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1 Introduction

The R453Plus1 Toolbox comprises useful functions for the analysis of data gener-
ated by Roche’s 454 sequencing platform. It adds functions for quality assurance
as well as for annotation and visualization of detected variants, complementing
the software tools shipped by Roche with their product. Further, a pipeline for
the detection of structural variants is provided.

> library(R453Plus1Toolbox)

2 Analysis of PCR amplicon projects

This section deals with the analysis of projects investigating massively parallel
data generated from specifically designed PCR products.

2.1 Importing a Roche Amplicon Variant Analyzer project

The function AVASet imports data from Roche’s Amplicon Variant Analyzer. It
expects a dirname pointing to the project data, i.e. a directory that contains
the following files and subdirectories:

• ”Amplicons/ProjectDef/ampliconsProject.txt”

• ”Amplicons/Results/Variants/currentVariantDefs.txt”

• ”Amplicons/Results/Variants”

• ”Amplicons/Results/Align”

The following example imports a project containing 6 samples, 4 amplicons and
259 variants:

> avaDir = system.file("extdata", "AVASet", package = "R453Plus1Toolbox")

> avaSet = AVASet(avaDir)

2.2 The AVASet class

The AVASet class defines a container to store data imported from projects
conducted with Roche’s Amplicon Variant Analyzer Software. It extends the
Biobase eSet to store all relevant information.

> avaSet
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AVASet (storageMode: list)

assayData: 259 features, 6 samples

element names: variantForwCount, totalForwCount, variantRevCount, totalRevCount

protocolData: none

phenoData

sampleNames: Sample_1 Sample_2 ... Sample_6 (6

total)

varLabels: SampleID MID1 ... Annotation (7 total)

varMetadata: labelDescription

featureData

featureNames: C1438 C369 ... C763 (259 total)

fvarLabels: name canonicalPattern ...

referenceBases (7 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

An object of class "AnnotatedDataFrame"

rowNames: TET2_E11.04 TET2_E06 TET2_E11.03 TET2_E04

varLabels: ampID primer1 ... targetStart (6 total)

varMetadata: labelDescription

class: AlignedRead

length: 4 reads; width: 339..346 cycles

chromosome: NA NA NA NA

position: 1 1 1 1

strand: NA NA NA NA

alignQuality: NumericQuality

alignData varLabels: name refSeqID gene

An object of class AVASet consists of three main components:

1. Variants:
The variants part stores data about the found variants and is accessible
by the functions assayData, featureData and phenoData known from
Biobase eSet.
The assayData slot contains four matrices with variants as rows and sam-
ples as columns:

• variantForwCount: Matrix containing the number of reads with the
respective variant in forward direction.

• variantRevCount: Matrix containing the number of reads with the
respective variant in reverse direction.

• totalForwCount: Matrix containig the total coverage for every vari-
ant location in forward direction.

• totalRevCount: Matrix containing the total coverage for every vari-
ant location in reverse direction.
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> assayData(avaSet)$totalForwCount[1:3, ]

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 Sample_6

C1438 119 1516 137 1729 1288 140

C369 267 1152 195 1518 1016 190

C595 258 1805 230 1885 1775 221

The featureData slot provides additional information on the variants.
fData returns a data frame with variants as rows and the following columns:

• name/canonicalPattern: Short identifiers of a variant including the
position and the bases changed.

• referenceSeq: Gives the identifier of the reference sequence (see be-
low).

• start/end: The position of the variant relative to the reference se-
quence.

• variantBase/referenceBases: The bases changed in the variant.

> fData(avaSet)[1:3, ]

name canonicalPattern referenceSeqID start end

C1438 303:T/C s(303,C) I37 303 303

C369 309:T/C s(309,C) I36 309 309

C595 108:T/C s(108,C) I40 108 108

variantBase referenceBases

C1438 C T

C369 C T

C595 C T

The phenoData slot provides sample-IDs, multiplexer IDs (MID1, MID2),
the pico titer plate (PTP) accession number, the lane, the read group and
additional textual annotation for each sample. Most of these informations
are imported directly from Roche’s software.

