
ISMB 2011: Tutorial on genetics of gene expression in
humans:

data structures, algorithms, inference

VJ Carey stvjc at channing.harvard.edu

December 1, 2011

Contents

1 Basic concepts with array-based data: cis-associated variants 3
1.1 Functional relations between DNA variants and mRNA abundance 3
1.2 Direct computation to search for eQTL 3

1.2.1 Exercises 1 . 6
1.3 Transcriptome-wide searches for eQTL 8

1.3.1 Managing millions of test results; resolving focused queries 8
1.3.2 Surveying transcriptome-wide test collections 9
1.3.3 Assessing false discovery rates using statistics computed after per-

mutation . 10
1.3.4 Locations and contexts: the eQTL landscape of a chromosome . . 13
1.3.5 High-level tools for locus annotation: ChIPpeakAnno 18

2 Imputation using 1000 genomes genotypes 21

3 Identifying and reducing expression heterogeneity for enhanced eQTL
discovery 26
3.1 Unsupervised approach: PCA for covariates 26
3.2 Supervised approach: surrogate variable analysis 28

4 Investigating trans associations 30

5 Leveraging RNA-seq: details of transcriptomic diversity 34
5.1 Some key observations and their approximate reproduction 34
5.2 Surveying a read set for transcript variants 38

6 Summary 40

1

7 Session information 43

2

1 Basic concepts with array-based data: cis-associated

variants

1.1 Functional relations between DNA variants and mRNA
abundance

From Williams et al. (2007).

1.2 Direct computation to search for eQTL

The following table is excerpted from Supplement to Stranger et al. (2007). It shows
three genes on chromosome 17 that possess eQTL according to certain criteria.

3

We can check aspects of these findings using publicly available data. The GENEVAR
project distributed expression data for CEPH CEU cell lines (immortalized B cells), and
genotype results from Phase II HapMap archives have be associated with these in the
Bioconductor GGdata package. We obtain the full expression data and genotypes for
chromosome 17 as follows:

> intsave = function(...) NULL # could set as save to speed runs

> date()

[1] "Thu Dec 1 06:57:28 2011"

> library(GGtools)

> library(GGdata)

> c17 = getSS("GGdata", "17", renameChrs="chr17")

> class(c17) # smlSet links SnpMatrix instances and expression data

[1] "smlSet"

attr(,"package")

[1] "GGBase"

> c17

SnpMatrix-based genotype set:

number of samples: 90

number of chromosomes present: 1

annotation: illuminaHumanv1.db

Expression data dims: 47293 x 90

Phenodata: An object of class "AnnotatedDataFrame"

sampleNames: NA06985 NA06991 ... NA12892 (90 total)

varLabels: famid persid ... male (7 total)

varMetadata: labelDescription

4

We can use an additive genetic model to test for association between allelic dosage
and mean expression for CHRNE, adjusting for gender, as follows:

> t1 = gwSnpTests(genesym("CHRNE") ~ male, c17, chrnum("chr17"))

> topSnps(t1)

p.val

rs16954243 2.926e-09

rs7214776 7.564e-09

rs8081611 7.564e-09

rs2302321 4.839e-08

rs8070572 2.506e-07

rs7225684 4.088e-07

rs2243093 8.157e-07

rs16954257 9.002e-07

rs2243100 9.274e-07

rs8077875 1.475e-06

We can visualize some of the associations directly as follows:

> par(mfrow = c(2, 2))

> plot_EvG(genesym("CHRNE"), rsid("rs16954243"), c17)

> plot_EvG(genesym("CHRNE"), rsid("rs7214776"), c17)

> plot_EvG(genesym("CHRNE"), rsid("rs2302321"), c17)

> plot_EvG(genesym("CHRNE"), rsid("rs8070572"), c17)

> par(mfrow = c(1, 1))

5

●

A/A A/B NA

6.
0

6.
2

6.
4

6.
6

6.
8

rs16954243

C
H

R
N

E

●
●●

●

● ●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●●

●

●

●
●

●

●

●
●●

●
●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●● ●●
●

●

●
●●

● ●

A/B B/B

6.
0

6.
2

6.
4

6.
6

6.
8

rs7214776

C
H

R
N

E

●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●
● ●

●

●●

●

●

●
●

●

●

●
●●

●
●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●●● ●
●

●

●
●●

●

A/A A/B B/B

6.
0

6.
2

6.
4

6.
6

6.
8

rs2302321

C
H

R
N

E

●
●●

●

● ●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●●

●

●

●
●

●

●

●
●●

●
● ●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●● ●●
●

●

●
●●

●

A/A A/B B/B NA

6.
0

6.
2

6.
4

6.
6

6.
8

rs8070572

C
H

R
N

E

●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●
●●

●

●●

●

●

●
●

●

●

●
●●

●
●●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●

●

●

●

●

●
●●● ●
●

●

●
●●

●

1.2.1 Exercises 1

• What are the p-values returned by topSnps? To compute related tests, by hand,
using very standard R code, we proceed as follows. First, we acquire the expression
data to use as the ‘response’ in a linear regression model.

> chrneExpr = as.numeric(exprs(c17[genesym("CHRNE"),]))

> summary(chrneExpr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.99 6.16 6.21 6.23 6.27 6.87

Then we need a suitable representation of genotype for a SNP of interest. This
can be somewhat cumbersome:

> num243 = as(smList(c17)[["chr17"]][, "rs16954243"], "numeric")

> table(num243)

6

num243

0 1

77 12

Now we obtain the fit:

> summary(lm(chrneExpr ~ num243 + male, data = pData(c17)))

Call:

lm(formula = chrneExpr ~ num243 + male, data = pData(c17))

Residuals:

Min 1Q Median 3Q Max

-0.2805 -0.0483 -0.0019 0.0606 0.4042

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.1868 0.0164 377.55 < 2e-16 ***

num243 0.2545 0.0333 7.65 2.7e-11 ***

maleTRUE 0.0221 0.0227 0.97 0.33

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.107 on 86 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.41, Adjusted R-squared: 0.396

F-statistic: 29.8 on 2 and 86 DF, p-value: 1.43e-10

The code underlying gwSnpTests is

> snp.rhs.tests(chrneExpr~1, data=pData(c17),

+ snp.data=smList(c17)[["chr17"]][, "rs16954243"],

+ family="gaussian")

Chi.squared Df p.value

rs16954243 35.48 1 2.575e-09

The p-value here is based on a statistically and computationally efficient score test.

Use this ‘direct access’ to the expression and genotype data to visualize aspects of
the data leading to:

> var.test(chrneExpr[num243 == 0], chrneExpr[num243 == 1])

7

F test to compare two variances

data: chrneExpr[num243 == 0] and chrneExpr[num243 == 1]

F = 0.1308, num df = 76, denom df = 11, p-value = 2.085e-08

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.04391 0.28349

sample estimates:

ratio of variances

0.1308

What is the consequence of genotype-dependent differential dispersion?

• Describe how to verify findings of Stranger et al. on genes CTNS and DERP6
with similar resources. Note that DERP6 symbol translation is difficult; Stranger
and colleagues helpfully provide the probe identifier, which can be used with the
probeId() cast. Use packages GGtools and GGdata to carry out the tests.

• In the 90 individuals assayed, many SNP are monomorphic. Use col.summary in
the snpStats package to determine which.

1.3 Transcriptome-wide searches for eQTL

1.3.1 Managing millions of test results; resolving focused queries

A comprehensive search for cis and trans eQTL using expression microarrays would
examine about 5 · 104 mRNA abundance measures against each of 8 · 106 SNP loci.
Parallel computing can be used to do this in a reasonable amount of time, but managing
the results for convenient interrogation is challenging. We provide one approach to
managing large numbers of results in the eqtlTestsManager class and related structures
in GGtools. A small chunk of results related to chromosome 17 is provided in the ggtut
package.

