An Introduction to $A G D E X$

Stan Pounds, Cuilan Lani Gao

Fri Mar 30 23:53:30 2012

1 Introduction

A challenging problem in contemporary genomics research is how to integrate and compare gene expression data from studies that utilize different microarray platforms or even different species (e.g. a study of a human disease and a study of an animal model of that disease). We have developed the agreement of differential expression (AGDEX) procedure to integrate differential expression analysis results across two experiments that may utilize different platforms or even different species. AGDEX is able to combine transcriptome information across two experiments that compare expression across two biological conditions. AGDEX was initially used in the study of the pediatric brain tumor ependymoma (Johnson et al., Nature 2010) to characterize the transcriptional similarity of a mouse model to one subtype of human ependymoma.

The AGDEX procedure performs a rigorous differential expression analysis for each two-group comparison and formally evaluates the agreement of differential expression analysis results across the entire transcriptome. Optionally, users may use AGDEX to identify differentially expressed gene-sets for each comparison and evaluate agreement of differential expression analysis results within gene-sets.

In total, the AGDEX procedure performs the following statistical analyses:

1. identify genes that are differentially expressed in each experiment;
2. identify gene-sets that are differentially expressed in each experiment;
3. integrate results across experiments to identify differentially expressed genes;
4. integrate results across experiments to identify differentially expressed gene-sets;
5. characterize and determine the statistical significance of similarities of differential and expression profiles across the two experiments for the entire transcriptome and for specific gene-sets.

The AGDEX method is described in greater detail in the supplementary materials of Johnson et al. (2010) and Gibson et al. (2010).

2 Pre-requisite Packages

The AGDEX package depends on the Biobase and GSEABase packages. Users must know how to store the expression data as an ExpressionSet object defined by the Biobase package. To perform gene-set analyses, users must represent gene-set data as an GeneSetCollection object defined by the GSEABase package.

3 Data Requirements

Data must be prepared and stored in a specific format for AGDEX analysis. First, data from each experiment must be stored as an ExpressionSet object defined by the Biobase package. Secondly, the data from each experiment must be linked with a definition of the contrast (such as "tumor - control") for the differential expression analysis. Optionally, each experiment may have gene-set definitions represented as a GeneSetCollection object defined by the GSEABase package. These information provide all the details necessary to perform differential expression analysis of the data from each experiment. Finally, a data-set that matches the probe-set identifiers from the two experiments is necessary to integrate results across the two experiments and evaluate the agreement of differential expression results across the two experiments.

AGDEX requires that the information needed to perform differential expression analysis of one experiment be provided in the form of a dex.set list object. The expression and phenotype data are stored as an ExpressionSet in a component named Eset.data. Recall that an ExpressionSet stores the expression data as a samples-by-genes matrix in the component exprs and the phenotype data as a data.frame in the component pData. The expression data should be normalized log-intensity values. The phenotype data must include one column with group labels to be used for the two-group differential expression analysis comparison. The comp.var component of the dex.set list object gives the name or numeric index of the column of the phenotype data with those group labels. The comp.def component of the dex.set list object is a string that defines the contrast for the two-group comparison. For example, the comp.def component may contain the string "tumor-control" to indicate that the analysis will compare the expression of those samples with the label "tumor" to that of those samples with the label "control". Optionally, the dex.set object may include a GeneSetCollection object (as defined by the package GSEABase) in the gset.collection component. In this way, the dex.set object contains the data for and the definition of a two-group differential expression analysis. The data and definition for each differential expression analysis must be contained in a dex.set object.

To perform the cross-experiment integration and evaluate the cross-experiment agreement, AGDEX requires information to match the probe-set identifiers of the first differential expression analysis to those of the second differential expression analysis. This information is provided in the form of a map.data list object. The probe.map component of the map.data object is a data.frame that defines how probe-set identifiers are matched across experiments. As such,
map.data must include a column with probe-set identifiers from experiment "A" and a column with probe-set identifiers from experiment "B". The components map.Aprobe.col and map.Bprobe.col give the name or numeric index of the columns of the probe.map component with the probe-set identifiers from experiments "A" and "B", respectively.

Finally, the user must specify how many permutations must be performed. AGDEX allows users to utilize an adaptive permutation testing (APT) strategy to reduce computing time for gene-set analyses. APT performs permutations until obtaining min.perms permutation-statistics with absolute value greater than that of the observed test-statistic or until performing a maximum max.nperms permutations. Pounds et al. (2011) give a more detailed description of APT.

4 Example

This example illustrates how users may perform an AGDEX analysis.

