Package 'qpgraph'

September 24, 2012

Title Reverse engineering of molecular regulatory networks with qp-graphs

Version 1.12.2

Author R. Castelo and A. Roverato

Description q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables p exceeds the available sample size n as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network.

Depends R (\geq 2.10), methods

Imports methods, annotate, Matrix, graph, Biobase, GGBase, AnnotationDbi

Enhances rlecuyer, snow, Rgraphviz

Suggests Matrix, mvtnorm, graph, genefilter, Category, org. EcK12.eg.db, GOstats

Maintainer Robert Castelo <robert.castelo@upf.edu>

License GPL (>= 2)

biocViews

Microarray, GeneExpression, Transcription, Pathways, Bioinformatics, GraphsAndNetworks

LazyLoad yes

URL http://functionalgenomics.upf.edu/qpgraph

R topics documented:

qpgraph-package .								•					 								2
EcoliOxygen		•							•	 •			 			•	•		•		4
qpAnyGraph								•					 								5
qpAvgNrr								•	•				 								7
qpBoundary		•							•	 •			 			•	•		•		10
qpCItest		•	•		•				•	 •		•	 		•	•	•		•		11
qpClique		•	•		•				•	 •		•	 		•	•	•		•		14
qpCliqueNumber .		•						•	•	 •			 •				•			•	16

qpCov	17
qpEdgeNrr	19
qpFunctionalCoherence	21
qpG2Sigma	23
qpGenNrr	25
qpGetCliques	28
qpGraph	29
qpGraphDensity	31
qpHist	32
qpHTF	34
qpImportNrr	35
qpIPF	36
qpK2ParCor	38
qpNrr	39
qpPAC	42
qpPCC	44
qpPlotNetwork	45
qpPrecisionRecall	46
qpPRscoreThreshold	48
qpRndGraph	49
qpRndHMGM	50
qpRndWishart	51
qpSampleFromHMGM	53
qpTopPairs	54
qpUnifRndAssociation	55
qpUpdateCliquesRemoving	56
	58
	50

Index

qpgraph-package The q-order partial correlation graph learning software, qpgraph.

Description

q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables p exceeds the available sample size n as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network.

Details

Package:	qpgraph
Version:	1.10.0
Built:	R 2.14.0
Depends:	methods
Imports:	methods, annotate, Matrix, graph, Biobase, AnnotationDbi
Enhances:	rlecuyer, snow, Rgraphviz
Suggests:	Matrix, mvtnorm, graph, genefilter, Category, org.EcK12.eg.db, GOstats
biocViews:	Microarray, GeneExpression, Transcription, Pathways, Bioinformatics, GraphsAndNetworks
License:	GPL (>= 2)
URL:	http://functionalgenomics.upf.edu/qpgraph

Functions

- qpNrr estimates non-rejection rates for every pair of variables.
- qpAvgNrr estimates average non-rejection rates for every pair of variables.
- qpGenNrr estimates generalized average non-rejection rates for every pair of variables.
- qpEdgeNrr estimate the non-rejection rate of one pair of variables.
- qpCItest performs a conditional independence test between two variables given a conditioning set.
- qpHist plots the distribution of non-rejection rates.
- qpGraph obtains a qp-graph from a matrix of non-rejection rates.
- qpAnyGraph obtains an undirected graph from a matrix of pairwise measurements.
- qpGraphDensity calculates and plots the graph density as function of the non-rejection rate.
- qpCliqueNumber calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.
- qpClique calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.
- qpGetCliques finds the set of (maximal) cliques of a given undirected graph.
- qpRndWishart random generation for the Wishart distribution.
- qpCov calculates the sample covariance matrix, just as the function cov() but returning a dspMatrix-class object which efficiently stores such a dense symmetric matrix.
- qpG2Sigma builds a random covariance matrix from an undrected graph. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph.
- qpUnifRndAssociation builds a matrix of uniformly random association values between 1 and +1 for all pairs of variables that follow from the number of variables given as input argument.
- qpK2ParCor obtains the partial correlation coefficients from a given concentration matrix.
- qpIPF performs maximum likelihood estimation of a sample covariance matrix given the independence constraints from an input list of (maximal) cliques.
- qpPAC estimates partial correlation coefficients and corresponding P-values for each edge in a given undirected graph, from an input data set.
- qpPCC estimates pairwise Pearson correlation coefficients and their corresponding P-values between all pairs of variables from an input data set.
- qpRndGraph builds a random undirected graph with a bounded maximum connectivity degree on every vertex.
- qpPrecisionRecall calculates the precision-recall curve for a given measure of association between all pairs of variables in a matrix.
- qpPRscoreThreshold calculates the score threshold at a given precision or recall level from a given precision-recall curve.
- qpImportNrr imports non-rejection rates.
- qpFunctionalCoherence estimates functional coherence of a given transcriptional regulatory network using Gene Ontology annotations.
- qpTopPairs reports a top number of pairs of variables according to either an association measure and/or occurring in a given reference graph.

