An Introduction to OTUbase

Modified: 8 September 2010. Compiled: March 30, 2012

> library("OTUbase")

The *OTUbase* package provides an organized structure for OTU (Operational Taxonomic Unit) data analysis. In addition, it provides a similar structure for general read-taxonomy classification type data. *OTUbase* provides some basic functions to analyze the data as well.

1 A simple workflow

This section walks through a simple workflow using a small example dataset. It demonstrates the main features of OTUbase. The data used for this example comes from a dataset described in "Microbial diversity in the deep sea and the underexplored 'rare biosphere'" by Sogin et al. (PNAS 2006). The complete dataset is available through PNAS. A random set of 1000 sequences was taken from this dataset.

1.1 Sample meta data

Sample metadata is collected along with the sample. This data may include any number of different pieces of information about the sample. In the example dataset, the meta data is provided in Table 1 of Sogin et al. This file is named 'sample_metadata.txt'. To be easily read by OTUbase, this file is in the form of an AnnotatedDataFrame.

1.2 Sequence preprocessing

This section describes the preprocessing steps necessary to generate the files used by OTUbase.

1.2.1 Sequence trimming and filtering

Many OTU data projects will begin with raw sequence reads from a next generation pyrosequencer. These reads may include primers, barcodes, and/or adapters that are not part of the actual read. The first step in the analysis pipeline is to trim the primers and barcodes from the read. A number of tools are able to do this. Commands in Mothur are 'trim.seqs()' and 'filter.seqs()'. For this workflow we are assuming that these steps have already been done. When the barcodes are trimmed off the reads, a separate file is generally created that links the read with a sample identification. Mothur creates this file automatically and gives it a '.groups' extension. Each line of this file contains a read ID and the ID of the sample the read belongs to, separated by a tab. OTUbase requires this groups file.

1.3 Taxonomic classification and OTU generation

There are two main approaches used to analyse amplicon data. An OTU approach involves first clustering the sequences together by similarity into OTUs or Operational Taxonomic Units. These OTUs can then be used in richness calculations and in comparing two samples. An alternate approach attempts to classify each sequence into an existing taxonomy. The RDP classifier, for example, uses a Markof model to sort sequences into genus level classifications.

The data produced by these two approaches is slightly different. The OTU approach results in a list of sequences belonging to each OTU. The classification approach results in each sequence having a classification. OTUbase is able to use either of these types of data.

The data processing involved in OTU generation is described by Pat Schloss on the Mothur web site. Those interested can find the OTU generation steps for Sogin's data at .

The data processing involved in the RDP taxonomic classification is somewhat simpler and less computationally demanding. Details can be found on the RDP website .

1.3.1 Reducing the dataset to unique sequences

To decrease the computation time involved in both techniques, duplicate sequences in the dataset are removed first. These sequences can the be added back in after the processing is complete. Mothur removes the duplicate sequences with the command 'unique.seqs()' which also automatically generates a file that keeps track of which sequences have duplicates (called a name file).

In this workflow the duplicate sequences have been removed using Mothur. The name file is called 'sogin.names'

1.4 Importing files into an OTUbase object

OTUbase is able to automatically import a number of files generated during the data processing. These files include the sample file (the group file produced by Mothur), the OTU file (the list file produced by Mothur), and the meta data (in AnnotatedDataFrame format). In addition OTUbase inherits *ShortRead* which allows the user to include a fasta file and a quality file. OTUbase also recognizes the RDP taxonomic classification files that are in the 'fixed' format.

> dirPath <- system.file("extdata/Sogin_2006", package="OTUbase")</pre>

Usually dirPath will be the directory path containing the files that will be read by OTUbase.

Because there are two main approaches to data analysis (OTU and Taxonomic classification) we will look at both in parallel. To read in OTU related data the function readOTUset() is used. Likewise, to read in classification data the function readTAXset() is used.

```
> soginOTU <- readOTUset(dirPath=dirPath, level="0.03", samplefile="sogin.groups", fastafile
> soginOTU
```

Class: OTUsetF Number of Sequences: 1000 reads Sequence Width: 56..100 cycles Number of OTUs: 399 Number of Samples: 8 sampleData: T ncol: 6 assignmentData: F