> pData(avaSet)

SampleID MID1 MID2 PTP_AccNum Lane ReadGroup

Sample_1 I9646 Mid3 Mid3 GGSFDBH 07

Sample_2 I116 Mid1 Mid1 GA0582C 01

Sample_3 I9644 Mid1 Mid1 GGSFDBH 07

Sample_4 I118 Mid3 Mid3 GA0582C 01

Sample_5 I117 Mid2 Mid2 GA0582C 01

Sample_6 I9645 Mid2 Mid2 GGSFDBH 07

Annotation

Sample_1

Sample_2

Sample_3
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Sample_4

Sample_5

Sample_6

2. Amplicons:
This part stores information about the used amplicons and is accessible
by the functions assayDataAmp and fDataAmp.
The slot assayDataAmp contains two matrices with amplicons as rows and
samples as columns:

• forwCount: Matrix containing the number of reads for each amplicon
and each sample in forward direction.

• revCount: Matrix containing the number of reads for each amplicon
and each sample in reverse direction.

> assayDataAmp(avaSet)$forwCount

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5

TET2_E11.04 119 1516 137 1729 1288

TET2_E06 248 400 224 478 339

TET2_E11.03 267 1152 195 1518 1016

TET2_E04 258 1805 230 1885 1775

Sample_6

TET2_E11.04 140

TET2_E06 204

TET2_E11.03 190

TET2_E04 221

The slot featureDataAmp contains an AnnotatedDataFrame with addi-
tional information on each amplicon:

• ampID: The identifier of the current amplicon.

• primer1, primer2: The primer sequences for each amplicon.

• referenceSeqID: The identifier of the reference sequence (see below).

• targetStart/targetEnd: The coordinates of the target region.

> fDataAmp(avaSet)

ampID primer1

TET2_E11.04 I90 CATTCACCTTCTCACATAATCCA

TET2_E06 I81 TGCAAGTGACCCTTGTTTTG

TET2_E11.03 I89 GCTCAGTCTACCACCCATCC

TET2_E04 I79 GGGGTTAAGCTTTGTGGATG

primer2 referenceSeqID

TET2_E11.04 GAATTGACCCATGAGTTGGAG I37

TET2_E06 AACCAAAGATTGGGCTTTCC I42
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TET2_E11.03 AGATGCAGGGCATGAAGAGA I36

TET2_E04 TTGTGACTCTCTGGTGAATAGCA I40

targetEnd targetStart

TET2_E11.04 325 24

TET2_E06 321 21

TET2_E11.03 319 21

TET2_E04 322 21

As both refer to the same samples, the variants phenoData slot is used for
amplicons as well.

3. Reference sequences:
This part stores data about the reference sequences the amplicons were se-
lected from. All information is stored into an object of class AlignedRead .
The reads are accessible via sread. To retrieve additional information
from Ensembl about the chromosome, the position and the strand of each
reference sequence run function alignShortReads (see section 2.6 for de-
tails).

> library(ShortRead)

> referenceSequences(avaSet)

class: AlignedRead

length: 4 reads; width: 339..346 cycles

chromosome: NA NA NA NA

position: 1 1 1 1

strand: NA NA NA NA

alignQuality: NumericQuality

alignData varLabels: name refSeqID gene

> sread(referenceSequences(avaSet))

A DNAStringSet instance of length 4

width seq names

[1] 345 GGGGTTAAGCTTT...CAGAGAGTCACAA I40

[2] 346 CATTCACCTTCTC...CATGGGTCAATTC I37

[3] 339 GCTCAGTCTACCA...ATGCCCTGCATCT I36

[4] 341 TGCAAGTGACCCT...CCAATCTTTGGTT I42

The following table sums up the available slots and accessor functions:

2.3 Subsetting an AVASet

A subset of an AVASet object can be generated using the common "[]"-
notation:

> avaSubSet = avaSet[1:10, "Sample_1"]
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Function/Slot Description
assayData Contains the number of reads and the total

coverage for every variant and each sample in
forward and reverse direction.

fData/featureData Contains information about the type, position
and reference of each variant.

pData/phenoData Contains sample-IDs, multiplexer IDs (MID1,
MID2), the pico titer plate (PTP) accession
number, the lane, the read group and addi-
tional textual annotation for each sample.

assayDataAmp Contains the number of reads for every ampli-
con and each sample in forward/reverse direc-
tion.

fDataAmp/featureDataAmp Contains the primer sequences, reference se-
quence and the coordinates of the target re-
gion for each amplicon.

referenceSequences Contains the reference sequences for the am-
plicons together with additional annotations.