4.1 Prepare the Expression Data as ExpressionSet Object

First, users must prepare the ExpressionSet for each experiment. The human.data and mouse.data ExpressionSet objects are included in the AGDEX package.

```
> library(AGDEX)
> data(human.data) # Load the human.data ExpressionSet object
> head(exprs(human.data)[,1:5]) # Preview the human expression data
    ept002 ept011 ept064 ept065 ept066
200050_at 8.5550867.804986 7.626863 8.303084 8.110728
200075_s_at 7.808323 7.835382 8.520249 7.604795 8.111148
200642_at 9.656154 9.445705 9.687636 9.889678 9.451709
200823_x_at 8.990840 9.568204 9.085321 8.903503 9.517546
200878_at 7.759230 8.606851 8.008266 8.625222 8.294400
200879_s_at 4.518522 5.392718 4.242765 4.732684 5.220356
> head(pData(human.data)) # Preview the human phenotype data
    id grp
ept002 ept002 other.human.tumors
ept011 ept011 other.human.tumors
ept064 ept064 other.human.tumors
ept065 ept065 other.human.tumors
ept066 ept066 other.human.tumors
ept067 ept067 other.human.tumors
> table(pData(human.data)$grp) # See number in each group
```

```
    human.tumor.typeD other.human.tumors
        9
        74
> all(rownames(pData(human.data))==colnames(exprs(human.data))) # Check that expression dat
```

[1] TRUE

```
> data(gset.data) # A GeneSetCollection for human.data
> # Now the same for the mouse.data
> data(mouse.data)
> head(exprs(mouse.data)[,1:5])
    hmp002 hmp003 hmp004 hmp007 hmp008
1415674_a_at 7.674153 7.677817 7.762724 7.759486 7.709533
1415686_at 7.761532 7.425119 7.596593 7.761873 7.760978
1415691_at 7.710116 7.536471 7.4772087.611941 7.682068
1415860_at 9.724080 9.771680 9.787628 9.810550 9.600272
1415888_at 8.169280 8.323366 8.153177 8.317424 8.021749
1415904_at 7.385975 6.666830 6.798164 7.2530467.440029
> head(pData(mouse.data))
    id grp
hmp002 hmp002 mouse.control
hmp003 hmp003 mouse.control
hmp004 hmp004 mouse.control
hmp007 hmp007 mouse.control
hmp008 hmp008 mouse.control
hmp009 hmp009 mouse.control
> table(pData(mouse.data)$grp)
mouse.control mouse.tumor
    179 13
> all(colnames(exprs(mouse.data))==rownames(pData(mouse.data)))
```

[1] TRUE
>

4.2 Form a dex.set Object for Each Experiment

Second, for each experiment, information defining the differential expression analysis must be combined with the ExpressionSet data and stored in a dex.set object by using make.dex.set.object, as shown below.

```
> # Create dex.set for human.comparison
> dex.set.human <- make.dex.set.object(Eset.data= human.data,
+ comp.var=2,
+ comp.def="human.tumor.typeD-other.human.tumors",
+ gset.collection=gset.data)
> dex.set.mouse <- make.dex.set.object(mouse.data,
+ comp.var=2,
+ comp.def="mouse.tumor-mouse.control",
+ gset.collection=NULL)
>
```

In the first statement above, Eset.data=human.data indicates that the ExpressionSet object human.data contains the expression and phenotype data, comp.var=2 indicates that the second column of the phenotype data (e.g. pData(human.data)[,2]) has the group labels for the differential expression analysis comparison, comp.def="human.tumor.typeDother.human.tumors" indicates that the comparison will be computed as "human.tumor.typeD" minus "other.human.tumors", and gset.collection=gset.data indicates that the GeneSetcollection object gset.data defines gene-sets for the differential expression analysis. The second statement above performs an analogous operation for the mouse data, except that it does not provide gene-set definitions for gene-set analyses.

4.3 Prepare the map.data Object that Defines How ProbeSets are Matched Across Experiments

The map.data list object includes a component probe.map with a data.frame that defines how probe-sets are matched across experiments and components map.Aprobe.col and map.Bprobe.col that give the name or numeric index of the columns with the probe-set identifiers from experiments "A" and "B", respectively. The code segment below illustrates the structure of the map.data object.

```
> data(map.data)
> names(map.data)
[1] "probe.map" "map.Aprobe.col" "map.Bprobe.col"
> head(map.data$probe.map)
\begin{tabular}{lrr} 
& human_probe & mouse_probe \\
7969 & 200050_at & 1422135_at \\
8025 & 200075_s_at & 1416395_at \\
8278 & 200642_at & 1459976_s_at \\
8279 & 200642_at & 1451124_at \\
8280 & 200642_at & 1435304_at \\
8281 & 200642_at & 1447761_x_at \\
> map.data\$map.Aprobe.col
\end{tabular}
```