• qpPlotNetwork plots a network using the Rgraphviz library.

This package provides an implementation of the procedures described in (Castelo and Roverato, 2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks from microarray data is available in the vignette qpTxRegNet and, the same directory, contains a pre-print of a book chapter describing the basic functionality of the package which serves the purpose of a basic users's guide. This package is a contribution to the Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comput. Biol.* 16(2):213-227, 2009.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and Zhang, J. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.*, 5:R80, 2004.

Lauritzen, S.L. (2002). gRaphical Models in R. R News, 3(2)39.

EcoliOxygen Preprocessed microarray oxygen deprivation data and filtered RegulonDB data

Description

The data consist of two objects, one containing normalized gene expression microarray data from Escherichia coli (E. coli) and the other containing a subset of filtered RegulonDB transcription regulatory relationships on E. coli.

Usage

```
data(Ecoli0xygen)
```

Format

gds680.eset	ExpressionSet object containing n=43 experiments of various mutants under oxygen deprivati
filtered.regulon6.1	Data frame object containing a subset of the E. coli transcriptional network from RegulonDB 6.

4

qpAnyGraph

Source

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. *Nature*, 429(6987):92-96, 2004.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-Flores, I., Salgado, H., Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos, C., Miranda-Rios, J., Morett, E., Merino, E., Huerta, A.M., Trevino-Quintanilla, L., and Collado-Vides, J. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. *Nucleic Acids Res.*, 36(Database issue):D120-124, 2008.

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Examples

data(Ecoli0xygen)

qpAnyGraph

A graph

Description

Obtains an undirected graph from a matrix of pairwise measurements

Usage

Arguments

measurementsMa	measurementsMatrix				
	matrix of pairwise measurements.				
threshold	threshold on the measurements below or above which pairs of variables are as- sumed to be disconnected in the resulting graph.				
remove	direction of the removal with the threshold. It should be either "below" (default) or "above".				
topPairs	number of edges from the top of the ranking, defined by the pairwise measure- ments in measurementsMatrix, to use to form the resulting graph. This param- eter is incompatible with a value different from NULL in threshold.				
decreasing	logical, only applies when topPairs is set; if TRUE then the ranking is made in decreasing order; if FALSE then is made in increasing order.				
pairup.i	subset of vertices to pair up with subset pairup.j				
pairup.j	subset of vertices to pair up with subset pairup.i				

return.type	type of data structure on which the resulting undirected graph should be re-
	turned. Either a logical adjacency matrix with cells set to TRUE when the two
	indexing variables are connected in the graph (default), or a list of edges in
	a matrix where each row corresponds to one edge and the two columns con-
	tain the two vertices defining each edge, or a graphNEL-class object, or a
	graphAM-class object.

