the same names. The “universe” metadata property is set to the providerVersion of from.

as(from, "RangedData"): Coerces each subelement to a RangedData and combines them into
a single RangedData with the same names. The “universe” metadata property is set to the
providerVersion of from.

Author(s)

Michael Lawrence

See Also

GenomeDataList-class, a container for storing a list of GenomeData objects and useful e.g. for
storing data on multiple samples.

SimpleList-class, the base of this class.

gdapply for applying a function to elements of a GenomeData object.

gdReduce for successively combining GenomeData objects into a single GenomeData objects.

Examples

gd <- GenomeData(list(chr1 = IRanges(1, 10), chrX = IRanges(2, 5)),
organism = "Mmusculus", provider = "UCSC",
providerVersion = "mm9")

organism(gd)
providerVersion(gd)
provider(gd)
gd[["chr1"]] # get data for chromsome 1

16 GenomeDataList-class

GenomeDataList-class List of GenomeData objects

Description

GenomeDataList is a list of GenomeData objects. It could be useful for storing data on multiple
experiments or samples.

Details

This class inherits from SimpleList and requires that all of its elements to be instances of GenomeData.

One should try to take advantage of the metadata storage facilities provided by SimpleList. The
elementMetadata field, for example, could be used to store the experimental design, while the
metadata field could store the experimental platform.

Constructor

GenomeDataList(listData = list(), metadata = list(), elementMetadata = NULL):
Creates a GenomeDataList with the elements from the listData parameter, a list of GenomeData
instances. The other arguments correspond to the optional metadata stored in SimpleList.

Coercion

as(from, "data.frame"): Coerces each subelement to a data frame, and binds them into a single
data frame with an additional column indicating chromosome

Author(s)

Michael Lawrence

See Also

GenomeData, the type of elements stored in this class.

SimpleList

Examples

gd <- GenomeData(list(chr1 = IRanges(1, 10), chrX = IRanges(2, 5)),
organism = "Mmusculus", provider = "UCSC",
providerVersion = "mm9")

gdl <- GenomeDataList(list(gd), elementMetadata = DataFrame(induced = TRUE))
gdl[[1]] # get first element

GenomeDescription-class 17

GenomeDescription-class
GenomeDescription objects

Description

A GenomeDescription object holds the meta information describing a given genome.

Details

In general the user will not need to manipulate directly a GenomeDescription instance but will
manipulate instead a higher-level object that belongs to a class containing the GenomeDescription
class. For example the top-level object defined in any BSgenome data package is a BSgenome ob-
ject. But because the BSgenome class contains the GenomeDescription class, it is also a GenomeDescrip-
tion object and can therefore be treated as such. In other words all the methods described below
will work on it.

Accessor methods

In the code snippets below, x is a GenomeDescription object.

organism(x): Return the target organism for this genome e.g. "Homo sapiens", "Mus musculus",
"Caenorhabditis elegans", etc...

species(x): Return the target species for this genome e.g. "Human", "Mouse", "Worm", etc...

provider(x): Return the provider of this genome e.g. "UCSC", "BDGP", "FlyBase", etc...

providerVersion(x): Return the provider-side version of this genome. For example UCSC uses
versions "hg18", "hg17", etc... for the different Builds of the Human genome.

releaseDate(x): Return the release date of this genome e.g. "Mar. 2006".

releaseName(x): Return the release name of this genome, which is generally made of the name
of the organization who assembled it plus its Build version. For example, UCSC uses "hg18"
for the version of the Human genome corresponding to the Build 36.1 from NCBI hence the
release name for this genome is "NCBI Build 36.1".

bsgenomeName(x): Uses the meta information stored in x to make the name of the corresponding
BSgenome data package (see available.genomes for details about the naming scheme used for
those packages). Of course there is no guarantee that a package with that name actually exists.

seqinfo(x) Gets information about the genome sequences. This information is returned in a Se-
qinfo object. Each part of the information can be retrieved separately with seqnames(x),
seqlengths(x), and isCircular(x), respectively, as described below.

seqnames(x) Gets the names of the genome sequences. seqnames(x) is equivalent to seqnames(seqinfo(x)).

seqlengths(x) Gets the lengths of the genome sequences. seqlengths(x) is equivalent to seqlengths(seqinfo(x)).

isCircular(x) Returns the circularity flags of the genome sequences. isCircular(x) is equivalent
to isCircular(seqinfo(x)).