> library(ggtut)

> f1 = observed17ceu()

> f1

eqtlTestsManager computed Fri May 6 16:05:50 2011

gene annotation: illuminaHumanv1.db

There are 1 chromosomes analyzed.

some genes (out of 498): GI_10190685-S GI_10835020-S ... hmm23927-S hmm5188-S

some snps (out of 60967): rs6565733 rs1106175 ... rs7502145 rs4986109

> f1@call

8

eqtlTests(smlSet = c17, rhs = ~male, targdir = "c17c", geneApply = mclapply,

genegran = 1)

The object f1 holds results of 30361566 tests for expression-genotype association. Note
that results for only 498 probes are present. This reflects adoption of a non-specific
expression filtering policy (Bourgon et al., 2010) used only to reduce volume for this
tutorial.

We can recover results on the probe called DERP6 by Stranger as follows:

> topFeats(probeId("GI_44662825-I"), mgr = f1, ffind = 1)

rs4562 rs222851 rs2106842 rs222843 rs2074217 rs2074218 rs402514 rs222835

45.04 44.77 40.37 39.86 39.86 39.86 39.86 39.24

rs8067500 rs222850

34.07 33.65

1.3.2 Surveying transcriptome-wide test collections

This suggests an approach to surveying the entire (filtered) transcriptome for chromo-
some 17 for eQTL.

> options(digits=4)

> bestApply = lapply

> if ("multicore" %in% installed.packages()[,1]) {

+ ncores = multicore:::volatile$detectedCores

+ if (ncores >= 3) {

+ library(multicore)

+ options(cores=min(c(ncores-1,10))) # check!

+ bestApply = mclapply

+ }

+ }

> allpro = probesManaged(f1,1)

> if (!exists("tops")) tops = bestApply(allpro,

+ function(x) topFeats(probeId(x), mgr=f1, ffind=1, n=5))

> names(tops) = allpro

The values here are, under the null, individually χ2 with 1 degree of freedom. The
associated p-values would be, for example,

> lapply(tops[1:4], function(x) 1 - pchisq(x, 1))

$`GI_10190685-S`
rs4794214 rs163372 rs6504700 rs3865264 rs489698

2.175e-05 3.738e-05 3.758e-05 4.495e-05 8.164e-05

9

$`GI_10835020-S`
rs9916609 rs6502743 rs220471 rs220470 rs1178563

2.784e-05 2.858e-05 2.888e-05 3.192e-05 4.471e-05

$`GI_10835100-S`
rs2685524 rs9898312 rs9911505 rs7207897 rs9908211

0.0001790 0.0002424 0.0002530 0.0004070 0.0004340

$`GI_10864026-S`
rs11869731 rs17637018 rs2270517 rs12453418 rs2097970

9.418e-05 1.075e-04 2.360e-04 3.199e-04 4.386e-04

1.3.3 Assessing false discovery rates using statistics computed after permu-
tation

Are these small enough to be regarded as significant? To help reason about this, a
manager of test statistics computed after permutation of expression against genotype is
provided.

> permf1 = onePerm17ceu()

> if (!exists("permtops")) permtops = bestApply(allpro,

+ function(x) topFeats(probeId(x),

+ mgr=permf1, ffind=1, n=5))

> names(permtops) = allpro

> lapply(permtops[1:4], function(x)1-pchisq(x,1))

$`GI_10190685-S`
rs183209 rs199146 rs11077688 rs7219399 rs180102

1.328e-05 2.843e-05 1.241e-04 2.111e-04 2.286e-04

$`GI_10835020-S`
rs7216823 rs11245 rs7221190 rs4792722 rs12951345

3.660e-05 3.778e-05 9.983e-05 1.771e-04 1.838e-04

$`GI_10835100-S`
rs7212938 rs2908948 rs2969243 rs11651692 rs12603358

0.0001959 0.0002055 0.0002055 0.0002450 0.0003796

$`GI_10864026-S`
rs4426406 rs4447484 rs4327112 rs4246426 rs2255865

8.745e-05 1.134e-04 1.134e-04 1.417e-04 2.348e-04

10

As one might expect, given the large number of tests, the minimum p-values achieved
for the first four probes investigated are similar in magnitude to those obtained after
permutation. The collection of tests obtained under permutation can be used to assess
the false discovery rate for various types of claims.

To illustrate this idea, consider the collection of the gene-specific maximum associa-
tion statistics. It is:

> maxassoc = sapply(tops, "[", 1)

> maxassoc[1:5]

GI_10190685-S.rs4794214 GI_10835020-S.rs9916609 GI_10835100-S.rs2685524

18.03 17.56 14.04

GI_10864026-S.rs11869731 GI_11038675-A.rs2584597

15.25 21.40

R helpfully provides mangled names allowing us to determine both the gene and SNP
associated with any score.

We can obtain the same set of quantities for the permuted tests:

> maxaperm = sapply(permtops, "[", 1)

> maxaperm[1:5]

GI_10190685-S.rs183209 GI_10835020-S.rs7216823 GI_10835100-S.rs7212938

18.97 17.04 13.87

GI_10864026-S.rs4426406 GI_11038675-A.rs17719981

15.39 16.00

The 99th percentile of the distribution of maximal gene-specific scores computed
under permutation will be used as a threshold for asserting the existence of at least one
eQTL for a gene, corresponding to a false discovery rate of approximately one percent.

> p99 = quantile(maxaperm, 0.99)

> p99

99%

30.75

> sum(maxassoc > p99)

[1] 22

We claim that there are 22 genes with eQTL under this rubric, with an approximate
FDR of 0.01. They are

11

> haseqtl = which(maxassoc > p99)

> pweq = allpro[haseqtl]

> unlist(mget(pweq, illuminaHumanv1SYMBOL))

GI_11496988-S GI_13129141-S GI_14149701-S GI_21314623-S GI_31377797-S

"GAA" "DHX58" "RNF167" "PGS1" "RABEP1"

GI_31542719-S GI_31542722-S GI_31543284-S GI_31543557-S GI_32528304-I

"ACSF2" "SPATA20" "NDEL1" "RPH3AL" "PIP4K2B"

GI_34147471-S GI_38142463-S GI_38348363-S GI_42661209-S GI_42661225-S

"NT5C3L" "HEATR6" "MXRA7" "LOC645638" "PRKCA"

GI_42661283-S GI_44662825-I GI_4506832-S GI_4826681-S GI_4885062-S

"C17orf97" "C17orf81" "CCL1" "CTNS" "ALDOC"

GI_7705938-S Hs.379903-S

"RAPGEFL1" "ZSWIM7"

To visualize some of the associations, we use

> tmp = names(maxassoc)[haseqtl]

> tmp = gsub(".rs", "%.rs", tmp)

> pids = sapply(strsplit(tmp, "%."), "[", 1)

> rsids = sapply(strsplit(tmp, "%."), "[", 2)

> par(mfrow = c(2, 2))

> for (i in 1:4) plot_EvG(probeId(pids[i]), rsid(rsids[i]), c17)

> par(mfrow = c(1, 1))

12

●

A/A A/B B/B

6.
4

6.
8

7.
2

rs12450199

G
I_

11
49

69
88

−
S

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●

●●●

●

●

●

●●

●

●

●

●
●

●

●

A/A A/B B/B NA

8.
5

9.
5

10
.5

rs11079033
G

I_
13

12
91

41
−

S

●

●

●

● ●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

A/A A/B B/B NA

8.
0

8.
5

9.
0

9.
5

rs400688

G
I_

14
14

97
01

−
S

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

A/A A/B B/B

8.
0

8.
4

8.
8

rs8071516

G
I_

21
31

46
23

−
S

●

●●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●
●

●

●

●

●

●

●

● ●
●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

1.3.4 Locations and contexts: the eQTL landscape of a chromosome

We have access to dbSNP-archived SNP locations for chromosome 17 in hg18. The
snpgr17 structure was created using SNPlocs.Hsapiens.dbSNP.20090506, based on hg18.