Table 1: AVASet contents and accessor functions.

The first dimension refers to the variants and the second dimension to the sam-
ples, so an AVASet with ten variants and one sample is returned.
This is a short and to some extend equivalent version of the function subset,
which expects a subset argument and the respective dimension (either ”vari-
ants”, ”samples” or ”amplicons”):

> avaSubSet = subset(avaSet, subset=1:10, dimension="variants")

The following is equivalent to the "[]"-example above:

> avaSubSet = subset(subset(avaSet, subset=1:10, dimension="variants"), subset="Sample_1", dimension="samples")

In contrast to the "[]"-Notation, the function subset allows further subsetting
by amplicons:

> avaSubSet = subset(avaSet, subset=c("TET2_E11.04", "TET2_E06"), dimension="amplicons")

When subsetting by amplicons all variants referring to amplicons that are not
in the subset will be excluded.

2.4 Setting filters on an AVASet

Another way of generating a subset of an AVASet object is filtering only those
variants, whose coverage (in percent) in forward and reverse direction respec-
tively is higher than a given filter value in at least one sample. Here, the
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coverage is defined as the percentual amount of the reads with the given variant
on the number of all reads covering the variant’s position.
The function setVariantFilter returns an updated AVASet object that meets
the given requirements:

> avaSetFiltered1 = setVariantFilter(avaSet, filter=0.05)

The above example returns an AVASet , which only contains variants whose
coverage is greater than 5% in at least one sample.
Passing a vector of two filter values applies filtering according to forward and
reverse read direction separately:

> avaSetFiltered2 = setVariantFilter(avaSet, filter=c(0.1, 0.05))

In fact, when filtering an AVASet , the whole object is still availabe. The filter
only affects the output given by accessor functions like fData, featureData and
assayData.
The process can be reversed and the filter value(s) can be reset to zero by calling

> avaSet = setVariantFilter(avaSetFiltered1, filter=0)

or simply

> avaSet = setVariantFilter(avaSetFiltered2)

2.5 Variant coverage

The function getVariantPercentages displays the coverage of the variants for
a given direction (either ”forward”, ”reverse”, or ”both”):

> getVariantPercentages(avaSet, direction="both")[20:25, 1:4]

Sample_1 Sample_2 Sample_3 Sample_4

C386 0.00000000 0.000000000 0.00000000 0.00000000

C1808 0.00000000 0.000000000 0.00000000 0.00000000

C1338 0.00000000 0.002405774 0.45720251 0.00000000

C1052 0.03202847 0.044400452 0.03076923 0.06076519

C818 0.00000000 0.003019628 0.00000000 0.00000000

C681 0.00000000 0.000000000 0.00000000 0.00000000

In the example above, getVariantPercentages is simply a short form of cal-
culating

> (assayData(avaSet)[[1]] + assayData(avaSet)[[3]]) / (assayData(avaSet)[[2]] + assayData(avaSet)[[4]])

2.6 Annotations and Variant Reports

Before creating the variant and quality report, the reference sequences must
be aligned against a reference genome and afterwards the variants have to be
annotatetd.
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The method alignShortReads aligns the reference sequences from an AVASet
against a given reference genome. Only exact (no errors) and unique matches
are returned. In the example below the hg19 assembly as provided by UCSC
from package BSgenome.Hsapiens.UCSC.hg19 is used as reference:

> library(BSgenome.Hsapiens.UCSC.hg19)

> seqNames = names(Hsapiens)[1:24]

> avaSet = alignShortReads(avaSet, bsGenome=Hsapiens, seqNames=seqNames, ensemblNotation=TRUE)

The function annotateVariants annotates genomic variants (mutations) given
in a data frame or more likely an AVASet . Annotation includes affected genes,
exons and codons. Resulting amino acid changes are returned as well as dbSNP
identifiers if the mutation is already known. All information is fetched from
Ensembl via biomaRt and returned in an object of class AnnotatedVariants. It is
advisible to filter the AVASet (see section 2.4) prior to that since the annotation
process is very time consuming for a large number (>500) of variants.