The level is the OTU classification level desired (many clustering levels may be present in one otufile). The default is '0.03'. The samplefile connects the read ID to the sample it belongs to. The fastafile and the associated quality file are optional. Their inclusion may make the reading of the data significantly slower. The otufile must be in Mothur format. The sampleADF is the sample meta data file.

```
> soginTAX <- readTAXset(dirPath=dirPath, fastafile='sogin.fasta', sampleADF='sample_metadat
> soginTAX
```

Class: TAXsetF Number of Sequences: 1000 reads Sequence Width: 56..100 cycles Number of Samples: 8 sampleData: T ncol: 6 assignmentData: F

The readTAXset function only differs from the readOTUset function slightly. Notably different is the absence of an otufile and the presence of a taxfile (in this case the RDP fixed output). Also included in the readTAXset function is the namefile. This file is the Mothur names file and should be included when the dataset has been reduced to unique sequences.

1.5 Accessing data in OTUbase objects

OTUbase provides a number of accessor functions that allow the user to easily access the data contained in the OTUbase object. **sread**, **quality**, and **id** are inherited from the *ShortRead* package and allow access to the sequence, the quality, and the sequence id. In addition, **sampleID**, **sData**, and **aData** provide access to the sample ID, the sample meta data, and the assignment meta data respectively (when available).

```
A BStringSet instance of length 6
    width seq
[1]
       14 D4WT9DQ06DVGFR
[2]
       14 D4WT9DQ05C6YNI
[3]
       14 D4WT9DQ12HNQY2
[4]
       14 D4WT9DQ01APOUQ
[5]
       14 D4WT9DQ09FLPTJ
[6]
       14 D27LUORO2A82DK
> head(sread(soginOTU))
  A DNAStringSet instance of length 6
    width seq
[1]
       60 TGCCTTTGACATCCTCGGAACGGT...GGTGCCTTCGGGAACCGAGAGAC
[2]
       71 TGGACTTGACATGTTAGTGTAAAC...AGCTTGCTCAAAGACACTATCAC
       58 CGGGCTTGAAGTGCAAGCGACAAC...GATTTCCGCAAGGACGCTTGTAG
[3]
[4]
       64 TGGTCTTGACATCCCGGGAATCTC...CCTCATTAGAGGAGCCTGGTGAC
[5]
       60 AGGACTTGACATCCAGAGAACTCG...GGTGCCTTCGGGAACTCTGTGAC
       59 ATCCCTTGACATCCTGCGAACTTT...TGGTGCCTTCGGAACGCAGTGAC
[6]
> head(sampleID(soginOTU))
[1] "53R"
            "53R"
                    "115R" "FS312" "112R" "FS312"
> head(sData(soginOTU))
                  Site Lat_N Long_W Depth Temperature
53R Labrador seawater 58.3 âĹŠ29.133 1,400
                                                      3.5
55R
        Oxygen minimum 58.3 âĹŠ29.133
                                         500
                                                      7.1
112R Lower deep water 50.4 âĹŠ25.000 4,121
                                                      2.3
        Oxygen minimum 50.4 âĹŠ25.000
                                                      7.0
115R
                                        550
137 Labrador seawater 60.9 âĹŠ38.516 1,710
                                                      3.0
138 Labrador seawater 60.9 âĹŠ38.516
                                        710
                                                      3.5
         Cells
53R 6.4 ÃŮ 104
55R 1.8 ÃŮ 105
112R 3.9 ÃŮ 104
115R 1.5 ÃŮ 105
137 3.3 ÃŮ 104
138 5.2 ÃŮ 104
```

There are a couple accessors specific to OTUset or TAXset. To access the OTU IDs stored in OTUset objects, otuID is used. Likewise, to access the taxonomic classifications stored in TAXset objects, tax is used.

> head(otuID(soginOTU))