> data(snpgr17)

> length(snpgr17)

[1] 316396

> snpgr17[1:3]

GRanges with 3 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

rs1106176 chr17 [6934, 6934] *

rs6420494 chr17 [7214, 7214] *

rs6420495 chr17 [7242, 7242] *

13

seqlengths:

chr17

NA

> length(intersect(names(snpgr17), snpsManaged(f1, 1)))

[1] 59999

We can use this location information to organize and interpret collections of eqtlTests.
We also have information on gene ranges, developed by the somewhat tedious code

noted here. The most important component to understand is

> library(GenomicFeatures)

> library(TxDb.Hsapiens.UCSC.hg18.knownGene)

> txdb = TxDb.Hsapiens.UCSC.hg18.knownGene

> txg = transcriptsBy(txdb, "gene")

> txg[1:3]

GRangesList of length 3:

$1

GRanges with 2 ranges and 2 elementMetadata values:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr19 [63549984, 63556677] - | 61027 uc002qsd.2

[2] chr19 [63551644, 63565932] - | 61033 uc002qsf.1

$10

GRanges with 2 ranges and 2 elementMetadata values:

seqnames ranges strand | tx_id tx_name

[1] chr8 [18293035, 18303003] + | 26503 uc003wyw.1

[2] chr8 [18301794, 18302666] + | 26504 uc010lte.1

$100

GRanges with 2 ranges and 2 elementMetadata values:

seqnames ranges strand | tx_id tx_name

[1] chr20 [42681577, 42713790] - | 62142 uc002xmj.1

[2] chr20 [42681577, 42713790] - | 62143 uc010ggt.1

seqlengths:

chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

14

which shows how UCSC tables can be used with GenomicFeatures package infrastructure
to collect information on transcripts. The recoding from transcript sets to approximate
gene regions is:

> pn = probesManaged(f1,1)

> library(illuminaHumanv1.db)

> pn.eg = unlist(mget(pn, illuminaHumanv1ENTREZID))

> pn.eg = na.omit(pn.eg)

> eg.pn = names(pn.eg)

> names(eg.pn) = pn.eg

> txg17 = txg[intersect(names(txg), pn.eg)]

> extents = function(x) {

+ y = x[seqnames(x)=="chr17"]; c(min(start(y)),max(end(y)))

+ } # watch for random

> ssnr = lapply(txg17, function(z) try(extents(z)))

> firsts = sapply(ssnr, function(x) {if(is.finite(x[1])) return(x[1]); NA})

> if (any(is.na(firsts))) ssnr = ssnr[-which(is.na(firsts))]

> firsts = sapply(ssnr, function(x) {if(is.numeric(x[1])) return(x[1]); NA})

> lasts = sapply(ssnr, function(x) {if(is.numeric(x[2])) return(x[2]); NA})

> g17rngsnr = GRanges(seqnames="chr17",

+ IRanges(firsts,lasts), probeid=eg.pn[names(ssnr)])

which you can avoid by using

> data(g17rngsnr)

> g17rngsnr

GRanges with 475 ranges and 1 elementMetadata value:

seqnames ranges strand | probeid

<Rle> <IRanges> <Rle> | <character>

GI_21237796-A chr17 [39509647, 39556540] * | GI_21237796-A

GI_4885638-S chr17 [50333051, 50394327] * | GI_4885638-S

GI_22035666-S chr17 [46294586, 46300338] * | GI_22035666-S

GI_17572809-S chr17 [77439016, 77442758] * | GI_17572809-S

GI_30410793-A chr17 [38229969, 38249303] * | GI_30410793-A

GI_20070210-S chr17 [37098653, 37101424] * | GI_20070210-S

GI_5032212-S chr17 [45133689, 45140527] * | GI_5032212-S

GI_5031728-S chr17 [58981554, 59025373] * | GI_5031728-S

GI_33519473-S chr17 [44263371, 44297228] * | GI_33519473-S

...

GI_41281459-S chr17 [7180597, 7195517] * | GI_41281459-S

GI_41281472-S chr17 [70964259, 71008128] * | GI_41281472-S

GI_40538727-S chr17 [40869049, 40923893] * | GI_40538727-S

GI_7662287-S chr17 [6422369, 6484971] * | GI_7662287-S

15

GI_37543271-S chr17 [2187556, 2231098] * | GI_37543271-S

GI_7662241-S chr17 [12633554, 12835685] * | GI_7662241-S

GI_7661883-S chr17 [62497016, 62671781] * | GI_7661883-S

GI_16554576-S chr17 [42550310, 42621664] * | GI_16554576-S

GI_4827043-S chr17 [57374748, 57497425] * | GI_4827043-S

seqlengths:

chr17

NA

Our objective here is to give a chromosome-wide picture of SNP-mediated expres-
sion variation. We will employ two constraints on SNP-gene distance. First, we will
consider all SNP within 50kb of each gene’s transcript limits, and then we will consider
all SNP from 50kb+1 to 2Mb on each side of the gene. The cisProxScores function
can handle this on the basis of either an smlSet instance or a multiCisDirector, which
holds a collection of eqtlTestsManager instances. The following code uses the director
approach:

> df1 = new("multiCisDirector", mgrs = list(obs17 = f1))

> if (!exists("CPS17")) {

+ CPS17 = cisProxScores(dradset = c(50000, 2e+06), direc = df1,

+ snpGRL = list(obs17 = snpgr17), geneGRL = list(obs17 = g17rngsnr),

+ ffind = 1)

+ }

> permdf1 = new("multiCisDirector", mgrs = list(obs17 = permf1))

> if (!exists("PERMCPS17")) {

+ PERMCPS17 = cisProxScores(dradset = c(50000, 2e+06), direc = permdf1,

+ snpGRL = list(obs17 = snpgr17), geneGRL = list(obs17 = g17rngsnr),

+ ffind = 1)

+ }

These cisProxScores objects are available as

> if (!exists("CPS17")) data(CPS17)

> if (!exists("PERMCPS17")) data(PERMCPS17)

To get a feel for the outcome of this process, we can use

> sb1 = scoresByGenes(CPS17, as.GRanges = FALSE)

> lapply(sb1[1:3], "[", 1:10)

$`GI_10190685-S`
rs3785634 rs8066692 rs4792642 rs2074890 rs3760304 rs3760303 rs3760302

1.86 2.18 1.07 0.43 1.69 0.43 1.57

16

rs7223879 rs10521309 rs7222483

0.01 1.69 2.18

$`GI_10835020-S`
rs16965748 rs471692 rs558068 rs17618397 rs2586112 rs16965774 rs16965778

2.36 0.92 0.39 0.21 0.99 2.36 2.24

rs525812 rs2012667 rs11650680

2.55 2.36 2.93

$`GI_10835100-S`
rs4796765 rs886238 rs1076188 rs9674546 rs4796768 rs7224322 rs1123363

0.00 0.74 0.16 2.79 0.16 2.05 0.01

rs7222458 rs2079009 rs11870415

0.72 0.16 0.00

> summary(sapply(sb1, length))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 52.0 71.0 86.3 96.0 696.0

> permsb1 = scoresByGenes(PERMCPS17, as.GRanges = FALSE)

> summary(unlist(sb1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.14 0.66 1.96 1.99 67.60

> summary(unlist(permsb1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.090 0.440 0.964 1.280 15.400

We obtain browsable tracks via

> rsb1 = scoresByGenes(CPS17, as.GRanges = TRUE, snpGR = snpgr17,

+ scoreConverter = function(x) -log10(1 - pchisq(x, 1)))

> prsb1 = scoresByGenes(PERMCPS17, as.GRanges = TRUE, snpGR = snpgr17,

+ scoreConverter = function(x) -log10(1 - pchisq(x, 1)))

> rsb1 = RangedData(ranges = ranges(rsb1), space = "chr17", score = elementMetadata(rsb1)$score)

> prsb1 = RangedData(ranges = ranges(prsb1), space = "chr17", score = elementMetadata(prsb1)$score)

> library(rtracklayer)

> export(rsb1, "obs17.wig")

> export(prsb1, "perm17.wig")

After modifying the header of the exported wig file and importing to UCSC browser, we
have

17

To examine effects in the 50kb-2Mb range, use

> rsb2 = scoresByGenes(CPS17, intvind = 2, as.GRanges = TRUE, snpGR = snpgr17,

+ scoreConverter = function(x) -log10(1 - pchisq(x, 1)))

> export(rsb2, "obs17p2m.wig")

Exercises: How can you use the scores obtained under permuting expression against
genotype to define a policy for including only those features in the landscape that have a
low ‘false discovery’ rate? How many genes have cis eQTL (up to 50kb) on chromosome
17 under your policy?