> avaSet = setVariantFilter(avaSet, filter=0.05)

> avaAnnot = annotateVariants(avaSet)

For an AVASet with corresponding annotated variants, the function htmlReport

creates a html report containing variant and quality information.
The report is structured into three pages:

1. Variant report by reference: This page sums up additional information
for each variant including name, type, reference gene, position, changed
nucleotides and affected samples. In addition, every variant is linked to a
page with further details about the affected genes and transcripts (e.g. En-
sembl gene-IDs, transcript-IDs, codon sequences, changes of amino acids
(if coding)).

2. Variant report by sample: The upper fraction of this page presents an
overview of all samples together with links to individual amplicon coverage
plots for each sample. In the lower fraction the found variants are listed
for each sample seperately in the same way as described in the variant
report by reference above.

3. Quality report: The report shows the coverage of every amplicon in for-
ward and/or reverse direction. Further plots display the coverage by MID
and PTP (if this information is given in the pheno data of the object).

The following command creates a report containing only variants covered by
at least 5% of the reads using the argument minMut (minMut=3 is the default
value). The argument blocks can be used to structure the page by assigning
each variant to a block. In this example the corresponding genes for each variant
are used to create blocks, resulting in only one block in the example data set:

> blocks = as.character(sapply(annotatedVariants(avaAnnot), function(x) x$genes$external_gene_id))

> htmlReport(avaSet, annot=avaAnnot, blocks=blocks, dir="htmlReportExampleAVA", title="htmlReport Example", minMut=3)
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2.7 Plotting

2.7.1 Plot amplicon coverage

The function plotAmpliconCoverage creates a plot showing the coverage (num-
ber of reads) per amplicon, MID or PTP. This results in a barplot if the AVASet
contains only one sample or in a boxplot for all other cases.

> plotAmpliconCoverage(avaSet[, 2], type="amplicon")
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Figure 1: Barplot of the amplicon coverage for sample 2.

> plotAmpliconCoverage(avaSet, bothDirections=TRUE, type="amplicon")

2.7.2 Plot variation frequency

Given a Roche Amplicon Variant Analyzer Global Alignment export file, the
function plotVariationFrequency creates a plot similar to the variation fre-
quency plot in Roche’s GS Amplicon Variant Analyzer. The plot shows the
reference sequence along the x-axis and indicates variants as bars at the appro-
priate positions. The height of the bars corresponds to the percentage of reads
carrying the variant. A second y-axis indicates the absolute number of reads
covering the variant. plotRange defines the start and end base of the reference
sequence that should be plotted.
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> file = system.file("extdata", "AVAVarFreqExport", "AVAVarFreqExport.xls", package="R453Plus1Toolbox")

> plotVariationFrequency(file, plotRange=c(50, 150))

2.7.3 Plot variant locations

The function plotVariants illustrates the positions and types of mutations
within a given gene and transcript (specified by an Ensembl gene/transcript
id). The plot shows only coding regions (thus, units are amino acids / codons).
The coding region is further divided into exons labeled with their rank in the
transcript. An attribute regions allows to highlight special, predefined areas
on the transcript like for example protein domains.