> head(id(soginOTU))

```
[1] "otu221" "otu250" "otu116" "otu385" "otu59"
                                                   "otu95"
> head(tax(soginTAX))
  root root_score
                     domain domain_score
                                                  phylum
1 Root
              1.0 Bacteria
                                    0.91 Proteobacteria
2 Root
              1.0 Bacteria
                                    0.91 Actinobacteria
3 Root
              1.0 Bacteria
                                    0.96 Actinobacteria
4 Root
              1.0 Bacteria
                                    1.00 Proteobacteria
              1.0 Bacteria
                                    1.00 Proteobacteria
5 Root
6 Root
              1.0 Bacteria
                                    1.00 Proteobacteria
  phylum_score
                              class class_score
          0.62 Gammaproteobacteria
                                            0.46
1
2
                                            0.10
          0.10
                     Actinobacteria
3
          0.16
                     Actinobacteria
                                            0.16
4
          1.00 Deltaproteobacteria
                                            1.00
5
          0.98 Gammaproteobacteria
                                            0.97
6
          1.00 Gammaproteobacteria
                                            1.00
              order order_score
                                              family
1 Oceanospirillales
                            0.07
                                     Halomonadaceae
2 Bifidobacteriales
                            0.04 Bifidobacteriaceae
3 Bifidobacteriales
                            0.06 Bifidobacteriaceae
4 Desulfobacterales
                            1.00
                                   Desulfobulbaceae
5
 Oceanospirillales
                            0.54 Oceanospirillaceae
      Thiotrichales
                            1.00
                                    Francisellaceae
6
                           genus genus_score
  family_score
1
          0.06 Modicisalibacter
                                         0.03
2
          0.04
                  Metascardovia
                                         0.04
3
          0.06
                  Parascardovia
                                        0.02
4
          1.00
                   Desulfocapsa
                                         1.00
                                         0.44
5
          0.51
                Oceanospirillum
6
          0.63
                    Francisella
                                         0.63
```

1.6 First data analysis steps

Now that the data is in the OTUbase object, we can now generate tables and figures that help analyze it. One of the first steps in many analyses is the generation of an abundance table. There is an OTUbase method that does this.

```
> abundOTU <- abundance(soginOTU, weighted=F, collab='Site')
> head(abundOTU)
```

		S						
0		Lower	deep	water	Oxygen	minimum	Labrador	seawater
	otu1			0		0		2
	otu10			2		0		0
	otu100	1		1		0		0

otu101		0	0	0	
otu102		0	0	0	
otu103		0	0	0	
£	3				
0	Labrador seau	ater Labrado	or seawater Ox	ygen minimum	
otu1		1	1	0	
otu10		0	0	0	
otu100		0	0	0	
otu101		0	0	0	
otu102		1	0	0	
otu103		0	0	0	
ŝ	5				
0	Bag City Mark	cer 52			
otu1	0	0			
otu10	0	0			
otu100	1	0			
otu101	2	0			
otu102	0	0			
otu103	1	2			
> head(al	s				
0	S	deep water ()xvgen minimum		
0	s Lower	deep water (0	Dxygen minimum O		
	s Lower ophia	=			
o Abiotro	s Lower ophia ibrio	0	0		
o Abiotro Acetivi	s Lower ophia ibrio obacter	0	0		
o Abiotro Acetivi Acineto	s Lower ophia ibrio obacter cter	0 0 0	00000		
o Abiotro Acetivi Acineto Actibao	s Lower ophia ibrio obacter cter ciicola	0 0 0 0	0 0 0 0		
o Abiotro Acetivi Acineto Actibao Aestuan	s Lower ophia ibrio obacter cter ciicola nas s	0 0 0 0 0 0	0 0 0 0 0		
o Abiotro Acetivi Acineto Actibao Aestuan Agromor	s Lower ophia ibrio obacter cter riicola nas s Labrac	0 0 0 0 0 0	0 0 0 0 0		
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro	s Lower ophia bbrio obacter cter ciicola nas s Labrac	0 0 0 0 0 0	0 0 0 0 0	ater 1	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi	s Lower ophia ibrio obacter cter ciicola nas S Labrac ophia ibrio	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	ater 1 0	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Acineto	s Lower bphia ibrio bbacter cter ciicola has Labrao pphia ibrio bbacter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	ater 1 0 1	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Acineto Actibao	s Lower bphia ibrio bbacter cter ciicola has S Labrac ophia ibrio bbacter cter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	ater 1 0 1 0	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Acineto Actibao	s Lower ophia ibrio obacter cter ciicola as Labrac ophia ibrio obacter cter ciicola	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	ater 1 0 1 0 0	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Acineto Actibao	s Lower ophia bbrio obacter cter riicola as Labrao ophia ibrio obacter cter riicola as	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	ater 1 0 1 0	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Acineto Actibao Aestuan Agromor	s Lower ophia ibrio obacter cter ciicola ibrio ophia ibrio obacter cter ciicola ias	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 2 2 2 3 3 3 4 3 3 3 3 3 4 3 3 3 3 3 3 3	ater 1 0 1 0 0 0	
 Abiotro Acetivi Acineto Actibao Aestuan Agromor Abiotro Acetivi Acineto Actibao Aestuan Agromor 	s Lower ophia ibrio obacter citer ciicola as phia ibrio obacter cter ciicola as s Labrao	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ater 1 0 1 0 0 0 0 0 m Bag City	
 Abiotro Acetivi Acineto Actibao Aestuan Agromor Abiotro Acetivi Acineto Actibao Aestuan Agromor Abiotro 	s Lower ophia ibrio obacter cter ciicola has phia ibrio obacter cter ciicola has s Labrac phia	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ater 1 0 1 0 0 0 0 m Bag City 0 0	
o Abiotro Acetivi Acineto Actibao Aestuan Agromor o Abiotro Acetivi Agromor o Abiotro Acetivi	s Lower bphia ibrio bbacter cter ciicola as phia ibrio bbacter cter ciicola as Labrac phia bas	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ater 1 0 1 0 0 0 0 m Bag City 0 0 0 1	
 Abiotro Acetivi Acineto Actibao Aestuan Agromor Abiotro Acetivi Acineto Actibao Aestuan Agromor Abiotro 	s Lower ophia ibrio obacter cter ciicola as phia ibrio obacter cter ciicola as Labrac phia ibrio obacter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ater 1 0 1 0 0 0 0 m Bag City 0 0	