We can use the GenomicFeatures databases to obtain exonic regions. What fraction
of the ‘significant’ eQTL lie in exons?

1.3.5 High-level tools for locus annotation: ChIPpeakAnno

We can use a facility intended for ChIP-seq analysis to obtain structural metadata about
SNPs that have interesting scores.

> p99bysnp = quantile(prsb1$score, 0.99)

> sum(rsb1$score > p99bysnp)

[1] 2275

> rsb1hi = rsb1[which(rsb1$score > p99bysnp),]

> library(ChIPpeakAnno)

> data(TSS.human.NCBI36)

> TSS.human.NCBI36[1:3,]

RangedData with 3 rows and 2 value columns across 87 spaces

space ranges | strand

<factor> <IRanges> | <integer>

18

ENSG00000219789 1 [1873, 3533] | 1

ENSG00000146556 1 [4274, 19669] | -1

ENSG00000221311 1 [20229, 20366] | 1

description

<character>

ENSG00000219789

ENSG00000146556

ENSG00000221311 hsa-mir-1302-2 [Source:miRBase;Acc:MI0006363]

> rsb1report = annotatePeakInBatch(rsb1hi, AnnotationData = TSS.human.NCBI36)

> rsb1report[1:4,]

RangedData with 4 rows and 9 value columns across 1 space

space ranges | peak

<factor> <IRanges> | <character>

rs1000940 ENSG00000129197 17 [5223976, 5223976] | rs1000940

rs1005552 ENSG00000108272 17 [32023711, 32023711] | rs1005552

rs1007654 ENSG00000167914 17 [35364880, 35364880] | rs1007654

rs1007655 ENSG00000167914 17 [35364945, 35364945] | rs1007655

strand feature start_position

<character> <character> <numeric>

rs1000940 ENSG00000129197 + ENSG00000129197 5263685

rs1005552 ENSG00000108272 + ENSG00000108272 32022339

rs1007654 ENSG00000167914 + ENSG00000167914 35372752

rs1007655 ENSG00000167914 + ENSG00000167914 35372752

end_position insideFeature distancetoFeature

<numeric> <character> <numeric>

rs1000940 ENSG00000129197 5276920 upstream -39709

rs1005552 ENSG00000108272 32031324 inside 1372

rs1007654 ENSG00000167914 35387545 upstream -7872

rs1007655 ENSG00000167914 35387545 upstream -7807

shortestDistance fromOverlappingOrNearest

<numeric> <character>

rs1000940 ENSG00000129197 39709 NearestStart

rs1005552 ENSG00000108272 1372 NearestStart

rs1007654 ENSG00000167914 7872 NearestStart

rs1007655 ENSG00000167914 7807 NearestStart

> table(rsb1report$insideFeature)

downstream inside upstream

437 1016 822

To check relationship between ’strength’ of association and proximity to gene:

19

> plot(rsb1hi$score ~ rsb1report$distancetoFeature)

●

●

●

●

●

●●

●

●
●●

●● ● ●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●●
●●

●●

●
●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●

● ●

●

●

●

● ●
●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●●
● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●●
●

●

●

●
●

●

●

●

●

●

●●

●●
●

●●
●

●
●

●●

●●

●

●

● ●
● ●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●
●

●

● ●
●●

●

●

●

●

●
●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●●●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●
● ●●

●
●

●

●

●

●●
●

● ●●● ●● ●

●

●●●●●●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

● ● ●
●

●●●

●

●

●

●
●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

● ●
●●

●
●
●

●

● ●
●

●

●

●

●

● ●

●

●●●

● ●

●

●

●

●●

●
●

●

● ●

●
●

●

●

●●● ●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

● ●

●
●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●●●●

●

●●●●● ●●
● ●

●
●

●
●● ●●
●

● ● ●●●●●
●●

● ●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●● ● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

● ●

●

●
●●

●● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●● ●

●

●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●
●

●●
●

●

●

●
●● ● ●

●

●

●●

●

●
●

●

●

●

●

●

● ●

● ●●

●●

●

●●

●

●
●●

●●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●●
●

● ●●

●
●

● ●

●

●
●

●

●

●

●●●

●

●●

●

●
●

●

●

●●●

●

●

●

●
●

●●●
●

●
● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●● ●
●

●

●
●
●

● ●●
●

●

●●●

● ●

●● ●●

● ●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●● ●●●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●● ●●

● ●
●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●
●●

●●

●

●
●

●
●

●

●
●●

●

●

●●●

●

●

●
●

●
●●

●
●

●

●
●

●● ●

●

●

● ● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●
●●● ●

● ●
●

●

●

●●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
● ●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

●

●●●

●

●

●

●
●

●● ●

●

●

●

●●

●

●

●●

●
●

●

●●
●

●

●
●

●
●
●

●
●●

●

●

●● ●● ●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●●

●

●

●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

● ●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●
●

● ●
●

●

● ●

●

●●●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

● ●●

●

●

●

●●

●
●

●

●
●

●
●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●●●

−1e+05 0e+00 1e+05 2e+05

2
4

6
8

10
12

14
16

rsb1report$distancetoFeature

rs
b1

hi
$s

co
re

20

2 Imputation using 1000 genomes genotypes

There are many possible approaches to estimating allelic doses at unobserved loci using
haplotype models. The snpStats package of D. Clayton includes a simple, rule-based
imputation procedure. We provide an example of the rule-based structure:

> data(rules.n43)

> rules.n43[1:5]

rs1106176 ~ No imputation available

rs6420494 ~ rs11654695+rs9789059+rs8073513+rs7225087 (MAF = 0.1279, R-squared = 0.9006)

rs6420495 ~ rs11654695+rs12449775+rs8078223+rs9907102 (MAF = 0.1628, R-squared = 0.8022)

rs34663111 ~ rs11654695+rs9789059+rs8073513+rs4968164 (MAF = 0.1163, R-squared = 0.881)

rs62054999 ~ rs11654695+rs9789059+rs8073513+rs4968164 (MAF = 0.1163, R-squared = 0.881)

> summary(rules.n43)

SNPs used

R-squared 1 tags 2 tags 3 tags 4 tags <NA>

[0,0.1) 1514 1846 854 868 0

[0.1,0.2) 6 920 1399 2053 0

[0.2,0.3) 0 296 656 3327 0

[0.3,0.4) 0 191 413 3005 0

[0.4,0.5) 0 127 231 2864 0

[0.5,0.6) 1 179 247 2722 0

[0.6,0.7) 3 296 261 2451 0

[0.7,0.8) 58 586 414 2840 0

[0.8,0.9) 807 1162 925 4839 0

[0.9,0.95) 3485 1433 1159 3893 0

[0.95,0.99) 2473 914 707 1840 0

[0.99,1] 33534 880 1911 5380 0

<NA> 0 0 0 0 374836

Details of the imputation procedure are given in the appendix; 43 individuals in the
CEU cohort used in c17 have genotype data in the 1000 genomes archive. The estima-
tion procedure used for testing subsequent to imputations respects the uncertainty of
imputation. For the moment, we want to see how much this procedure helps to improve
resolution of variants associated with expression variation.