The function can be used in two ways:
It offers the most functionality when used as a ”standalone” function by passing
all mutations as a data frame. This mode allows an individual and detailed an-
notation of the mutations like labels, colors and user defined mutation types. It
requires the columns ”label”, ”pos” ”mutation” and ”color”. It is recommended
to add more detailed info for each mutation type by preparing a data frame
for the parameter mutationInfo which requires the three columns ”mutation”,
”legend” and ”color”.
The following example calls plotVariants for the gene TET2 having th En-
sembl id ”ENSG00000168769” and transcript ”ENST00000513237” (see Figure 4
below):

> data(plotVariantsExample)

> geneInfo = plotVariants(data=variants, gene="ENSG00000168769", transcript="ENST00000513237", regions=regions, mutationInfo=mutationInfo, horiz=TRUE, cex=0.8)

Especially for integration into the R453Plus1Toolbox and for compatibility to
older versions plotVariants also accepts annotated variants of class annotat-
edVariants (see section 2.6). The function then only distinguishes missense,
nonsense and silent point mutations and deletions and does not include muta-
tion labels.

3 Analysis of GS Mapper projects

Mapping projects allow the alignment of arbitrary reads from one or more se-
quencing runs to a given reference sequence.

3.1 Importing a GS Reference Mapper project

The function MapperSet imports data from Roche’s GS Reference Mapper. The
GS Mapper software stores information for each sample in a seperate directory,
so MapperSet expects a character vector dirs containing the directories of all
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samples to read in, i.e. directories containing the files:

• ”mapping/454HCDiffs.txt”

• ”mapping/454NewblerMetrics.txt”

Furthermore the parameter samplenames allows the seperate specification of
sample names. if missing, the directory names are taken. The following example
imports a project containing 3 samples (N01, N03, N04) with a total of 111
variants:

> dir_sample01 = system.file("extdata", "MapperSet", "N01", package = "R453Plus1Toolbox")

> dir_sample03 = system.file("extdata", "MapperSet", "N03", package = "R453Plus1Toolbox")

> dir_sample04 = system.file("extdata", "MapperSet", "N04", package = "R453Plus1Toolbox")

> dirs = c(dir_sample01, dir_sample03, dir_sample04)

> mapperSet = MapperSet(dirs=dirs, samplenames=c("N01", "N03", "N04"))

3.2 The MapperSet class

An object of class MapperSet ia a container to store data imported from a project
of Roche’s GS Reference Mapper Software. It directly extends the Biobase eSet
class and as such provides the following slots:

1. The assayData slot contains four matrices with variants as rows and sam-
ples as columns:

• variantForwCount/variantRevCount: Matrices containing the num-
ber of reads with the respective variant in forward/reverse direction.

• totalForwCount/totalRevCount: Matrices containing the total read
coverage for every variant location in forward/reverse direction.

2. The featureData slot holds the variants as rows together with additional
information on each variant within the following columns:

• chromosome/start/end/strand: Give the location of each variant.

• referenceBases/variantBase: Show the base(s) changed in each vari-
ant.

• regName: The name of the region (gene) where the variant is located.

• knownSNP: Contains dbSNP reference cluster ids for known SNPs
as given by the GS Mapper software (if any).

3. The phenoData slot contains additional information about the samples
represented as rows:
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• By default, the phenoData slot only contains an accession number
indicating the PTP of every sample.

> mapperSet

MapperSet (storageMode: list)

assayData: 111 features, 3 samples

element names: variantForwCount, totalForwCount, variantRevCount, totalRevCount

protocolData: none

phenoData

sampleNames: N01 N03 N04

varLabels: accessionNumber

varMetadata: labelDescription

featureData

featureNames: 1 2 ... 111 (111 total)

fvarLabels: chr strand ... knownSNP (8 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

As the MapperSet is derived from the Biobase eSet the methods used to
access or to manipulate the elements of a MapperSet object remain the same:

> assayData(mapperSet)$variantForwCount[1:4, ]

N01 N03 N04

1 9 7 7

2 9 6 6

3 11 3 5

4 7 5 11

> assayData(mapperSet)$totalForwCount[1:4, ]

N01 N03 N04

1 9 7 7

2 9 6 6

3 11 5 5

4 7 7 11

> fData(mapperSet)[1:4, ]

chr strand start end referenceBases variantBase

1 1 + 11846252 11846252 G A

2 1 + 11846447 11846447 G A

3 1 + 11847340 11847340 --- AGA

4 1 + 11847759 11847759 C T

regName knownSNP

1 MTHFR rs4846048
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2 MTHFR rs4845884

3 MTHFR rs70983598

4 MTHFR rs3737966

> pData(mapperSet)

accessionNumber

N01 FZY3Q2K01

N03 FZY3Q2K01

N04 FZY3Q2K02

3.3 Setting filters and subsetting a MapperSet

The MapperSet uses the same methods for filtering and subsetting as the AVASet
(see section 2.3 and 2.4 for details).