[1] 1
> map.data\$map.Bprobe.col
[1] 2

4.4 Perform the AGDEX Analysis

Now that the dex.set objects for each experiment and the map.data object have been prepared, the AGDEX analysis may be performed by a simple call to the function agdex, as shown below.

```
> agdex.res<-agdex(dex.setA=dex.set.human,
+ dex.setB=dex.set.mouse,
+ map.data=map.data,
+ min.nperms=5,
+ max.nperms=10)
Preparing differential expression data sets (dex.setA and dex.setB): Fri Mar 30 23:53:37 201
Preparing data that maps probe set IDs across experiments: Fri Mar 30 23:53:38 2012
Computing statistics for observed data: Fri Mar 30 23:53:38 2012
Mapping gene-sets across experiments: Fri Mar 30 23:53:38 2012
Computing time for observed statistics (in seconds):
0.008 0 0.006 0 0
Permuting experiment A data 10 times: Fri Mar 30 23:53:38 2012
Computing time for permutation analysis of data set A (in seconds):
0.024 0 0.026 0 0
Permuting experiment B data 10 times: Fri Mar 30 23:53:38 2012
Computing time for permutation analysis of data set B (in seconds):
0.028 0 0.029 0 0
Packaging Result Object: Fri Mar 30 23:53:38 2012
Done: Fri Mar 30 23:53:38 2012
This statement performs the AGDEX analysis with the human data considered as experiment "A" and the mouse data considered as experiment "B". Note that it is important that the call to the function agdex and the map.data object label the experiments in the same way. Clearly, one usually will set larger values of min.nperms and max.nperms in most applications. The classical permutation test can be performed by setting min.nperms \(=\) max.nperms. See Pounds et al. (2011) for more details on how to set min.nperms and max.nperms. The AGDEX procedure will perform exact tests if the total number of permutations is less than the expected number of permutations under the null hypothesis of exchangeability.
```


4.5 Explore AGDEX Results

The results of the AGDEX analysis are stored in a list with multiple components. More details are available from help(agdex.result). As shown below, several
components of the result object echo the input for the group labels and definition of the contrast for each differential expression analysis.

```
> names(agdex.res)
    [1] "dex.compA" "dex.compB"
    [3] "gwide.agdex.result" "gset.result"
    [5] "meta.dex.res" "dex.resA"
    [7] "dex.resB" "dex.asgnA"
    [9] "dex.asgnB" "gset.listA"
[11] "gset.listB" "gset.list.agdex"
> agdex.res$dex.compA # echoes comp.def of dex.setA
[1] "human.tumor.typeD-other.human.tumors"
> agdex.res$dex.compB # echoes comp.def of dex.setB
[1] "mouse.tumor-mouse.control"
> head(agdex.res$dex.asgnA) # echoes group-labels from dex.setA
    id grp.lbl
1 \text { ept002 other.human.tumors}
2 ept011 other.human.tumors
3 ept064 other.human.tumors
4 \text { ept065 other.human.tumors}
5 ept066 other.human.tumors
6 \text { ept067 other.human.tumors}
> head(agdex.res$dex.asgnB) # echoes group-labels from dex.setB
    id grp.lbl
1 hmp002 mouse.control
2 hmp003 mouse.control
3 hmp004 mouse.control
4 hmp007 mouse.control
hmp008 mouse.control
6 \text { hmp009 mouse.control}
```

The result object also contains the probe-set level differential expression analysis results for each experiment. These components give the difference of means and p-values for each probe-set in their respective experiments.

```
> head(agdex.res$dex.resA) # Human results, difference of means and p-values
    probe.id dstat dpval
200050_at 200050_at -0.28879244 0.0
200075_s_at 200075_s_at 0.03932749 0.9
```

```
200642_at 200642_at 0.14981534 0.1
200823_x_at 200823_x_at -0.39166373 0.0
200878_at 200878_at 0.33152395 0.1
200879_s_at 200879_s_at 0.21099839 0.3
> head(agdex.res$dex.resB) # Mouse Results, difference of means and p-values
    probe.id dstat dpval
1415674_a_at 1415674_a_at -0.45082351 0.0
1415686_at 1415686_at 0.02563087 0.6
1415691_at 1415691_at 0.90984699 0.0
1415860_at 1415860_at -1.34567368 0.0
1415888_at 1415888_at -0.89954516 0.0
1415904_at 1415904_at 1.07934126 0.0
```