> tempfolder = function ()

+ {

+ z = tempfile()

+ system(paste("mkdir", z))

+ z

21

+ }

> obsfold = tempfolder()

> p2keep = probesManaged(f1,1)

> c17 = getSS("GGdata", "17", renameChrs="chr17", wrapperEndo=dropMonomorphies,

+ probesToKeep=p2keep)

> if (!exists("rf1")) {

+ if (file.exists("rf1.rda")) load("rf1.rda") else {

+ rf1 = ieqtlTests(c17, ~male, targdir=obsfold,

+ geneApply=bestApply, shortfac=10,

+ rules=rules.n43)

+ intsave(rf1, file="rf1.rda")

+ }

+ }

This code generates .5GB of short ints, and is not computed in the tutorial.
To obtain a revised landscape :

> newsn = snpsManaged(rf1, 1)

> extSNP = newsn[grep("chr17:", newsn)]

> elocs = as.numeric(gsub("chr17:", "", extSNP))

> newr = GRanges(seqnames = "chr17", IRanges(elocs, width = 1))

> names(newr) = extSNP

> extsnpgr17 = c(snpgr17, newr)

> rdf1 = new("multiCisDirector", mgrs = list(imp17 = rf1))

> if (file.exists("IMP17.rda")) load("IMP17.rda")

> if (!exists("IMP17")) {

+ IMP17 = cisProxScores(dradset = c(50000, 2e+06), direc = rdf1,

+ snpGRL = list(imp17 = extsnpgr17), geneGRL = list(imp17 = g17rngsnr),

+ ffind = 1)

+ intsave(IMP17, file = "IMP17.rda")

+ }

> rsb2 = scoresByGenes(IMP17, as.GRanges = TRUE, snpGR = extsnpgr17,

+ scoreConverter = function(x) -log10(1 - pchisq(x, 1)))

> rsb3 = scoresByGenes(IMP17, as.GRanges = TRUE, snpGR = extsnpgr17,

+ intvind = 2, scoreConverter = function(x) -log10(1 - pchisq(x,

+ 1)))

Based on browser images below, we see that in this case, the use of this specific
form of imputation does not appear to qualitatively alter the eQTL landscape. Because
the score set employing imputation is very dense, we trim away scores below 3 before
displaying.

22

Some effects of improved resolution with the imputed panel can be seen by focusing
on a peak:

How do we calibrate our interpretation of these displays to get a sense of the risk
of false discovery? A single permutation of expression against genotype can give some
indication. Again the code given below cannot be computed conveniently on a laptop
(best to have at least 12 cores and to set bestApply to mclapply) so we defer execution
here and examine stored results below.

> perfold = tempfolder()

> if (!exists("rf1_perm")) {

+ if (file.exists("rf1_perm.rda"))

+ load("rf1_perm.rda")

+ else {

+ rf1_perm = ieqtlTests(permEx(c17), ~male, targdir = perfold,

+ geneApply = bestApply, shortfac = 10, rules = rules.n43)

23

+ intsave(rf1_perm, file = "rf1_perm.rda")

+ }

+ }

> rdf1_perm = new("multiCisDirector", mgrs = list(imp17 = rf1_perm))

> if (file.exists("IMP17_PERM.rda")) load("IMP17_PERM.rda")

> if (!exists("IMP17_PERM")) {

+ IMP17_PERM = cisProxScores(dradset = c(50000, 2e+06), direc = rdf1_perm,

+ snpGRL = list(imp17 = extsnpgr17), geneGRL = list(imp17 = g17rngsnr),

+ ffind = 1)

+ intsave(IMP17_PERM, file = "IMP17_PERM.rda")

+ }

> rsb2_perm = scoresByGenes(IMP17_PERM, as.GRanges = TRUE, snpGR = extsnpgr17,

+ scoreConverter = function(x) -log10(1 - pchisq(x, 1)))

> rsb2_list = scoresByGenes(IMP17, as.GRanges = FALSE)

> rsb2_perm_list = scoresByGenes(IMP17_PERM, as.GRanges = FALSE)

We will consider the policy of describing a gene as possessing a cis-eQTL up to 50Kb
from its transcribed region if its maximum association test over all SNP in the cis
interval exceeds the 99th percentile of the distribution of maximum association tests
using permuted expression data.

> data(rsb2_perm_list)

> p99i = quantile(sapply(rsb2_perm_list, max), 0.99)

> data(rsb2_list)

> sum(sapply(rsb2_list, max) > p99i)

[1] 31

Prior to our imputation, we collected similar score structures; the results are

> data(permsb1)

> p99u = quantile(sapply(permsb1, max), 0.99)

> data(sb1)

> sum(sapply(sb1, max) > p99u)

[1] 70

The total number of tests examined with imputation is

> length(unlist(rsb2_list))

[1] 417956

while that prior to imputation is

24

> length(unlist(sb1))

[1] 40559

Imputation in this example has led to a smaller list of genes asserted to harbor eQTL
at an FDR of 0.01. It is generally accepted that imputing to unobserved loci based on
haplotype modeling is advantageous in terms of number of eQTL discovered, but this
example may be peculiar because of the nonspecific gene filtering employed. We will
consider other approaches to imputation at the meeting.

25

3 Identifying and reducing expression heterogeneity

for enhanced eQTL discovery

3.1 Unsupervised approach: PCA for covariates

Stegle et al. (2010) have described a variety of approaches that attempt to isolate and
remove non-genetic sources of expression variation prior to testing for eQTL. One very
simple approach involves using principal components of expression variation as covariates
in models for effects of allelic dose. The assumption of this approach is that the bulk of
variation exhibited in a set of microarrays is non-genetic in origin. Searching for genetic
signals residual to non-genetic variation should be more productive.

To illustrate this idea, we take a gene, CD79B, found by Stranger et al (2007) to
have an eQTL on chromosome 17. First, we do a simple search for eQTL.

> library(GGtools)

> c17 = getSS("GGdata", "17")

> get("CD79B", revmap(illuminaHumanv1SYMBOL))

[1] "GI_11038673-I" "GI_11038675-A"

We see that this gene is represented by two probes; Stranger et al provided the probe
identifier:

> lkcd1 = gwSnpTests(probeId("GI_11038675-A") ~ male, c17, chrnum("17"))

> topSnps(lkcd1)

p.val

rs2584597 3.714e-06

rs1376110 4.484e-06

rs2665850 5.086e-06

rs11654841 5.463e-06

rs3817182 5.495e-06

rs2257281 5.796e-06

rs12946669 6.378e-06

rs2854184 6.987e-06

rs7209608 8.117e-06

rs2236737 8.205e-06

We see reasonable evidence of signal. Now we will use all available expression data to
compute principal components.

> pct = prcomp(t(exprs(c17)))

We can plot the relative magnitudes of variation partitioned into the PCs:

26

> plot(pct)

pct

V
ar

ia
nc

es

0
50

10
0

15
0

20
0

25
0

30
0

We use this figure to decide that the first 4 principal components are capturing a
reasonable fraction of variation. We add this information to the smlSet:

> DF = data.frame(pct$x[, 1:4])

> pData(c17) = cbind(pData(c17), DF)

and now we fit an enhanced model:

> lkcd2 = gwSnpTests(probeId("GI_11038675-A") ~ PC1 + PC2 + PC3 +

+ PC4 + male, c17, chrnum("17"))

> topSnps(lkcd2)

p.val

rs12946669 9.023e-11

rs7209608 1.389e-10

rs2665850 2.986e-10

rs2286565 3.701e-10

rs11079515 5.341e-10

rs2727350 5.708e-10

rs4968674 7.127e-10

rs2854184 8.304e-10

rs2584597 1.229e-09

rs2257281 1.467e-09

27

We see a fairly striking reduction in the p-values of the strongest hits.
Exercise: Show how to recompute the counts of eQTL in a systematic survey, using

this unsupervised adjustment for expression heterogeneity.

3.2 Supervised approach: surrogate variable analysis

Leek and Storey (2007) describe an approach to reduction of heterogeneity in expres-
sion that is supervised in the sense that the extraneous variance is estimated residual
to a specified structural source of variation. An iterative algorithm for establishing sig-
nificance criteria for “surrogate variables” that carry extraneous expression variation is
developed. We will use it in conjunction with verification of assessment of eQTL for
CD79B.

A basic model is lkcd1 computed above. The top SNP for that model was rs2584597.
We will seek variation residual to that carried by this SNP. First exclude samples with
missing genotypes.

> table(nsn <- as(smList(c17)[[1]][, "rs2584597"], "numeric"))

0 1 2

11 42 32

> drop = which(is.na(nsn))

Now perform SVA.

> mod = model.matrix(~as(smList(c17)[[1]][, "rs2584597"], "numeric"))

> mod0 = model.matrix(~1, data = pData(c17[, -drop]))

> library(sva)

> if (!exists("SVA1") & file.exists("SVA1.rda")) load("SVA1.rda") else {

+ SVA1 = sva(exprs(c17[, -drop]), mod, mod0)

+ intsave(SVA1, file = "SVA1.rda")

+ }

This code can take a long time, and is not evaluated in this vignette. Instead:

> if (!exists("SVA1")) data(SVA1)

We can see the number of surrogate variables identified:

> SVA1$n.sv

[1] 14

Now we append them to the pData of c17 and retest.