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting undirected graph as either an adjacency matrix, a graphNEL object or a graphAM object, depending on the value of the return. type parameter. Note that when some gold-standard graph is available for comparison, a value for the parameter threshold can be found by calculating a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when we specify with topPairs=n that we want a graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

```
require(mvtnorm)
```

qpAvgNrr

```
qpAvgNrr
```

Average non-rejection rate estimation

Description

Estimates average non-rejection rates for every pair of variables.

Usage

```
## S4 method for signature 'ExpressionSet'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,
                                   fix.Q=NULL, nTests=100, alpha=0.05,
                                   pairup.i=NULL, pairup.j=NULL, type=c("arith.mean"),
                                   verbose=TRUE, identicalQs=TRUE,
                                   exact.test=TRUE, R.code.only=FALSE,
                                   clusterSize=1, estimateTime=FALSE,
                                   nAdj2estimateTime=10)
## S4 method for signature 'data.frame'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,
                                fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL,
                                pairup.j=NULL, long.dim.are.variables=TRUE,
                                type=c("arith.mean"), verbose=TRUE,
                                identicalQs=TRUE, exact.test=TRUE,
                                R.code.only=FALSE, clusterSize=1,
                                estimateTime=FALSE, nAdj2estimateTime=10)
## S4 method for signature 'matrix'
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL, fix.Q=NULL,
                            nTests=100, alpha=0.05, pairup.i=NULL,
                            pairup.j=NULL, long.dim.are.variables=TRUE,
                            type=c("arith.mean"), verbose=TRUE,
                            identicalQs=TRUE, exact.test=TRUE,
                            R.code.only=FALSE, clusterSize=1,
                            estimateTime=FALSE, nAdj2estimateTime=10)
```

Arguments

Х	data set from where to estimate the average non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.
qOrders	either a number of partial-correlation orders or a vector of vector of particular orders to be employed in the calculation.
Ι	indexes or names of the variables in X that are discrete. When X is an ExpressionSet then I may contain only names of the phenotypic variables in X. See details be- low regarding this argument.

restrict.Q	indexes or names of the variables in X that restrict the sample space of condi- tioning subsets Q.
fix.Q	indexes or names of the variables in X that should be fixed within every condi- tioning conditioning subsets Q.
nTests	number of tests to perform for each pair for variables.
alpha	significance level of each test.
pairup.i	subset of vertices to pair up with subset pairup.j
pairup.j	subset of vertices to pair up with subset pairup. i
long.dim.are.va	ariables
	logical; if TRUE it is assumed that when the data is a data frame or a matrix, the longer dimension is the one defining the random variables; if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
type	type of average. By now only the arithmetic mean is available.
verbose	show progress on the calculations.
identicalQs	use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.
exact.test	logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.
clusterSize	size of the cluster of processors to employ if we wish to speed-up the calcula- tions by performing them in parallel. A value of 1 (default) implies a single- processor execution. The use of a cluster of processors requires having previ- ously loaded the packages snow and rlecuyer.
estimateTime	logical; if TRUE then the time for carrying out the calculations with the given parameters is estimated by calculating for a limited number of adjacencies, specified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (default) calculations are performed normally till they finish.
nAdj2estimateT	
	number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to $\min(p, n-3)$, where p is the number of variables and n the number of observations. The computational cost increases linearly within each q value and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011).

qpAvgNrr

Value

A dspMatrix-class symmetric matrix of estimated average non-rejection rates with the diagonal set to NA values. When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated average non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In *Proc.* 27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp. 689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables maxCon <- 3 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate</pre>

```
set.seed(123)
```

```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
```

avgnrr.estimates <- qpAvgNrr(X, verbose=FALSE)</pre>

distribution of average non-rejection rates for the present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A])

distribution of average non-rejection rates for the missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A])

```
## Not run:
library(snow)
library(rlecuyer)
```

only for moderate and large numbers of variables the
use of a cluster of processors speeds up the calculations

nVar <- 500 maxCon <- 3

```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE))
system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE, clusterSize=4))
## End(Not run)</pre>
```

```
qpBoundary
```

Maximum boundary size of the resulting qp-graphs

Description

Calculates and plots the size of the largest vertex boundary as function of the non-rejection rate.