Agromonas

0

0

0	Marker 52
Abiotrophia	0
Acetivibrio	0
Acinetobacter	. 0
Actibacter	3
Aestuariicola	. 0
Agromonas	4

s

It should be noted that the abundance method for TAXset objects requires one extra piece of information, the column of the classification desired. The abundance can be generated from any of them (genus, family, etc). Other options are also available in the abundance methods. For example, the abundance can be generated based on any column in the assignment data. For more on the abundance method please see the help documentation.

1

One of the strengths of OTUbase is that by being in the R environment it can take advantage of a number of available data analysis packages. One of these packages is *vegan* is an R package that provides many tools to analyze ecological type data. It includes diversity estimation and cluster analysis.

Using the functions provided by vegan and the abundance table previously generated:

```
> estrichOTU <- apply(abundOTU, 2, estimateR)
> estrichOTU
          s
           Lower deep water Oxygen minimum
  S.obs
                  57.000000
                                  44.000000
                                 176.000000
 S.chao1
                 192.125000
 se.chao1
                  76.375659
                                 123.106661
 S.ACE
                 283.067602
                                 154.791782
  se.ACE
                    7.841178
                                   8.026768
          S
           Labrador seawater Labrador seawater
  S.obs
                    49.000000
                                       48.00000
 S.chao1
                   254.000000
                                      159.42857
  se.chao1
                   184.668647
                                       69.81457
 S.ACE
                  230.006548
                                      320.32000
  se.ACE
                    5.532269
                                       11.21429
          s
           Labrador seawater Oxygen minimum Bag City
 S.obs
                    37.000000
                                   29.000000 110.00000
  S.chao1
                   145.750000
                                  191.500000 384.61538
                  103.198837
                                  363.535418 110.08166
  se.chao1
  S.ACE
                   147.625000
                                  182.685606 579.22305
  se.ACE
                     3.619804
                                    2.553564 16.82521
```

```
s
           Marker 52
 S.obs
           130.00000
           308.00000
 S.chao1
 se.chao1
            58.99904
 S.ACE
           392.65701
 se.ACE
            12.75554
> estrichTAX <- apply(abundTAX, 2, estimateR)</pre>
> estrichTAX
          s
           Lower deep water Oxygen minimum
                   48.00000
 S.obs
                                  34.000000
 S.chao1
                   118.00000
                                  64.000000
 se.chao1
                   40.37481
                                  22.783629
 S.ACE
                  202.70270
                                  77.238156
 se.ACE
                    10.26136
                                   5.658764
          s
           Labrador seawater Labrador seawater
 S.obs
                     41.0000
                                      35.000000
 S.chao1
                     173.0000
                                     122.750000
 se.chao1
                     123.1067
                                      85.024996
 S.ACE
                     167.5423
                                     132.763430
 se.ACE
                       4.5664
                                        5.203785
          s
           Labrador seawater Oxygen minimum
                                                Bag City
                   29.000000
                                   22.000000
 S.obs
                                              91.000000
 S.chao1
                    67.000000
                                  107.500000 253.750000
 se.chao1
                    34.278273
                                  199.047105
                                              72.151032
 S.ACE
                                  194.379259 290.053022
                    98.141354
 se.ACE
                    7.521336
                                    9.549327
                                                9.670711
          s
            Marker 52
 S.obs
            88.000000
 S.chao1
          157.789474
 se.chao1 28.679488
 S.ACE
           190.277732
  se.ACE
             8.276204
```

The vegan function vegedist and helust have been combined into one OTUbase wrapper for convenience. This allows the user to quickly cluster the samples. This clustering can be done using a number of different distance and clustering methods.