3.4 Annotations and Variant Reports

Before creating the variant and quality report, the variants have to be anno-
tatetd using function annotateVariants. Annotation includes affected genes,
exons and codons. Resulting amino acid changes are returned as well as dbSNP
identifiers, if the mutation is already known. All information is fetched from
Ensembl via biomaRt and returned in an object of class AnnotatedVariants. It
is advisible to filter the MapperSet (see section 3.3) since the annotation process
is very time consuming for a large number (>500) of variants.

> mapperAnnot = annotateVariants(mapperSet)

For a MapperSet with corresponding annotated variants, the function html-

Report creates a html report containing detailed variant information.
The report is structured into two pages:

1. Variant report by reference: This page sums up additional information
for each variant including name, type, reference gene, position, changed
nucleotides and affected samples. Furthermore every variant is linked to a
page with further details about the affected genes and transcripts (e.g. En-
sembl gene-IDs, transcript-IDs, codon sequences, changes of amino acids
(if coding)).

2. Variant report by sample: The upper fraction of this page presents an
overview of all samples. In the lower fraction the found variants are listed
for each sample seperately in the same way as described in the variant
report by reference above.

The following command creates a report containing only variants covered
by at least 3% of the reads using the argument minMut (minMut=3 is also the
default value):

> htmlReport(mapperSet, annot=mapperAnnot, dir="htmlReportExampleMapper", title="htmlReport Example", minMut=3)
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4 Detection of structural variants

Structural variants like translocations or inversions can be detected using non-
paired reads if at least one read spans the breakpoint of the variant. These
reads originate from two different locations on the reference genome and are
called ’chimeric reads’.

4.1 Data preparation

Before breakpoints can be detected, the generated raw sequences must be pre-
processed and aligned. Of course, data preprocessing depends on the applied
laboratory protocols. The exemplary data set used in this vignette is a subset
of the data set presented by Kohlmann et al. ([Kohlmann et al., 2009]) and is
described in detail therein.

In our example data set, each region of the pico titer plate contains reads
from three different samples which were loaded into that region. To reallocate
reads to samples, each sample has a unique multiplex sequence prefixing all
reads from that sample. This allocation process is called demultiplexing. In the
code section below, the multiplexed sequences are read in and demultiplexed ac-
cording to the given multiplex sequences (MIDs) using the demultiplexReads

method. The standard multiplex sequences used by the Genome Sequence MID
library kits can be retrieved by calling genomeSequencerMIDs. The last two
commands show that all reads could be successfully demultiplexed.

> fnaFile = system.file("extdata", "StructuralVariantDetection", "R_2009_07_30_14_26_52_FLX12080469_Administrator_714003", "D_2009_07_31_08_45_30_flxcluster_fullProcessing_714003", "1.TCA.454Reads.fna", package="R453Plus1Toolbox")

> seqs = read.DNAStringSet(fnaFile, format="fasta")

> MIDSeqs = genomeSequencerMIDs(c("MID1", "MID2", "MID3"))

> dmReads = demultiplexReads(seqs, MIDSeqs, numMismatches=2, trim=TRUE)

> length(seqs)

[1] 523

> sum(sapply(dmReads, length))

[1] 523

A sequence capture array was used to ensure that the example data set
predominantly contains reads from certain genomic regions of interest. The
applied NimbleGen array captured short segments corresponding to all exon
regions of 92 distinct target genes. In addition, contiguous genomic regions for
three additional genes, i.e. CBFB, MLL, and RUNX1, were present on the array.
During sample preparation, linkers were ligated to the polished fragments in the
library to provide a priming site as recommended by the NimbleGen protocol.
These linker sequences were sequenced and are located at the 5 prime end of
the reads. In case of long reads, the reverse complement of the linker may be
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located at the 3 prime end. The function removeLinker can be used to remove
these linkers. Aditionally, very short reads are discarded in the following code
snippet.