Usage

Arguments

nrrMatrix	matrix of non-rejection rates.
Ν	number of observations from where the non-rejection rates were estimated.
threshold.lim	range of threshold values on the non-rejection rate.
breaks	either a number of threshold bins or a vector of threshold breakpoints.
plot	logical; if TRUE makes a plot of the result; if FALSE it does not.
qpBoundaryOutp	ut
	output from a previous call to qpBoundary. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
density.digits	number of digits in the reported graph densities.
logscale.bdsiz	e
	logical; if TRUE then the scale for the maximum boundary size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).
titlebd	main title to be shown in the plot.
verbose	show progress on calculations.

Details

The maximum boundary is calculated as the largest degree among all vertices of a given qp-graph.

10

qpCItest

Value

A list with the maximum boundary size and graph density as function of threshold, the threshold on the non-rejection rate that provides a maximum boundary size strictly smaller than the sample size N and the resulting maximum boundary size.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpHTF qpGraphDensity

Examples

require(mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## the higher the q the less complex the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpBoundary(nrr.estimates, plot=FALSE)
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpBoundary(nrr.estimates, plot=FALSE)
```

qpCItest

Conditional independence test

Description

Performs a conditional independence test between two variables given a conditioning set.

Usage

Arguments

x	data set where the test should be performed. It can be either an ExpressionSet object, a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix corresponds to the sample covariance matrix of the data and the sample size parameter n should be provided.
i	index or name of one of the two variables in X to test.
j	index or name of the other variable in X to test.
Q	indexes or names of the variables in X forming the conditioning set.
I	indexes or names of the variables in X that are discrete. See details below re- garding this argument.
n	number of observations in the data set. Only necessary when the sample covari- ance matrix is provided through the X parameter.
long.dim.are.va	ariables
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
exact.test	logical; if FALSE an asymptotic likelihood ratio test of conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact likelihood ratio test of conditional independence with mixed data is employed. See details below regarding this argument.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

When variables in i, j and Q are continuous this function performs a conditional independence test using a t test for zero partial regression coefficient (Lauritzen, 1996, pg. 150). Note that the size of possible Q sets should be in the range 1 to min(p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with the number of variables in Q.

When variables in i, j and Q are continuous and discrete (mixed data), indicated with the I argument when X is a matrix, then mixed graphical model theory (Lauritzen and Wermuth, 1989) is employed and, concretely, it is assumed that data come from an homogeneous conditional Gaussian distribution. By default, with exact.test=TRUE, an exact likelihood ratio test for conditional independence is performed (Lauritzen, 1996, pg. 192-194; Tur and Castelo, 2011), otherwise an asymptotic one is used.

12

qpCItest

In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm.

Currently discrete variables are allowed to have missing values and in such circumstance only the complete observations in (i, j, Q) are employed in the calculations. This makes the conditional independence test only correct under the assumption that missing data is missing completely at random (MCAR); see Little and Rubin (1989).

Value

A list with two members, the value of the statistic and its corresponding P-value of rejecting the null hypothesis of conditional independence.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

Lauritzen, S.L. and Wermuth, N. Graphical Models for associations between variables, some of which are qualitative and some quantitative. *Ann. Stat.*, 17(1):31-57, 1989.

Little, R.J.A. and Rubin, D.B. Statistical analysis with missing data. Wiley, 1989.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In *Proc.* 27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp. 689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpEdgeNrr

Examples

require(mvtnorm)

```
nObs <- 100 ## number of observations to simulate
## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
qpCItest(X, i=3, j=4, Q=1, long.dim.are.variables=FALSE)
qpCItest(X, i=3, j=4, Q=c(1,2), long.dim.are.variables=FALSE)
```

qpClique

Description

Calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.

Usage