28

> SVDF = data.frame(SVA1$sv)

> c17d = c17[, -drop]

> pData(c17d) = cbind(pData(c17d), SVDF)

> lkcd3 = gwSnpTests(probeId("GI_11038675-A") ~ X1 + X2 + X3 +

+ X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11 + X12 + X13 + X14,

+ c17d, chrnum("17"))

> topSnps(lkcd3)

p.val

rs7209608 5.806e-11

rs12946669 1.101e-10

rs2286565 2.458e-10

rs2854184 3.619e-10

rs4968674 3.997e-10

rs11079515 5.350e-10

rs2727350 8.213e-10

rs2584597 1.175e-09

rs2665850 1.175e-09

rs1043127 3.152e-09

Exercise: if we make the bold assumption that the surrogate variables identified for
rs2584597 are valid for all SNP on chromosome 17, what happens to our basic assessment
of the number of genes for which eQTL exist given in section 2, once we include this
adjustment for extraneous variation?

29

4 Investigating trans associations

The combinatorics of assessing trans associations are daunting. We use a ‘scratch pad’
approach. For every locus 1, . . . , Lc on chromosome c, all the genes on a given chro-
mosome d are tested for association, and the scores and gene identifiers for the top K
tests are retained in the scratch pad. All the genes on the next chromosome are tested
against all loci, and the scratch pad is updated to retain the top K scores and identifiers
seen so far. The updating process is done with small blocks, so the quantity of memory
consumed is always fairly small. In the end two out-of-memory matrices of size Lc ×K
are created, holding the best scores achieved after surveying all chromosomes, and the
gene (index) associated with each score.

In the following example, we continue to focus on loci on chromosome 17 as potential
regulators of genes on chromosomes 1 or 9. These were selected to allow an assessment
of findings of Cheung et al. (2010), where three loci on chr17 were associated with
expression levels of genes on chr1 or chr9.

This set of tests can be done quickly with a multicore system. To avoid contending
with stray expression values observed on a very rare genotype, we limit the loci investi-
gated to those with MAF at least 10%. This is accomplished by setting wrapperEndo.

> library(GGtools)

> library(GGdata)

> t17f = transScores("GGdata", "17", rhs=~male,

+ chrnames=c("chr1", "chr9"), wrapperEndo=

+ function(x) MAFfilter(x, low=.1),

+ targdirpref="twfilt", geneApply=bestApply)

> intsave(t17f, file="t17f.rda")

The result is made available in the ggtut package.

> tr17 = tr17_1_9()

> tr17

transManager instance, created Tue Oct 11 10:24:22 2011

dimension of scores component:

number of loci checked: 44638; genes retained: 20

the call was:

transScores(smpack = "GGdata", snpchr = "17", rhs = ~male, targdirpref = "twfilt",

geneApply = mclapply, chrnames = c("chr1", "chr9"), wrapperEndo = function(x) MAFfilter(x,

low = 0.1))

We have an analgous set of scores computed with a permutation of expression against
genotype:

> tr17_perm = tr17_1_9_perm()

30

The distribution of highest scores per locus, with the permuted data, can be obtained
via

> psco = topScores(tr17_perm)

> summary(psco)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.5 10.5 11.8 12.2 13.5 27.6

> tp99 = quantile(psco, 0.99)

This gives an informal threshold against which to compare extreme trans scores over
loci.

We would like to investigate SNP which appear to be significantly associated with
more than one gene in trans. To find these, we will use the 19.1 threshold seen above.

> locw2 = which(nthScores(tr17, 2) > tp99)

> g1inds = geneIndcol(tr17, 1)[locw2]

> g2inds = geneIndcol(tr17, 2)[locw2]

> g1names = geneNames(tr17)[g1inds]

> g2names = geneNames(tr17)[g2inds]

> locnames = locusNames(tr17)[locw2]

Here we display the expression by genotype distributions for two pairs of genes that are
associated with a single locus on chromosome 17.

> library(illuminaHumanv1.db)

> nicevg = function(pr, rs, sms) {

+ sym = get(pr, illuminaHumanv1SYMBOL)

+ chr = get(pr, illuminaHumanv1CHR)

+ plot_EvG(probeId(pr), rsid(rs), sms, main = paste(sym, " chr",

+ chr))

+ }

> par(mfrow = c(2, 2))

> nicevg(g1names[1], locnames[1], c17)

> nicevg(g2names[1], locnames[1], c17)

> nicevg(g1names[3], locnames[3], c17)

> nicevg(g2names[3], locnames[3], c17)

31

●

A/A A/B B/B NA

7
8

9
10

CDKN2C chr 1

rs7209004

G
I_

17
98

16
98

−
A

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

A/A A/B B/B NA

9.
5

10
.5

12
.0

IFI44L chr 1

rs7209004

G
I_

58
03

02
6−

S

●

●

●

●

●
●

●

●

●●●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

A/A A/B B/B NA

11
.0

12
.0

DNAJA1 chr 9

rs9944393

G
I_

45
04

51
0−

S

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

A/A A/B B/B NA

6.
4

6.
8

7.
2

NOL6 chr 9

rs9944393

G
I_

39
77

75
89

−
A

●

●

●

●
●

●

●

●●

●

●●

●

● ●
●

●

●●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

● ●
●
●

●

●
●●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

To return to the findings of Cheung et al, we note that they found that variation in
expression of FDPS was associated with SNP rs7212322 (Supplementary table 2). To
check whether this gene was noted among top trans associations tested here, we proceed
as follows.

> pid = get("FDPS", revmap(illuminaHumanv1SYMBOL))

> ind = which(geneNames(tr17) == pid)

> isatop = any(geneIndcol(tr17, 1) == ind)

> isasec = any(geneIndcol(tr17, 2) == ind)

> isatop

[1] FALSE

> isasec

[1] TRUE

We see that there is some locus (on chromosome 17, with MAF > 10%) for which FDPS
gives a second-strongest association.

32

Exercises. Find a locus giving a χ2
1 statistic exceeding 11.8 for association with FDPS;

for this locus FDPS is the fourth-largest association score. Display the expression-vs-
genotype plot. How would you perform a more comprehensive check for FDPS without
restricting to MAF > 10%?

33

5 Leveraging RNA-seq: details of transcriptomic di-

versity

Cheung et al. (2010) describe the use of RNA-seq in conjunction with dense genotyping
to assess the frequency with which transcript variation is governed by cis-regulatory
variants. We have excerpted the aligned data published by Cheung et al. to illustrate
some of the data-analytic considerations.

5.1 Some key observations and their approximate reproduction

Figure 2b of Cheung et al includes this display of array-based measures of expression of
two genes.

Using Cheung et al. expression quantitations, we can qualitatively recover this dis-
play.

> c1 = getSS("cheung2010", "chr1")

> annotation(c1) = "hgfocus.db"

> annotation(CHE1) = "hgfocus.db"

> par(mfrow = c(2, 2))

> plot_EvG(genesym("CHI3L2"), rsid("rs3934922"), CHE1)

> plot_EvG(genesym("CRYZ"), rsid("rs1475396"), CHE1)

34

The authors dig into RNA-seq data on a subset of samples to display the following:

To permit recovery aspects of this display from publicly available data, we have
created a collection of BAM files derived from the MAQ alignments published in GEO
GSE16921. Briefly, samtools maq2sam-short was used to translate MAQ alignments to
SAM format, which were then re-indexed to hg18 and filtered to include all reads for a
contiguous segment of chromosome 1 including genes DENND2D, CHI3L2, and CHIA.
Rsamtools can be used to interrogate these reads.

> library(Rsamtools)

First we prepare to compute ’pileups’ for the 41 BAM files.