Author(s)

H. Pages

18 getSeq-methods

See Also

available.genomes, Seqinfo-class, BSgenome-class

Examples

library(BSgenome.Celegans.UCSC.ce2)
class(Celegans)
is(Celegans, "GenomeDescription")
provider(Celegans)
seqinfo(Celegans)
gendesc <- as(Celegans, "GenomeDescription")
class(gendesc)
gendesc
provider(gendesc)
seqinfo(gendesc)
bsgenomeName(gendesc)

getSeq-methods getSeq method for BSgenome objects

Description

A getSeq method for extracting a set of sequences (or subsequences) from a BSgenome object.

Usage

S4 method for signature ’BSgenome’
getSeq(x, names, start=NA, end=NA, width=NA,

strand="+", as.character=FALSE)

Arguments

x A BSgenome object. See the available.genomes function for how to install a
genome.

names A character vector containing the names of the sequences in x where to get the
subsequences from, or a GRanges object, or a RangedData object, or a named
RangesList object, or a named Ranges object. The RangesList or Ranges object
must be named according to the sequences in x where to get the subsequences
from.
If names is missing, then seqnames(x) is used.
See ?‘BSgenome-class‘ for details on how to get the lists of single sequences
and multiple sequences (respectively) contained in a BSgenome object.

start, end, width
Vector of integers (eventually with NAs) specifying the locations of the subse-
quences to extract. These are not needed (and therefore it’s an error to supply
them) when names is a GRanges, RangedData, RangesList or Ranges object.

strand A vector containing "+"s or/and "-"s. This is not needed (and therefore it’s an
error to supply it) when names is a GRanges object or a RangedData object with
a strand column.

as.character TRUE or FALSE. Should the extracted sequences be returned in a standard
character vector?

... Additional arguments. (Currently ignored.)

getSeq-methods 19

Details

L, the number of sequences to extract, is determined as follow:

• If names is a GRanges or Ranges object then L = length(names).

• If names is a RangedData object then L = nrow(names).

• If names is a RangesList object then L = length(unlist(names)).

• Otherwise, L is the length of the longest of names, start, end and width and all these argu-
ments are recycled to this length. NAs and negative values in these 3 arguments are solved
according to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW for the
details).

If names is neither a GRanges object or a RangedData object with a strand column, then the strand
argument is also recycled to length L.

Here is how the lookup between the names passed to the names argument and the sequences in x is
performed. For each name in names:

• (1): If x contains a single sequence with that name then this sequence is used for extraction;

• (2): Otherwise the names of all the elements in all the multiple sequences are searched. If the
names argument is a character vector then name is treated as a regular expression and grep
is used for this search, otherwise (i.e. when the names are supplied via a higher level object
like GRanges) name must match exactly the name of the sequence. If exactly one sequence is
found, then it is used for extraction, otherwise an error is raised.

Value

A character vector of length L when as.character=TRUE.

A DNAString or DNAStringSet object when as.character=FALSE (the default). More precisely
the returned value is a DNAString object if L = 1 and names is not a GRanges, RangedData,
RangesList or Ranges object. Otherwise it’s a DNAStringSet object.

Note

Be aware that using as.character=TRUE can be very inefficient when extracting a "big" amount
of DNA sequences (e.g. millions of short sequences or a small number of very long sequences).

Note that the masks in x, if any, are always ignored. In other words, masked regions in the genome
are extracted in the same way as unmasked regions (this is achieved by dropping the masks before
extraction). See ?‘MaskedDNAString-class‘ for more information about masked DNA sequences.