> minReadLength = 15

> gSel3 = sequenceCaptureLinkers("gSel3")[[1]]

> trimReads = lapply(dmReads, function (reads) {

reads = reads[width(reads) >= minReadLength]

reads = removeLinker(reads, gSel3)

reads = reads[width(reads) >= minReadLength]

readsRev = reverseComplement(reads)

readsRev = removeLinker(readsRev, gSel3)

reads = reverseComplement(readsRev)

reads = reads[width(reads) >= minReadLength]

return(reads)

})

Finally, the preprocessed reads must be aligned against a reference genome.
For this purpose, we write the reads to a .fasta file and use the BWA-SW
([Li and Durbin, 2010]) algorithm for generating local alignments. The BWA-
SW algorithm can be substituted by other local alignment algorithms. However,
BWA-SW has the useful feature to only report the best local alignments. Hence,
two local alignments do not overlap on the query sequence (they may overlap
on the reference). This is an assumption made by the pipeline implemented in
this package.

> write.XStringSet(trimReads[["MID1"]], file="/tmp/N01.fasta", format="fasta")

4.2 Computing and assessing putative structural variants

As chimeric reads may also be caused by technical issues during sample prepa-
ration, the function filterChimericReads implements several filter steps to
remove artificial chimeric reads.

The remaining reads are passed to the detectBreakpoints method to cre-
ate clusters representing putative breakpoints. Each cluster contains all chimeric
reads that span this breakpoint. Promising candidates are clusters with more
than one read and ideally with reads from different strands. Some structural
variations like translocations or inversion lead to two related breakpoints. In
the context of fusion genes, these breakpoints are refered to as pathogenic and
reciprocal breakpoint. By the use of read orientation and strand information
during clustering, it is ensured that reads from the pathogenic breakpoint will
not cluster together with reads from the reciprocal breakpoint, although their
genomic coordinates may be close to each other or even equal. After clsutering,
consensus breakpoint coordinates are computed for each cluster.
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In the last step, the function mergeBreakpoints searches breakpoints that
originate from the same structural variation (i.e. the pathogenic and the re-
lated reciprocal breakpoint) and merges them. We observed, that the distance
between two related breakpoints may be up to a few hundred basepairs, whereas
the breakpoint coordinates of single reads spanning the same breakpoint vary
only by a very few bases due to sequencing errors or ambiguities during align-
ment.

In the following example, we use the reads from sample N01 presented in
the previous section. The reads have been aligned using BWA-SW:

> library("Rsamtools")

> bamFile = system.file("extdata", "StructuralVariantDetection", "bam", "N01.bam", package="R453Plus1Toolbox")

> parameters = ScanBamParam(what=scanBamWhat())

> bam = scanBam(bamFile, param=parameters)

For the filtering step, we specify a target region, i.e. the used capture array
in form of a RangesList . All chimeric reads not overlapping this region with at
least one local alignment are discarded. The following example creates a target
region out of a given .bed file containing region information using functions from
package rtracklayer .

> library("rtracklayer")

> bedFile = system.file("extdata", "StructuralVariantDetection", "chip", "CaptureArray_hg19.bed", package="R453Plus1Toolbox")

> chip = import.ucsc(bedFile, subformat="bed")

> chip = ranges(chip[[1]])

> names(chip) = gsub("chr", "", names(chip))

> linker = sequenceCaptureLinkers("gSel3")[[1]]

> filterReads = filterChimericReads(bam, targetRegion=chip, linkerSeq=linker)

> filterReads$log

AlignedReads ChimericReads TwoLocalAlignments

1 213 24 24

TargetRegion NoLinker MinimumDistance Unique5PrimeStart

1 23 23 23 23

The linkerSeq argument allows to specify the linker sequence used during sam-
ple preparation. All chimeric reads that have this linker sequence between their
local alignments are removed.

