
Robust Probabilistic Averaging for probe
performance analysis and preprocessing on short

oligonucleotide arrays

Leo Lahti∗

University of Helsinki
leo.lahti@iki.fi

March 30, 2012

1 Introduction

RPA (Robust Probabilistic Averaging)1 provides tools for probe reliability analysis and
gene expression preprocessing for (Affymetrix) short oligonucleotide arrays, and more
generally to summarize normally distributed multivariate observations that target the
same object with varying degrees of reliability. RPA provides explicit data-driven es-
timates of probe performance, i.e. affinity and probe-specific noise level. Affinities are
taken into account in summarizing the probes and noisy probes are downweighted, which
yields more accurate estimates of gene expression [9]. The probabilistic formulation al-
lows also incorporation of prior information concerning probe reliability into analysis.

2 RPA preprocessing

RPA provides a wrapper (’rpa’) for convenient preprocessing of Affymetrix arrays and
support for alternative CDF environments. RPA operates on affybatch objects [5]. Load
the example data:

> require(affy)

> require(affydata)

> data(Dilution)

∗http://www.iki.fi/Leo.Lahti
1http://bioconductor.org/packages/release/bioc/html/RPA.html

1

http://bioconductor.org/packages/release/bioc/html/RPA.html

The toy example uses the Dilution dataset provided by affydata package. To pre-
process the affybatch, use:

> eset <- rpa(Dilution)

Input is an AffyBatch object, obtained from CEL files with the ReadAffy function
of the affy package. The output is an ExpressionSet object, which allows downstream
analysis of the results using standard R/BioC tools for gene expression data.

3 Probe performance analysis

Use RPA.pointestimate to investigate particular probesets:

> require(RPA)

> sets <- geneNames(Dilution)[1:2]

> rpa.results <- RPA.pointestimate(Dilution, sets)

The rpa.results object contains probe-specific affinity and variance estimates (affinity,
sigma2), the probeset-level summary estimate (d) and other information. The results
can be visualized with

> plot(rpa.results, set = "1000_at", plots = "all")

> #plot(rpa.results, set = set, plots = "data")

> #plot(rpa.results, set = set, plots = "toydata.comparison")

The output is shown in Figure 1. See help(’rpa.plot’) for details.

3.1 Estimating probe reliability

The noise level of individual probes can be quantified based on the probe-specific variance
parameter (τ 2j):

> noise <- get.probe.noise.estimates(rpa.results)

The precision 1
τ2j

, can be used to quantitate probe reliability. Comparison of probe-

specific variances across probesets may benefit from probeset-specific normalization; see
help(get.probe.noise.estimates) for details.

2

4

6

8

10

Probe signals and the summary estimate (1000_at)

Samples

S
ig

na
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stochastic probe effect (noise)

Probe index

N
oi

se
 (

ta
u)

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fixed probe effect (affinity)

Probe index

A
ffi

ni
ty

 (
m

u)

−3
−2
−1

0
1
2
3

Figure 1: Estimated probe affinities, probe-specific noise level (standard deviation) and
probeset-level summary estimate and probe-level signals for an example probe set.

3

3.2 Setting probe-specific priors

Prior information of probe reliability can be set by tuning the shape (α) and scale
(β) parameters of the inverse Gamma conjugate prior for the variances. If the ’priors’
parameter is not given, non-informative priors will be given for the other probesets:

> priors <- list(alpha = NULL, beta = NULL, d = NULL)

> set <- "1000_at"

> priors$alpha <- 2

> priors$beta[[set]] <- rep(1, 16)

> probe.index <- 5

> priors$beta[[set]][[probe.index]] <- 3

> rpa.results <- RPA.pointestimate(Dilution, sets, priors = priors)

3.3 General usage

Robust Probabilistic Averaging can be used to summarize any multivariate observations
concerning the same object and having varying (Gaussian) affinities and noise levels:

> res <- rpa.fit(S)

4 The probabilistic model

4.1 Relation to other probe-level models

RPA differs from other popular preprocessing algorithms such as dChip’s MBEI [10],
RMA [7], or FARMS [6] in two key respects. It calculates probe-level estimates of dif-
ferential expression; before probeset-level summarization, which will avoid the modeling
of unidentifiable probe affinities in determining the signal shape. Second, RPA pro-
vides tools for investigating the performance of individual probes. This can be used in
microarray design and to confirm the end results of a microarray study.

4.2 Summary of RPA model

4.2.1 Background correction and normalization

The probe-level data is background corrected, normalized, and log2-transformed before
the analysis. By default, RPA uses the background correction model of RMA [8] and
quantile normalization [2]. Our implementation utilizes the affy package [5] to handle
probe-level data. For details about short oligonucleotide arrays and the design of the
Affymetrix GeneChip arrays, see the Affymetrix MAS manual [1].

4

4.2.2 Probe reliability estimation and summarization

The RPA algorithm is used to obtain probeset-level summaries for gene expression and
to estimate probe-specific noise. RPA assumes a Gaussian model for probe effects. Let
us consider a probe set targeted at measuring the expression level of target transcript
g. Probe-level observation sij of probe j on array i is modeled as a sum of the true
expression signal (common for all probes in the probeset), and probe-specific Gaussian
noise: sij = gi + µj + εij. The stochastic noise component is probe-specific, distributed
as εij ∼ N(0, τ 2j). The variance parameters {τ 2j } are of interest in probe reliability
analysis; the inverse variance 1/τ 2j can be used to measure of probe reliability (see
get.probe.noise.estimates function).