Author(s)

H. Pages; improvements suggested by Matt Settles and others

See Also

getSeq, available.genomes, BSgenome-class, DNAString-class, DNAStringSet-class, MaskedDNAString-
class, GRanges-class, RangedData-class, RangesList-class, Ranges-class, grep

20 getSeq-methods

Examples

A. SIMPLE EXAMPLES

Load the Caenorhabditis elegans genome (UCSC Release ce2):
library(BSgenome.Celegans.UCSC.ce2)

Look at the index of sequences:
Celegans

Get chromosome V as a DNAString object:
getSeq(Celegans, "chrV")
which is in fact the same as doing:
Celegans$chrV

Not run:
Never try this:
getSeq(Celegans, "chrV", as.character=TRUE)
or this (even worse):
getSeq(Celegans, as.character=TRUE)

End(Not run)

Get the first 20 bases of each chromosome:
getSeq(Celegans, end=20)

Get the last 20 bases of each chromosome:
getSeq(Celegans, start=-20)

Get the "NM_058280_up_1000" sequence (belongs to the upstream1000
multiple sequence) as a DNAString object:
s1 <- getSeq(Celegans, "NM_058280_up_1000")
stopifnot(identical(getSeq(Celegans, "NM_058280_up_5000", start=-1000), s1))

Not run:
Fails because there is more than one sequence across
Celegans$upstream1000, Celegans$upstream2000 and Celegans$upstream5000
with "NM_058280" in its name:
getSeq(Celegans, "NM_058280")

Fails because there is no sequence named exactly "NM_058280":
getSeq(Celegans, "^NM_058280$")

End(Not run)

B. EXTRACTING SMALL SEQUENCES FROM DIFFERENT CHROMOSOMES

myseqs <- data.frame(
chr=c("chrI", "chrX", "chrM", "chrM", "chrX", "chrI", "chrM", "chrI"),
start=c(NA, -40, 8510, 301, 30001, 9220500, -2804, -30),
end=c(50, NA, 8522, 324, 30011, 9220555, -2801, -11),
strand=c("+", "-", "+", "+", "-", "-", "+", "-")

)

getSeq-methods 21

getSeq(Celegans, myseqs$chr,
start=myseqs$start, end=myseqs$end)

getSeq(Celegans, myseqs$chr,
start=myseqs$start, end=myseqs$end, strand=myseqs$strand)

C. USING A GRanges OBJECT

gr1 <- GRanges(seqnames=c("chrI", "chrI", "chrM"),
ranges=IRanges(start=101:103, width=9))

gr1 # all strand values are "*"
getSeq(Celegans, gr1) # treats strand values as if they were "+"

strand(gr1)[] <- "-"
getSeq(Celegans, gr1)

strand(gr1)[1] <- "+"
getSeq(Celegans, gr1)

strand(gr1)[2] <- "*"
if (interactive())
getSeq(Celegans, gr1) # Error: cannot mix "*" with other strand values

gr2 <- GRanges(seqnames=c("chrM", "NM_058280_up_1000"),
ranges=IRanges(start=103:102, width=9))

gr2
if (interactive()) {
Because the sequence names are supplied via a GRanges object, they
are not treated as regular expressions:
getSeq(Celegans, gr2) # Error: sequence NM_058280_up_1000 not found

}

D. EXTRACTING A HIGH NUMBER OF RANDOM 40-MERS FROM A GENOME

extractRandomReads <- function(x, density, readlength)
{

if (!is.integer(readlength))
readlength <- as.integer(readlength)

start <- lapply(seqnames(x),
function(name)
{
seqlength <- seqlengths(x)[name]
sample(seqlength - readlength + 1L,

seqlength * density,
replace=TRUE)

})
names <- rep.int(seqnames(x), elementLengths(start))
ranges <- IRanges(start=unlist(start), width=readlength)
strand <- strand(sample(c("+", "-"), length(names), replace=TRUE))
gr <- GRanges(seqnames=names, ranges=ranges, strand=strand)
getSeq(x, gr)

}

With a density of 1 read every 100 genome bases, the total number of

22 injectSNPs

extracted 40-mers is about 1 million:
rndreads <- extractRandomReads(Celegans, 0.01, 40)