> bff=PileupFiles(dir(system.file("bam", package="ggtut"),

+ patt="bam$", full=TRUE))

> # fix up names

> bp = sapply(plpFiles(bff), path)

> no1 = gsub(".*bam.lit..", "", bp)

> no2 = gsub("_1.bam", "", no1)

> no3 = gsub(".bam", "", no2)

> nanames = paste("NA", no3, sep="")

> names(bff) = nanames

> bff

class: PileupFiles

names: NA06985, ..., NA12891 (41 total)

plpFiles: litgm06985.bam, ..., litgm12891_1.bam (41 total)

plpParam: class PileupParam

> # now have sample names

Corresponding to hg18, SNP rs8535 is at position 111587452. We will acquire the pileups
of base calls at this location using the Rsamtools applyPileups method.

35

> which = GRanges(seqnames="chr1", IRanges(111587452,width=1))

> param = PileupParam(which=which)

> pinfo = function(x) {

+ x[["seq"]][,,1] # reduce to matrix

+ }

> ans = applyPileups(bff, pinfo, param=param)[[1]]

> colnames(ans) = nanames

> ans

NA06985 NA06993 NA06994 NA07000 NA07022 NA07034 NA07055 NA07056 NA07345

A 66 0 86 51 0 1 0 119 0

C 0 193 30 1 39 251 53 5 267

G 0 0 1 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0

NA11004 NA11829 NA11830 NA11831 NA11832 NA11839 NA11881 NA11882 NA11992

A 144 0 0 22 33 119 0 0 217

C 27 7 52 8 1 47 3 26 26

G 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0

NA11993 NA12003 NA12004 NA12005 NA12006 NA12043 NA12044 NA12056 NA12057

A 203 0 111 0 47 0 0 2 1

C 43 2 0 266 0 51 118 263 271

G 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0

NA12144 NA12145 NA12155 NA12264 NA12716 NA12717 NA12750 NA12762 NA12813

A 215 119 46 0 0 105 39 193 81

C 15 0 6 238 166 0 0 0 0

G 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0

NA12814 NA12815 NA12872 NA12874 NA12891

A 251 107 0 0 0

C 1 21 53 25 179

G 0 0 0 0 0

T 0 0 0 0 0

N 0 0 0 0 0

Thus we have the calls at rs8535. We do not have ready access to genotype data on our
samples at this locus, but we can use the data on the linked locus rs3934922. We use
the following code to couple the two data sources:

36

> c1 = getSS("cheung2010", "chr1")

> c1s = smList(c1)[[1]]

> rownames(c1s) = gsub("GM", "NA", c1$GMno)

> c1ss = c1s[intersect(rownames(c1s), nanames),]

> c1sss = c1ss[, "rs3934922"]

> THESN = as(c1sss[, 1], "character")

> rownames(THESN) = rownames(c1sss)

> tt = as(THESN, "character")

> names(tt) = rownames(c1ss)

> ttt = tt[intersect(names(tt), colnames(ans))]

> anss = ans[, names(ttt)]

Now we obtain the names and associated genotype and count data for heterozygotes
only, and make the plot.

> anssh = anss[, ttt == "A/B"]

> plot(rep(1, ncol(anssh)), anssh[1,], xlim = c(0.75, 2.25), axes = FALSE,

+ xlab = "allele rs3934922", ylab = "CHI3L2 reads")

> axis(1, at = c(1, 2), labels = c("A", "C"))

> axis(2)

> segments(1, anssh[1,], 2, anssh[2,])

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

allele rs3934922

C
H

I3
L2

 r
ea

ds

A C

0
50

10
0

15
0

20
0

37

5.2 Surveying a read set for transcript variants

In this section we will examine reads overlapping exons for within-subject variation.
Again the workhorse is applyPileups.

We begin by acquiring exon ranges.

> library(GenomicFeatures)

> txdb = TxDb.Hsapiens.UCSC.hg18.knownGene

> allex = exons(txdb)

The segment that we have archived is

> myr = GRanges(seqnames = "chr1", IRanges(111500000, 111700000))

and the exons within this interval are

> exinseg = allex[allex %in% myr]

which we assign as a pileup application parameter:

> Pexinseg = PileupParam(which = exinseg)

We now define a function that will tell us which exon intervals harbor locations at
which some individuals exhibit multiple distinct bases. We require that there be at least
five reads for each variant.

> hasTxDivers = function(x) {

+ nuccts = x[["seq"]]

+ apply(nuccts, 3, function(w) any(apply(w, 2, function(z) sum(z >

+ 5) > 1)))

+ }

> ans = applyPileups(bff, hasTxDivers, param = Pexinseg)

The exonic regions with variants are:

> ediv = exinseg[which(sapply(ans, any))]

> ediv

GRanges with 6 ranges and 1 elementMetadata value:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr1 [111528336, 111529247] + | 13107

[2] chr1 [111579784, 111579908] + | 13129

[3] chr1 [111582895, 111583077] + | 13131

[4] chr1 [111585472, 111585588] + | 13132

[5] chr1 [111587362, 111587585] + | 13134

[6] chr1 [111532276, 111532515] - | 13112

38

seqlengths:

chr1 chr1_random chr10 ... chrX_random chrY

247249719 1663265 135374737 ... 1719168 57772954

We then refine the pileup analysis to focus on these exons within which some in-
dividuals exhibit allelic heterogeneity, and identify the locations at which variants are
found.

> whichLocTxDivers = function(x) {

+ nuccts = x[["seq"]]

+ which(apply(apply(nuccts, 3, function(w) apply(w, 2, function(z) sum(z >

+ 5) > 1)), 2, any))

+ }

> Nparam = PileupParam(which = exinseg[which(sapply(ans, any))])

> ans2 = applyPileups(bff, whichLocTxDivers, param = Nparam)

The actual locations are:

> divlocs = lapply(1:length(ediv), function(x) (start(ediv[x]):end(ediv[x]))[ans2[[x]]])

> divlocs

[[1]]

[1] 111528392 111528710

[[2]]

[1] 111579846 111579848

[[3]]

[1] 111582997 111583000 111583002 111583004 111583009 111583020

[[4]]

[1] 111585505 111585554

[[5]]

[1] 111587452 111587453 111587535 111587578

[[6]]

[1] 111532424

> alldiv = unlist(divlocs)

> length(alldiv)

[1] 17

39

How many of these locations correspond to known SNP for hg18?

> library(SNPlocs.Hsapiens.dbSNP.20090506)

> c1locs = getSNPlocs("chr1")

> sum(alldiv %in% c1locs$loc)

[1] 8

> date()

[1] "Thu Dec 1 06:59:05 2011"

Cheung and colleagues remark that the literature suggests fractions of genes exhibit-
ing differential allelic expression as ranging from 18% to 26%. These examples show that
relatively compact code exploiting the R-samtools interface can be used to investigate
this phenomenon.

6 Summary

• When dense genotypes and transcript profiles are acquired on the same subjects,
integrative analysis of genetics of gene expression can provide insight into mecha-
nisms of expression regulation.

• Computational versatility is required to filter and manage billions of statisti-
cal tests arising with comprehensive searches for variant-expression association.
R/Bioconductor provide suitable facilities for divide and conquer approaches in-
volving simple concurrent execution of embarrassingly parallel algorithms.

• Ranges and tracks can be used to record association statistics in genomic coordi-
nates for assessment of genomic context of expression-associated DNA variants.

• Imputation using haplotype models and other aspects of dependencies among DNA
features can improve resolution of regulatory signals.

• Techniques for modeling and reducing effects of expression heterogeneity can have
important impacts on power of eQTL discovery processes.

• Simple comprehensive surveys of trans associations can be undertaken in light of
the sparsity of real associations.

• Mechanics of working with RNA-seq data to unearth allelic imbalance and other
variations in transcript structure are reasonably manageable with streaming/filtering
approaches to computation in data analysis.

40

Appendix: Preparing the 1000 genome imputation

rules

The basic idea is that some collection of individuals is available with a very rich genotype
panel, and another collection of individuals is genotyped on only a subset of the rich
set of loci. The data on the rich panel are used to build predictive models for loci not
present in the subset.