The mean parameter µj of the noise model describes systematic probe affinity effect,
which is unidentifiable. These parameters cancel out in RPA when the signal log-ratio
between a user-specified ’reference’ array and the remaining arrays is calculated at probe
level: the differential expression signal between arrays t = {1, . . . , T} and the reference
array c for probe j is given by mtj = stj − scj = gt − gc + εtj − εcj = dt + εtj − εcj.
In vector notation the differential expression profile of probe j across the arrays can be
written as mj = d + εj. In practice, d and the probe-specific variances {τj}Pj=1 for the
P probes within the probeset are estimated simultaneously based on the probabilistic
model.

With large sample sizes the solution will converge to estimating the mean of the
probe-level observations weighted by probe reliability. The algorithm is robust to choice
of the reference array since the reference effect is marginalized out in the probabilistic
treatment; our experiments confirm that the probe-level noise estimates are not affected
by the choice of the reference array.

4.2.3 Probe affinity estimation

Probe affinity terms and the original signal level are estimated after summarizing the
probe-level differential gene expression estimates. First an estimate of the absolute
signal level is calculated based on particular modeling assumptions. Then probe-specific
affinities are calculated by comparing each probe to the probeset-level signal estimate.

Let us write the probe-level observation in terms of differential expression signal,
absolute signal level, and stochastic noise as sj = d + µ+ ε, where µ is a scalar (vector
with identical elements). This will indicate how much probe-level observation deviates
from the estimated signal shape d. This can be decomposed as µ = µreal +µprobe, where
µreal describes the ’real’ signal level, common for all probes and µprobe describes probe
affinity effect. Let us assume that µprobe N(0, σ2

probe). This encodes the assumption that
in general the affinity effect of each probe tends to be close to zero. Then ML estimates
of µreal and µprobe are calculated based on these particular assumptions. This part of
the algorithm has not been defined in full probabilistic terms, we are only providing the
point estimates.

If an identical prior is used for all probes in affinity estimation then µreal is estimated

5

as the average of the probe effects µ and the probe-specific affinities µprobe would sum to
exactly zero, analogous to RMA. We suggest an alternative approach where probes are
weighted during affinity estimation according to their noisiness σ2. Then noisy probes
that have little effect on the signal shape will contribute less to the absolute signal
estimate while the expected sum of probe affinities remains at zero.

5 Validation

The model can reveal noisy probes independently of the error source noise; noise esti-
mates have been validated by comparisons to known probe-level error sources [9]. RPA
has been shown to outperform other popular preprocessing methods in cross-platform
studies [4, 9] and spike-in data sets. RPA has also been compared to other preprocessing
methods through the AffyCompII benchmarking website2 [3]. RPA outperformed some
widely-used preprocessing algorithms such as RMA, measured in terms of average rank
over the different test statistics. Overall the results indicate that RPA has a comparable
preprocessing performance with standard preprocessing algorithms, which supports the
validity of the probe-level affinity and noise estimates in RPA. Note that while RPA can
be used for preprocessing, its primary focus is on probe performance analysis.

6 Citing RPA

Please cite [9].

7 Details

This document was written using:

> sessionInfo()

R version 2.15.0 (2012-03-30)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

2http://affycomp.jhsph.edu/AFFY2/TABLES.hgu/0.html as of March 13, 2011

6

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] hgu95av2cdf_2.10.0 AnnotationDbi_1.18.0 RPA_1.12.0

[4] affydata_1.11.15 affy_1.34.0 Biobase_2.16.0

[7] BiocGenerics_0.2.0

loaded via a namespace (and not attached):

[1] BiocInstaller_1.4.0 DBI_0.2-5 IRanges_1.14.0

[4] RSQLite_0.11.1 affyio_1.24.0 preprocessCore_1.18.0

[7] stats4_2.15.0 tools_2.15.0 zlibbioc_1.2.0

References

[1] Affymetrix. Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara, CA,
version 5 edition, 2001.

[2] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of
normalization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics, 19(2):185–193, 2003.

[3] L. M. Cope, R. A. Irizarry, H. A. Jaffee, Z. Wu, and T. P. Speed. A benchmark for
Affymetrix GeneChip expression measures. Bioinformatics, 20:323–331, 2004.

[4] L. L. Elo, L. Lahti, H. Skottman, M. Kyläniemi, R. Lahesmaa, and T. Aittokallio.
Integrating probe-level expression changes across generations of Affymetrix arrays.
Nucleic Acids Research, 33(22):e193, 2005.

[5] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry. affy–analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics, 20(3):307–315, 2004.

[6] S. Hochreiter, D.-A. Clevert, and K. Obermayer. A new summarization method for
affymetrix probe level data. Bioinformatics, 22(8):943–949, 2006.

[7] R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res., 31(4):e15,
2003.

[8] R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high density oligonu-
cleotide array probe level data. Biostatistics, 4(2):249–264, 2003.

7

[9] L. Lahti, L. L. Elo, T. Aittokallio, and S. Kaski. Probabilistic analysis of probe
reliability in differential gene expression studies with short oligonucleotide arrays.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(1):217–
225, 2011.

[10] C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection. Proc. Natl. Acad. Sci., 98:31–36, 2001.

8

	Introduction
	RPA preprocessing
	Probe performance analysis
	Estimating probe reliability
	Setting probe-specific priors
	General usage

	The probabilistic model
	Relation to other probe-level models
	Summary of RPA model
	Background correction and normalization
	Probe reliability estimation and summarization
	Probe affinity estimation

	Validation
	Citing RPA
	Details