Notes:
- The short sequences in ’rndreads’ can be seen as the result of a
simulated high-throughput sequencing experiment. A non-realistic
one though because:
(a) It assumes that the underlying technology is perfect (the
generated reads have no technology induced errors).
(b) It assumes that the sequenced genome is exactly the same as
the reference genome.
(c) The simulated reads can contain IUPAC ambiguity letters only
because the reference genome contains them. In a real
high-throughput sequencing experiment, the sequenced genome
of course doesn’t contain those letters, but the sequencer
can introduce them in the generated reads to indicate
ambiguous base-calling.
- Those reads are coming from the plus and minus strands of the
chromosomes.
- With a density of 0.01 and the reads being only 40-base long, the
average coverage of the genome is only 0.4 which is low. The total
number of reads is about 1 million and it takes less than 10 sec.
to generate them.
- A higher coverage can be achieved by using a higher density and/or
longer reads. For example, with a density of 0.1 and 100-base reads
the average coverage is 10. The total number of reads is about 10
millions and it takes less than 1 minute to generate them.
- Those reads could easily be mapped back to the reference by using
an efficient matching tool like matchPDict() for performing exact
matching (see ?matchPDict for more information). Typically, a
small percentage of the reads (4 to 5% in our case) will hit the
reference at multiple locations. This is especially true for such
short reads, and, in a lower proportion, is still true for longer
reads, even for reads as long as 300 bases.

E. SEE THE BSgenome CACHE IN ACTION

options(verbose=TRUE)
first20 <- getSeq(Celegans, end=20)
first20
gc()
stopifnot(length(ls(Celegans@.seqs_cache)) == 0L)
One more gc() call is needed in order to see the amount of memory in
used after all the chromosomes have been removed from the cache:
gc()

injectSNPs SNP injection

Description

Inject SNPs from a SNPlocs data package into a genome.

injectSNPs 23

Usage

injectSNPs(x, SNPlocs_pkgname)

SNPlocs_pkgname(x)
SNPcount(x)
SNPlocs(x, seqname)

Related utilities
available.SNPs(type=getOption("pkgType"))
installed.SNPs()

Arguments

x A BSgenome object.
SNPlocs_pkgname

The name of a SNPlocs data package containing SNP information for the single
sequences contained in x. This package must be already installed (injectSNPs
won’t try to install it).

seqname The name of a single sequence in x.

type Character string indicating the type of package ("source", "mac.binary" or
"win.binary") to look for.

Value

injectSNPs returns a copy of the original genome x where some or all of the single sequences were
altered by injecting the SNPs defined in the SNPlocs data package specified thru the SNPlocs_pkgname
argument. The SNPs in the altered genome are represented by an IUPAC ambiguity code at each
SNP location.

SNPlocs_pkgname, SNPcount and SNPlocs return NULL if no SNPs were injected in x (i.e. if x
is not a BSgenome object returned by a previous call to injectSNPs). Otherwise SNPlocs_pkgname
returns the name of the package from which the SNPs were injected, SNPcount the number of SNPs
for each altered sequence in x, and SNPlocs their locations in the sequence whose name is specified
by seqname.

available.SNPs returns a character vector containing the names of the SNPlocs data packages that
are currently available on the Bioconductor repositories for your version of R/Bioconductor. A
SNPlocs data package contains basic SNP information (location and alleles) for a given organism.

installed.SNPs returns a character vector containing the names of the SNPlocs data packages that
are already installed.

Note

injectSNPs, SNPlocs_pkgname, SNPcount and SNPlocs have the side effect to try to load the
SNPlocs data package if it’s not already loaded.

Author(s)

H. Pages

See Also

BSgenome-class, IUPAC_CODE_MAP, injectHardMask, letterFrequencyInSlidingView, .inplaceReplaceLetterAt

24 injectSNPs

Examples

What SNPlocs data packages are already installed:
installed.SNPs()

What SNPlocs data packages are available:
available.SNPs()

if (interactive()) {
Make your choice and install with:
source("http://bioconductor.org/biocLite.R")
biocLite("SNPlocs.Hsapiens.dbSNP.20100427")

}

Inject SNPs from dbSNP into the Human genome:
library(BSgenome.Hsapiens.UCSC.hg19)
Hsapiens
SNPlocs_pkgname(Hsapiens)

SNP_Hsapiens <- injectSNPs(Hsapiens, "SNPlocs.Hsapiens.dbSNP.20100427")
SNP_Hsapiens # note the extra "with SNPs injected from ..." line
SNPlocs_pkgname(SNP_Hsapiens)
SNPcount(SNP_Hsapiens)
head(SNPlocs(SNP_Hsapiens, "chr1"))

alphabetFrequency(Hsapiens$chr1)
alphabetFrequency(SNP_Hsapiens$chr1)