We begin by processing the calls (ignoring quality and uncertainty) provided by the
1000 genomes project for 629 individuals. The following code creates 8 blocks spanning
10 million bases each, to cover the 79Mb chromosome 17. each

> library(GGtools)

> library(Rsamtools)

> exts = seq(1, 80e6+10, by=10e6)

> st = exts[-length(exts)]

> en = exts[-1]-1

> # following file is 66 GB from 1000genomes.org

> tf = TabixFile("ALL.2of4intersection.20100804.genotypes.vcf.gz")

> gg = GRanges(seqnames="17", IRanges(st,en))

> for (i in 1:length(gg)) {

+ vv = vcf2sm(tf, gr=gg[i], nmetacol=9L)

+ intsave(vv, file=paste("vv", i, ".rda", sep=""))

+ }

Each block is stored as a SnpMatrix instance, with a byte encoding each genotype call,
and the blocks are combined using cbind.

The following code then constructs the rules provided in the ggtut package.

> getRules = function(tkgsm, basesm, locvec, try = 200, em.cntrl = c(1000,

+ 0.005, 1000, 0.005), use.hap = c(0.99, 0.01)) {

+ sntkg = colnames(tkgsm)

+ snbase = colnames(basesm)

+ baseok = intersect(names(locvec), snbase)

+ tkok = intersect(names(locvec), sntkg)

+ tkgsm = tkgsm[, tkok]

+ basesm = basesm[, baseok]

+ sntkg = colnames(tkgsm)

+ snbase = colnames(basesm)

+ toimp = setdiff(sntkg, snbase)

+ usepred = setdiff(snbase, toimp)

+ yloc = locvec[toimp]

+ xloc = locvec[usepred]

+ rules = snp.imputation(basesm[, usepred], tkg[, toimp], xloc,

41

+ yloc, try = 200, em.cntrl = c(1000, 0.005, 1000, 0.005),

+ use.hap = c(0.99, 0.01))

+ }

> c17 = getSS("GGdata", "17", wrapperEndo = dropMonomorphies)

> base = smList(c17)[[1]]

> tkg = get(load("ceu1kg_17.rda"))

> base = base[rownames(tkg),]

> library(SNPlocs.Hsapiens.dbSNP.20090506)

> loc17 = getSNPlocs("chr17")

> snin = colnames(base)

> nams = paste("rs", loc17[, 1], sep = "")

> loc17 = loc17$loc

> names(loc17) = nams

> sninC = colnames(tkg)[grep("chr", colnames(tkg))]

> kgloc = as.numeric(gsub("chr17:", "", sninC))

> names(kgloc) = sninC

> allloc = c(loc17, kgloc)

> rules.n43 = getRules(tkg, base, allloc)

42

7 Session information

> sessionInfo()

R Under development (unstable) (2011-11-08 r57601)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.iso88591 LC_NUMERIC=C

[3] LC_TIME=en_US.iso88591 LC_COLLATE=en_US.iso88591

[5] LC_MONETARY=en_US.iso88591 LC_MESSAGES=en_US.iso88591

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.iso88591 LC_IDENTIFICATION=C

attached base packages:

[1] grid splines stats graphics grDevices datasets tools

[8] utils methods base

other attached packages:

[1] TxDb.Hsapiens.UCSC.hg18.knownGene_2.6.2

[2] multicore_0.1-7

[3] ggtut_0.0.36

[4] hmyriB36_0.99.12

[5] SNPlocs.Hsapiens.dbSNP.20090506_0.99.6

[6] cheung2010_0.0.21

[7] hgfocus.db_2.6.3

[8] Rsamtools_1.7.4

[9] ChIPpeakAnno_2.3.1

[10] limma_3.11.1

[11] GO.db_2.6.1

[12] BSgenome.Ecoli.NCBI.20080805_1.3.17

[13] BSgenome_1.23.2

[14] Biostrings_2.23.4

[15] multtest_2.11.0

[16] biomaRt_2.11.0

[17] gplots_2.10.1

[18] KernSmooth_2.23-7

[19] caTools_1.12

[20] bitops_1.0-4.1

[21] gdata_2.8.2

[22] gtools_2.6.2

[23] GenomicFeatures_1.7.5

43

[24] GGdata_1.0.17

[25] illuminaHumanv1.db_1.12.1

[26] GGtools_4.1.9

[27] ff_2.2-3

[28] bit_1.1-7

[29] org.Hs.eg.db_2.6.4

[30] rtracklayer_1.15.4

[31] GenomicRanges_1.7.8

[32] IRanges_1.13.10

[33] annotate_1.33.0

[34] AnnotationDbi_1.17.2

[35] GGBase_3.15.2

[36] genefilter_1.37.0

[37] RSQLite_0.10.0

[38] DBI_0.2-5

[39] snpStats_1.5.0

[40] Matrix_1.0-1

[41] lattice_0.20-0

[42] survival_2.36-10

[43] Biobase_2.15.1

[44] BiocGenerics_0.1.3

[45] weaver_1.21.0

[46] codetools_0.2-8

[47] digest_0.5.1

[48] BiocInstaller_1.3.3

loaded via a namespace (and not attached):

[1] MASS_7.3-16 RCurl_1.7-0 XML_3.4-3 xtable_1.6-0 zlibbioc_1.1.0

44

References

Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering in-
creases detection power for high-throughput experiments. Proc Natl Acad Sci USA,
107(21):9546–51, May 2010. doi: 10.1073/pnas.0914005107.

Vivian G Cheung, Renuka R Nayak, Isabel Xiaorong Wang, Susannah Elwyn, Sarah M
Cousins, Michael Morley, and Richard S Spielman. Polymorphic cis- and trans-
regulation of human gene expression. PLoS Biol, 8(9):e1000480, Sep 2010. doi:
10.1371/journal.pbio.1000480.t005.

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression stud-
ies by surrogate variable analysis. PLoS Genet, 3(9):1724–35, Sep 2007. doi: 10.
1371/journal.pgen.0030161. URL http://www.plosgenetics.org/article/info%

253Adoi%252F10.1371%252Fjournal.pgen.0030161.

Oliver Stegle, Leopold Parts, Richard Durbin, and John Winn. A bayesian frame-
work to account for complex non-genetic factors in gene expression levels greatly
increases power in eqtl studies. PLoS Comput Biol, 6(5):e1000770, May 2010.
doi: 10.1371/journal.pcbi.1000770. URL http://www.ploscompbiol.org/article/

info%253Adoi%252F10.1371%252Fjournal.pcbi.1000770.

B. E Stranger, M. S Forrest, M Dunning, C. E Ingle, C Beazley, N Thorne, R Redon,
C. P Bird, A De Grassi, C Lee, C Tyler-Smith, N Carter, S. W Scherer, S Tavare,
P Deloukas, M. E Hurles, and E. T Dermitzakis. Relative impact of nucleotide and
copy number variation on gene expression phenotypes. Science, 315(5813):848–853,
Feb 2007. doi: 10.1126/science.1136678.

R. B.H Williams, E. K.F Chan, M. J Cowley, and P. F.R Little. The influence of genetic
variation on gene expression. Genome Research, 17(12):1707–1716, Dec 2007. doi:
10.1101/gr.6981507.

45

http://www.plosgenetics.org/article/info%253Adoi%252F10.1371%252Fjournal.pgen.0030161
http://www.plosgenetics.org/article/info%253Adoi%252F10.1371%252Fjournal.pgen.0030161
http://www.ploscompbiol.org/article/info%253Adoi%252F10.1371%252Fjournal.pcbi.1000770
http://www.ploscompbiol.org/article/info%253Adoi%252F10.1371%252Fjournal.pcbi.1000770

	Basic concepts with array-based data: cis-associated variants
	Functional relations between DNA variants and mRNA abundance
	Direct computation to search for eQTL
	Exercises 1

	Transcriptome-wide searches for eQTL
	Managing millions of test results; resolving focused queries
	Surveying transcriptome-wide test collections
	Assessing false discovery rates using statistics computed after permutation
	Locations and contexts: the eQTL landscape of a chromosome
	High-level tools for locus annotation: ChIPpeakAnno

	Imputation using 1000 genomes genotypes
	Identifying and reducing expression heterogeneity for enhanced eQTL discovery
	Unsupervised approach: PCA for covariates
	Supervised approach: surrogate variable analysis

	Investigating trans associations
	Leveraging RNA-seq: details of transcriptomic diversity
	Some key observations and their approximate reproduction
	Surveying a read set for transcript variants

	Summary
	Session information