Finally, we call the detectBreakpoints and mergeBreakpoints functions:

> bp = detectBreakpoints(filterReads, minClusterSize=1)

> bp

Size ChrA ChrB

BP1 8 16 16

BP2 4 16 16
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BP3 1 21 1

BP4 1 2 1

BP5 1 1 7

BP6 1 1 16

> table(bp)

size

1 4 8

11 1 1

> mbp = mergeBreakpoints(bp)

> summary(mbp)

ChrA ChrB BpACase1 BpBCase1 BpACase2 BpBCase2

BP1_BP2 16 16 15815191 67121088 15815189 67121086

BP3 21 1 36496155 177984464 NA NA

BP4 2 1 16382474 186276897 NA NA

BP5 1 7 186275614 102017970 NA NA

BP6 1 16 186271118 67130495 NA NA

BP7 1 11 174926056 118389220 NA NA

BP8 1 16 120222145 15853548 NA NA

BP9 6 1 168290170 178598476 NA NA

BP10 21 1 37093848 150600467 NA NA

BP11 15 1 63213753 164769097 NA NA

BP12 21 1 36450706 186733804 NA NA

BP13 1 21 192053733 37167301 NA NA

NoReadsCase1 NoReadsCase2 NoReadsTotal

BP1_BP2 4/4 3/1 12

BP3 1/0 0/0 1

BP4 1/0 0/0 1

BP5 1/0 0/0 1

BP6 1/0 0/0 1

BP7 1/0 0/0 1

BP8 1/0 0/0 1

BP9 1/0 0/0 1

BP10 1/0 0/0 1

BP11 1/0 0/0 1

BP12 1/0 0/0 1

BP13 1/0 0/0 1

One cluster of size 8 and another cluster of size 4 were detected. Both putative
breakpoints span two regions on chromosome 16. Further, 11 clusters of size
one were found. The mergeBreakpoints function merges the first two clusters.
The summary reveals that the coordinates of the breakpoints only differ by two
bases at each region on chromosome 16. Moreover, both strands from both
breakpoints were sequenced. Obviously, we detected two related breakpoints
caused by an inversion on chromsome 16.
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4.3 Visualization of breakpoints

The function plotChimericReads takes the output of the function mergeBreak-

points and produces a plot of the breakpoint regions together with the aligned
reads and marks deletions, insertions and mismatches. If a pathogenic and a
reciprocal breakpoint exist, plotChimericReads creates two plots as shown in
the example below.

The following example shows the breakpoints (pathogenic and reciprocal) of
an inversion on chromosome 16 where 12 reads aligned:

> plotChimericReads(mbp[1], legend=TRUE)

Optionally (if the argument plotBasePairs is TRUE), plotChimericReads
displays all base pairs within a given region of size maxBasePairs around the
breakpoint:

> plotChimericReads(mbp[1], plotBasePairs=TRUE, maxBasePairs=30)

References

[Kohlmann et al., 2009] Kohlmann,A. et al. (2009) Targeted next-generation se-
quencing (NGS) enables for the first time the detection of point mutations,
molecular insertions and deletions, as well as leukemia-specific fusion genes in
AML in a single procedure. Blood (ASH Annual Meeting Abstracts), 114(22),
294–295.

[Li and Durbin, 2010] Li,H. and Durbin,R. (2010) Fast and accurate long-read
alignment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589–95.

19



TE
T2

_E
04

TE
T2

_E
04

TE
T2

_E
06

TE
T2

_E
06

TE
T2

_E
11

.0
3

TE
T2

_E
11

.0
3

TE
T2

_E
11

.0
4

TE
T2

_E
11

.0
4

0
50

0
10

00
15

00
20

00
25

00

Amplicon coverage

N
um

be
r o

f r
ea

ds
 (c

ov
er

ag
e)

forward reads
reverse reads
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Figure 5: Plot of the breakpoint region.
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Figure 6: Plot of the breakpoint region including base pairs.
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