Find runs of SNPs of length at least 25 in chr1. Might require
more memory than some platforms can handle (e.g. 32-bit Windows
and maybe some Mac OS X machines with little memory):
is_32bit_windows <- .Platform$OS.type == "windows" &&

.Platform$r_arch == "i386"
is_macosx <- substr(R.version$os, start=1, stop=6) == "darwin"
if (!is_32bit_windows && !is_macosx) {

chr1 <- injectHardMask(SNP_Hsapiens$chr1)
ambiguous_letters <- paste(DNA_ALPHABET[5:15], collapse="")
lf <- letterFrequencyInSlidingView(chr1, 25, ambiguous_letters)
sl <- slice(as.integer(lf), lower=25)
v1 <- Views(chr1, start(sl), end(sl)+24)
v1
max(width(v1)) # length of longest SNP run

}

Index

∗Topic classes
BSgenome-class, 5
BSParams-class, 11
GenomeData-class, 14
GenomeDataList-class, 16
GenomeDescription-class, 17

∗Topic manip
available.genomes, 2
bsapply, 3
BSgenomeForge, 10
gdapply, 12
gdReduce, 13
getSeq-methods, 18
injectSNPs, 22

∗Topic methods
BSgenome-class, 5
BSgenome-utils, 8
GenomeData-class, 14
GenomeDataList-class, 16
GenomeDescription-class, 17

∗Topic utilities
BSgenome-utils, 8

.inplaceReplaceLetterAt, 23
[[,BSgenome-method (BSgenome-class), 5
[[<-,BSgenome-method (BSgenome-class), 5
$,BSgenome-method (BSgenome-class), 5

available.genomes, 2, 6, 17–19
available.packages, 2
available.SNPs (injectSNPs), 22

bsapply, 3, 9, 12
BSgenome, 2, 8, 17, 18, 23
BSgenome (BSgenome-class), 5
BSgenome-class, 2, 4, 5, 18, 19, 23
BSgenome-utils, 4, 6, 8
BSgenome.Hsapiens.UCSC.hg19, 6
BSgenomeDataPkgSeed (BSgenomeForge),

10
BSgenomeDataPkgSeed-class

(BSgenomeForge), 10
BSgenomeForge, 10
bsgenomeName (GenomeDescription-class),

17

bsgenomeName,GenomeDescription-method
(GenomeDescription-class), 17

BSParams (BSParams-class), 11
BSParams-class, 4, 11

class:BSgenome (BSgenome-class), 5
class:BSgenomeDataPkgSeed

(BSgenomeForge), 10
class:BSParams (BSParams-class), 11
class:GenomeDescription

(GenomeDescription-class), 17
class:InjectSNPsHandler (injectSNPs), 22
coerce,GenomeData,data.frame-method

(GenomeData-class), 14
coerce,GenomeData,RangedData-method

(GenomeData-class), 14
coerce,GenomeData,RangesList-method

(GenomeData-class), 14
coerce,GenomeDataList,data.frame-method

(GenomeDataList-class), 16
countPWM,BSgenome-method

(BSgenome-utils), 8

DataFrame, 9
DataTable, 15
DNAString, 5, 8, 19
DNAString-class, 6, 19
DNAStringSet, 5, 8, 19
DNAStringSet-class, 6, 19

forgeBSgenomeDataPkg (BSgenomeForge),
10

forgeBSgenomeDataPkg,BSgenomeDataPkgSeed-method
(BSgenomeForge), 10

forgeBSgenomeDataPkg,character-method
(BSgenomeForge), 10

forgeBSgenomeDataPkg,list-method
(BSgenomeForge), 10

forgeMasksFiles (BSgenomeForge), 10
forgeSeqFiles (BSgenomeForge), 10
forgeSeqlengthsFile (BSgenomeForge), 10

gc, 6
gdApply (gdapply), 12

25

26 INDEX

gdapply, 12, 15
gdapply,GenomeData,function-method

(gdapply), 12
gdapply,GenomeDataList,function-method

(gdapply), 12
gdReduce, 13, 15
gdreduce (gdReduce), 13
gdReduce,GenomeData-method

(gdReduce), 13
gdReduce,GenomeDataList-method

(gdReduce), 13
GenomeData, 12–14, 16
GenomeData (GenomeData-class), 14
GenomeData-class, 4, 13, 14, 14
GenomeDataList, 12–14
GenomeDataList (GenomeDataList-class),