```
qpClique(nrrMatrix, N=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE,
        exact.calculation=TRUE, approx.iter=100,
        qpCliqueOutput=NULL, density.digits=0,
        logscale.clqsize=FALSE,
        titleclq="maximum clique size as function of threshold",
        verbose=FALSE)
```

Arguments

nrrMatrix	matrix of non-rejection rates.
Ν	number of observations from where the non-rejection rates were estimated.
threshold.lim	range of threshold values on the non-rejection rate.
breaks	either a number of threshold bins or a vector of threshold breakpoints.
plot	logical; if TRUE makes a plot of the result; if FALSE it does not.
exact.calculati	ion
	logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.
approx.iter	number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE).
qpCliqueOutput	output from a previous call to qpClique. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.
density.digits	number of digits in the reported graph densities.
logscale.clqsiz	ze
	logical; if TRUE then the scale for the maximum clique size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).
titleclq	main title to be shown in the plot.
verbose	show progress on calculations.

Details

The estimate of the complexity of the resulting qp-graphs is calculated as the area enclosed under the curve of maximum clique sizes.

The maximum clique size, or clique number, is obtained by calling the function qpCliqueNumber The calculation of the clique number of an undirected graph is an NP-complete problem which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). Therefore, giving breakpoints between 0.95 and 1.0 may result into very dense graphs which

qpClique

can lead to extremely long execution times. If it is necessary to look at that range of breakpoints it is recommended either to use the lower bound on the clique number (exact.calculation=FALSE) or to look at qpGraphDensity.

Value

A list with the maximum clique size and graph density as function of threshold, an estimate of the complexity of the resulting qp-graphs across the thresholds, the threshold on the non-rejection rate that provides a maximum clique size strictly smaller than the sample size N and the resulting maximum clique size.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpCliqueNumber qpGraphDensity

Examples

require(mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## the higher the q the less complex the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity
```

qpCliqueNumber

Description

Calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.

Usage

Arguments

g	either a graphNEL object or an adjacency matrix of the given undirected graph.
exact.calculat	ion
	logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.
return.vertice	S
	logical; if TRUE a set of vertices forming a maximal clique of maximum size is returned; if FALSE only the maximum clique size is returned.
approx.iter	number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE.
verbose	show progress on calculations.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

The calculation of the clique number of an undirected graph is one of the basic NP-complete problems (Karp, 1972) which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003) based on the, probably the fastest to date, algorithm by Ostergard (2002).

The lower bound on the maximum clique size is calculated by ranking the vertices by their connectivity degree, put the first vertex in a set and go through the rest of the ranking adding those vertices to the set that form a clique with the vertices currently within the set. Once the entire ranking has been examined a large clique should have been built and eventually one of the largests ones. This process is repeated a number of times (approx.iter) each of which the ranking is altered with increasing levels of randomness acyclically (altering 1 to p vertices and again). Larger values of approx.iter should provide tighter lower bounds although it has been proven that no polynomial time algorithm can approximate the maximum clique size within a factor of n^{ϵ} ($\epsilon > 0$), unless P=NP (Feige et al, 1991; Pardalos and Xue, 1994).

Value

a lower bound of the size of the largest maximal clique in the given graph, also known as its clique number.

qpCov

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Feige, U., Goldwasser, S., Lov\'asz, L., Safra, S. and Szegedy, M. Approximating the maximum clique is almost NP-Complete. *Proc. 32nd IEEE Symp. on Foundations of Computer Science*, 2-12, 1991.

Karp, R.M. Reducibility among combinatorial problems. *Complexity of computer computations*, 43:85-103, 1972.

Niskanen, S. Ostergard, P. Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/~pat/cliquer.html)

Ostergard, P. A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120:197-207, 2002.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpClique

Examples

```
require(graph)
nVar <- 50
set.seed(123)
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
qpCliqueNumber(g1, verbose=FALSE)
g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
qpCliqueNumber(g2, verbose=FALSE)</pre>
```

qpCov

Calculation of the sample covariance matrix

Description

Calculates the sample covariance matrix, just as the function cov() but returning a dspMatrix-class object which efficiently stores such a dense symmetric matrix.