> clusterSamples(soginOTU, distmethod='jaccard', clustermethod='complete', collab='Site')

```
Call:
hclust(d = d, method = clustermethod)
Cluster method : complete
Distance : jaccard
Number of objects: 8
> clusterSamples(soginTAX, taxCol='genus', distmethod='jaccard', clustermethod='complete', of
Call:
hclust(d = d, method = clustermethod)
Cluster method : complete
Distance : jaccard
Number of objects: 8
```

The user is encouraged to explore many functions available through vegan and other R packages. Commonly useful ones can then be brought into OTUbase to make their use more efficient.

2 Advanced features

A number of other functions are available. While the implementation is incomplete, subOTUset() is a function that allows the user to extract any OTUs or samples from the dataset to be analyzed separately. This makes it possible to remove one or more OTUs or samples from the analysis. Eventually this will be implemented using the more traditional '[' notation.

```
> soginReduced <- subOTUset(soginOTU, samples=c("137", "138", "53R", "55R"))
> soginReduced
```

Class: OTUsetF Number of Sequences: 222 reads Sequence Width: 56..100 cycles Number of OTUs: 127 Number of Samples: 4 sampleData: T ncol: 6 assignmentData: F

3 The structure of an OTUbase object

OTUbase objects include a number of possible slots. Inherited from *ShortRead* are sread, id, and quality. These slots, along with otuID, tax, and sampleID are all of identical length and order. For example, the first row in the id slot is connected to the first rows in the sread, quality, otuID, and sampleID slots. In other words, the first id represents the first sequence that has a quality described

by the first row of the quality slot; it is a member of the otu listed in the otuID slot and a member of the sample listed in the first row of the sample slot.

In addition there are two AnnotatedDataFrames. The sampleData data frame is linked to the sampleID slot through the sample IDs. The assignment-Data data frame is linked to the otuID slot through the OTU IDs.

There are slight differences in the OTUset objects and the TAXset objects. In the TAXset objects, the assignmentData data frame is not explicitly linked to the tax slot.

4 Conclusions and directions for development

OTUbase provides an organization and structure for OTU data and taxonomic classification data produced during the analysis of amplicon sequences. This allows the user to quickly and easily analyze amplicon data.

While the structure and a few basic functions are available withing OTUbase, there are a large number of possible improvements and extensions that have yet to be developed. OTUbase provides a structure for the data but functions for downstream analysis are not yet included. Future development will include a better integration of OTUbase with other available R packages such as vegan and the inclusion of a wider variety of functions for data analysis.

5 References

Sogin, M., H. Morrison, J. Huber, D. Welch, S. Huse, P. Neal, J. Arrieta, and G. Herndl. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere." Proc. Natl. Acad. Sci. U. S. A. 103:12115-12120

Schloss PD, et al. (2009) Introducing mothur: Open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537-7541

Wang, Q, G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol. 73(16):5261-7

- > toLatex(sessionInfo())
 - R version 2.15.0 (2012-03-30), x86_64-unknown-linux-gnu
 - Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
 - Base packages: base, datasets, grDevices, graphics, methods, stats, utils
 - Other packages: Biobase 2.16.0, BiocGenerics 0.2.0, Biostrings 2.24.0, GenomicRanges 1.8.0, IRanges 1.14.0, OTUbase 1.6.0, RColorBrewer 1.0-5, Rsamtools 1.8.0, ShortRead 1.14.0, lattice 0.20-6, latticeExtra 0.6-19, permute 0.6-3, vegan 2.0-3
 - Loaded via a namespace (and not attached): bitops 1.0-4.1, grid 2.15.0, hwriter 1.3, stats4 2.15.0, tools 2.15.0, zlibbioc 1.2.0

Table 1: The output of **sessionInfo** on the build system after running this vignette.