The meta.dex.res component contains these results and the meta-analysis z-statistic and p-value for the matched probe-set pairs.

```
> head(agdex.res$meta.dex.res)
    probeB probeA A.index B.index dstatA
1 1415674_a_at 217958_at 221 1 0.05025209
2 1415674_a_at 217959_s_at 222 1 -0.01934544
3 1415686_at 200927_s_at 8 2 -0.05587315
4 1415686_at 211503_s_at 162 2 0.04761622
5 1415686_at 200928_s_at 9 2 0.16640311
6 1415691_at 202514_at 37 3-0.09494414
    dpvalA dstatB dpvalB meta.zstat meta.pval
1 0.6 -0.45082351 0.0-1.04902956 0.2941645
2 1.0 -0.45082351 0.0 -1.40060345 0.1613327
3 0.0.7
4 0.8
5 0.2 0.02563087 0.6 1.18579098 0.2357049
6
```

The function agdex.scatterplot produces a scatterplot of the difference-ofmeans statistics for probe-set pairs.

```
> agdex.scatterplot(agdex.res, gset.id=NULL)
```


cos=0.29, cos.pvalA $=0$, cos.pvalB $=0$; dop $=0.15$, dop.pvalA $=0.2$, dop.pvalE
The results of the genome-wide AGDEX analysis are available in the gwide.agdex.result component.

```
> agdex.res$gwide.agdex.res
    stat.name stat.value A.pval B.pval A.nperms
\begin{tabular}{llllll} 
cos.stat & \(\cos\) & 0.2926636 & 0.0 & 0 & 10 \\
prop.stat & dop & 0.1510204 & 0.2 & 0 & 10
\end{tabular}
\begin{tabular}{lrrr} 
& A.exact & B.nperms & B.exact \\
cos.stat & FALSE & 10 & FALSE \\
prop.stat & FALSE & 10 & FALSE
\end{tabular}
```

The gwide.agdex.result component is a data.frame with the cosine and difference-of-proportions statistics and their p-values by permutation of group labels from experiments "A" and "B". It also indicates the number of permutations performed for each experiment and whether or not the test is exact (i.e., based on all possible permutations).

The results of gene-set differential expression analysis for each experiment, cross-experiment meta-analysis, and cross-experiment agreement are available in the gset.res component.

```
> head(agdex.res$gset.res)
    gset.source
1
    A
```


If there is interest in seeing probe-set level details for the gene-set analysis results, the function get.gset.result.details may be used. The function get.gset.result.details may be used to obtain details for a specific gene-set of particular interest or to obtain details for those with p-values less than a specific threshold.

```
> gset.res.stats<-get.gset.result.details(agdex.res, gset.ids = NULL, alpha=0.01)
> names(gset.res.stats)
[1] "enrichA.details" "enrichB.details" "agdex.details"
> head(gset.res.stats$enrichA.details)
    probe.id dstat dpval
    202844_s_at 0.31797091 0.0
    202845_s_at 0.39569681 0.0
3 203381_s_at 1.06113090 0.0
4 203382_s_at 1.31501397 0.0
5 203504_s_at -0.06661015 0.6
    203505_at 0.23706128 0.1
    gset.name meta.enrich.zstat
    CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
2 CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
3 CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
4 CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
5 CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
6 CDC42_PROTEIN_SIGNAL_TRANSDUCTION 2.3909
    meta.enrich.pval
10.008403564
2 0.008403564
0 0.008403564
4 0.008403564
5 0.008403564
0.008403564
    head(gset.res.stats$agdex.details)
    gset.source gset.name
1 A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A CDC42_PROTEIN_SIGNAL_TRANSDUCTION
    A.gset.cos.stat A.gset.cos.pval A.gset.dop.stat
1 0.5855269 0.1 0.09677419
```


4.6 Store and Report AGDEX Results

User may also use the write.agdex.result command to save their results in tabdelimited text format for viewing in Microsoft Excel. The command read.agdex.result may be used to read the output of write.agdex.result back into R.

Users may also wish to annotate the genes in each of the above result. Bioconductor annotation packages and annotation databases provide these capabilities for a wide range of gene expression microarrays.

5 References

1. Pounds, S. et al. A Procedure to statistically evaluate agreement of differential expression for cross-species genomics. Bioinformatics, doi: 10.1093/bioinformatics/btr362(2011).
2. Johnson, R. et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 466, 632-6 (2010).
3. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature, 468, 1095-99 (2010).
4. Pounds, S., et al. Integrated Analysis of Pharmacokinetic, Clinical, and SNP Microarray Data using Projection onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing. International Journal of Data Mining and Bioinformatics, 5:143-157 (2011).