Usage

qpCov(X, corrected=TRUE)

Arguments

Х	data set from where to calculate the sample covariance matrix. As the cov() function, it assumes the columns correspond to random variables and the rows to multivariate observations.
corrected	flag set to TRUE when calculating the sample covariance matrix (default; and set to FALSE when calculating the uncorrected sum of squares and deviations.

Details

This function makes the same calculation as the cov function but returns a sample covariance matrix stored in the space-efficient class dspMatrix-class and, moreover, allows one for calculating the uncorrected sum of squares and deviations which equals (n-1) * cov().

Value

A sample covariance matrix stored as a dspMatrix-class object. See the Matrix package for full details on this object class.

Author(s)

R. Castelo

See Also

qpPCC

Examples

```
require(graph)
require(mvtnorm)
```

nVar <- 50 ## number of variables nObs <- 10 ## number of observations to simulate</pre>

set.seed(123)

```
g <- randomEGraph(as.character(1:nVar), p=0.15)</pre>
```

```
Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
```

```
S <- qpCov(X)
```

```
## estimate Pearson correlation coefficients by scaling the sample covariance matrix R <- cov2cor(as(S, "matrix"))
```

```
## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1</pre>
```

Pearson correlation coefficients of the present edges
summary(abs(R[upper.tri(R) & A]))

```
## Pearson correlation coefficients of the missing edges
summary(abs(R[upper.tri(R) & !A]))
```

qpEdgeNrr

Description

Estimates the non-rejection rate for one pair of variables.

Usage

```
## S4 method for signature 'smlSet'
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,
                                    nTests=100, alpha=0.05, exact.test=TRUE,
                                    R.code.only=FALSE)
## S4 method for signature 'ExpressionSet'
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,
                                    nTests=100, alpha=0.05, exact.test=TRUE,
                                    R.code.only=FALSE)
## S4 method for signature 'data.frame'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
                                 nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
                                 exact.test=TRUE, R.code.only=FALSE)
## S4 method for signature 'matrix'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
                             n=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
                             exact.test=TRUE, R.code.only=FALSE)
```

Arguments

X	data set from where the non-rejection rate should be estimated. It can be either an ExpressionSet object, a smlSet object a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix is the sample covariance matrix of the data and the sample size parameter n should be provided.
i	index or name of one of the two variables in X to test.
j	index or name of the other variable in X to test.
q	order of the conditioning subsets employed in the calculation.
I	indexes or names of the variables in X that are discrete when X is a matrix or a data frame.
restrict.Q	indexes or names of the variables in X that restrict the sample space of condi- tioning subsets Q.
fix.Q	indexes or names of the variables in X that should be fixed within every condi- tioning conditioning subsets Q.
n	number of observations in the data set. Only necessary when the sample covari- ance matrix is provided through the X parameter.
nTests	number of tests to perform for each pair for variables.
alpha	significance level of each test.

long.dim.are.va	riables
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
exact.test	logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests that accept the null hypothesis of independence given a set of randomly sampled q-order conditionals.

Note that the possible values of q should be in the range 1 to min(p,n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with q.

When either discrete phenotypic variables in ExpressionSet objects, discrete phenotypic/genotype variables in smlSet objects, or I is set different to NULL with an input matrix or data.frame, then mixed graphical model theory is employed. More concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011).

Currently discrete variables are allowed to have missing values and in such circumstance only the complete observations in each conditional independence test involving (i, j, Q), with |Q|=q, are employed in the calculations. This makes each conditional independence test, and the non-rejection rate estimation thereof, only correct under the assumption that missing data is missing completely at random (MCAR); see Little and Rubin (1989).