16
GenomeDataList-class, 13–15, 16
GenomeDescription, 5
GenomeDescription

(GenomeDescription-class), 17
GenomeDescription-class, 6, 17
getSeq, 18, 19
getSeq,BSgenome-method

(getSeq-methods), 18
getSeq-methods, 18
GRanges, 9, 18, 19
GRanges-class, 19
grep, 19

injectHardMask, 23
injectSNPs, 6, 22
injectSNPs,BSgenome-method

(injectSNPs), 22
InjectSNPsHandler (injectSNPs), 22
InjectSNPsHandler-class (injectSNPs), 22
installed.genomes (available.genomes), 2
installed.SNPs (injectSNPs), 22
IUPAC_CODE_MAP, 23

length,BSgenome-method
(BSgenome-class), 5

letterFrequencyInSlidingView, 23

MaskedDNAString, 5
MaskedDNAString-class, 6, 19
MaskedXString, 5
masknames (BSgenome-class), 5
masknames,BSgenome-method

(BSgenome-class), 5
matchPattern, 9
matchPDict, 9
matchPWM, 9

matchPWM,BSgenome-method
(BSgenome-utils), 8

mseqnames (BSgenome-class), 5
mseqnames,BSgenome-method

(BSgenome-class), 5

names,BSgenome-method
(BSgenome-class), 5

organism (GenomeDescription-class), 17
organism,GenomeData-method

(GenomeData-class), 14
organism,GenomeDescription-method

(GenomeDescription-class), 17

provider (GenomeDescription-class), 17
provider,GenomeData-method

(GenomeData-class), 14
provider,GenomeDescription-method

(GenomeDescription-class), 17
providerVersion (GenomeDescription-class),

17
providerVersion,GenomeData-method

(GenomeData-class), 14
providerVersion,GenomeDescription-method

(GenomeDescription-class), 17

RangedData, 9, 15, 18, 19
RangedData-class, 19
Ranges, 15, 18, 19
Ranges-class, 19
RangesList, 9, 12, 15, 18, 19
RangesList-class, 19
Reduce, 13, 14
releaseDate (GenomeDescription-class), 17
releaseDate,GenomeDescription-method

(GenomeDescription-class), 17
releaseName (GenomeDescription-class), 17
releaseName,GenomeDescription-method

(GenomeDescription-class), 17
rm, 6

Seqinfo, 17
seqinfo,GenomeDescription-method

(GenomeDescription-class), 17
Seqinfo-class, 18
show,BSgenome-method (BSgenome-class),

5
show,GenomeData-method

(GenomeData-class), 14
show,GenomeDescription-method

(GenomeDescription-class), 17
SimpleList, 14, 16

INDEX 27

SimpleList-class, 15
SNPcount (injectSNPs), 22
SNPcount,BSgenome-method (injectSNPs),

22
SNPcount,InjectSNPsHandler-method

(injectSNPs), 22
SNPlocs (injectSNPs), 22
SNPlocs,BSgenome-method (injectSNPs),

22
SNPlocs,InjectSNPsHandler-method

(injectSNPs), 22
SNPlocs_pkgname (injectSNPs), 22
SNPlocs_pkgname,BSgenome-method

(injectSNPs), 22
SNPlocs_pkgname,InjectSNPsHandler-method

(injectSNPs), 22
solveUserSEW, 19
sourceUrl (BSgenome-class), 5
sourceUrl,BSgenome-method

(BSgenome-class), 5
species (GenomeDescription-class), 17
species,GenomeDescription-method

(GenomeDescription-class), 17
subseq,XVector-method, 6

vcountPattern,BSgenome-method
(BSgenome-utils), 8

vcountPDict,BSgenome-method
(BSgenome-utils), 8

vmatchPattern,BSgenome-method
(BSgenome-utils), 8

vmatchPDict,BSgenome-method
(BSgenome-utils), 8

	available.genomes
	bsapply
	BSgenome-class
	BSgenome-utils
	BSgenomeForge
	BSParams-class
	gdapply
	gdReduce
	GenomeData-class
	GenomeDataList-class
	GenomeDescription-class
	getSeq-methods
	injectSNPs
	Index