Value

An estimate of the non-rejection rate for the particular given pair of variables.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Little, R.J.A. and Rubin, D.B. Statistical analysis with missing data. Wiley, 1989.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In *Proc.* 27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp. 689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpAvgNrr qpHist qpGraphDensity qpClique

qpFunctionalCoherence

Examples

qpFunctionalCoherence Functional coherence estimation

Description

Estimates functional coherence for a given transcriptional regulatory network specified either as an adjacency matrix with a list of transcription factor gene identifiers or as a list of transcriptional regulatory modules.

Usage

Arguments

object object containing the transcriptional regulatory modules for which we want to estimate their functional coherence. It can be an adjacency matrix of the undirected graph representing the transcriptional regulatory network or a list of gene target sets where the name of the entry should be the transcription factor identifier.

TFgenes	when the input object is a matrix, it is required to provide a vector of tran- scription factor gene identifiers (which should match somewhere in the row and column names of the matrix.
geneUniverse	vector of all genes considered in the analysis. By default it equals the rows and column names of object when it is a matrix, or the set of all different gene identifiers occuring in object when it is a list.
chip	name of the .db package containing the Gene Ontology (GO) annotations.
minRMsize	minimum size of the target gene set in each regulatory module where functional enrichment will be calculated and thus where functional coherence will be estimated.
verbose	logical; if TRUE the function will show progress on the calculations; if FALSE the function will remain quiet (default).
clusterSize	size of the cluster of processors to employ if we wish to speed-up the calcula- tions by performing them in parallel. A value of 1 (default) implies a single- processor execution. The use of a cluster of processors requires having previ- ously loaded the packages snow and rlecuyer.

Details

This function estimates the functional coherence of a transcriptional regulatory network represented by means of an undirected graph encoded by an adjacency matrix and of a set of transcription factor genes. The functional coherence of a transcriptional regulatory network is calculated as specified by Castelo and Roverato (2009) and corresponds to the distribution of individual functional coherence values of every of the regulatory modules of the network each of them defined as a transcription factor and its set of putatively regulated target genes. In the calculation of the functional coherence value of a regulatory module, Gene Ontology (GO) annotations are employed through the given annotation . db package and the conditional hyper-geometric test implemented in the GOstats package from Bioconductor.

Value

A list with three slots, a first one containing the transcriptional regulatory network as a list of regulatory modules and their targets, a second one containing this same network but including only those modules with GO BP annotations and a third one consisting of a vector of functional coherence values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

See Also

qpAvgNrr qpGraph

qpG2Sigma

Examples

```
library(org.EcK12.eg.db)
# load RegulonDB data from this package
data(Ecoli0xygen)
# pick two TFs from the RegulonDB data in this package
TFgenes <- c("mhpR", "iscR")</pre>
# get their Entrez Gene Identifiers
TFgenesEgIDs <- unlist(mget(TFgenes, AnnotationDbi::revmap(org.EcK12.egSYMBOL)))</pre>
# get all genes involved in their regulatory modules from
# the RegulonDB data in this package
mt <- match(filtered.regulon6.1[,"EgID_TF"], TFgenesEgIDs)</pre>
allGenes <- as.character(unique(as.vector(</pre>
            as.matrix(filtered.regulon6.1[!is.na(mt),
                                            c("EgID_TF","EgID_TG")])))
mtTF <- match(filtered.regulon6.1[,"EgID_TF"],allGenes)</pre>
mtTG <- match(filtered.regulon6.1[,"EgID_TG"],allGenes)</pre>
# select the corresponding subset of the RegulonDB data in this package
subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]</pre>
TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"], allGenes)</pre>
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"], allGenes)</pre>
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1,</pre>
                                      idx_TF=TFi, idx_TG=TGi)
# build an adjacency matrix representing the transcriptional regulatory
# relationships from these regulatory modules
p <- length(allGenes)</pre>
adjacencyMatrix <- matrix(FALSE, nrow=p, ncol=p)</pre>
rownames(adjacencyMatrix) <- colnames(adjacencyMatrix) <- allGenes</pre>
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])</pre>
adjacencyMatrix[idxTFTG] <-</pre>
  adjacencyMatrix[cbind(idxTFTG[,2],idxTFTG[,1])] <- TRUE</pre>
# calculate functional coherence on these regulatory modules
fc <- qpFunctionalCoherence(adjacencyMatrix, TFgenes=TFgenesEgIDs,</pre>
                             chip="org.EcK12.eg.db")
print(sprintf("the %s module has a FC value of %.2f",
               mget(names(fc$functionalCoherenceValues),org.EcK12.egSYMBOL),
               fc$functionalCoherenceValues))
```

```
qpG2Sigma
```

Random covariance matrix

Description

Builds a positive definite matrix from an undirected graph G that can be used as a covariance matrix for a Gaussian graphical model with graph G. The inverse of the resulting matrix contains zeroes at

the missing edges of the given undirected graph G.

Usage

```
qpG2Sigma(g, rho=0, matrix.completion=c("HTF", "IPF"), verbose=FALSE, R.code.only=FALSE)
```

Arguments

g	undirected graph specified either as a graphNEL object or as an adjacency matrix.	
rho	real number between -1/(n.var-1) and 1 corresponding to the mean marginal correlation	
matrix.completion		
	algorithm to employ in the matrix completion operations employed to construct a positive definite matrix with the zero pattern specified in g	
verbose	show progress on the calculations.	
R.code.only	logical; if FALSE then the faster C implementation is used in the internal call to the IPF algorithm (default); if TRUE then only R code is executed.	

Details

The random covariance matrix is built by first generating a random matrix with the function qpRndWishart from a Wishart distribution whose expected value is a matrix with unit diagonal and constant offdiagonal entries equal to rho.

Value

A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical model with graph G.

Author(s)

A. Roverato

References

Castelo, R. and Roverato, A. Utilities for large Gaussian graphical model inference and simulation with the R package qpgraph, submitted.

See Also

qpRndGraph qpGetCliques qpIPF qpRndWishart rmvnorm

Examples

```
set.seed(123)
G <- qpRndGraph(p=5, d=2)
Sigma <- qpG2Sigma(G, rho=0.5)
round(solve(Sigma), digits=2)
as(G, "matrix")</pre>
```

qpGenNrr

Description

Estimates generalized non-rejection rates for every pair of variables from two or more data sets.

Usage

```
## S4 method for signature 'ExpressionSet'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
                                   fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
                                   pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE,
                                   exact.test=TRUE, R.code.only=FALSE, clusterSize=1,
                                   estimateTime=FALSE, nAdj2estimateTime=10)
## S4 method for signature 'data.frame'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
                                fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
                                pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
                                verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, R.code.only=FAL
                                clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
## S4 method for signature 'matrix'
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,
                            fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
                            pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
                            verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, R.code.only=FALSE,
                            clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
```

Arguments

Х	data set from where to estimate the average non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.
datasetIdx	either a single number, or a character string, indicating the column in the phe- notypic data of the ExpressionSet object, or in the input matrix or data frame, containing the indexes to the data sets. Alternatively, it can be a vector of these indexes with as many positions as samples.
qOrders	either a NULL value (default) indicating that a default guess on the q-order will be employed for each data set or a vector of particular orders with one for each data set. The default guess corresponds to the floor of the median value among the valid q orders of the data set.
Ι	indexes or names of the variables in X that are discrete. When X is an ExpressionSet then I may contain only names of the phenotypic variables in X. See details below regarding this argument.
restrict.Q	indexes or names of the variables in X that restrict the sample space of condi- tioning subsets Q.
fix.Q	indexes or names of the variables in X that should be fixed within every condi- tioning conditioning subsets Q.
return.all	logical; if TRUE all intervining non-rejection rates will be return in a matrix per dataset within a list; FALSE (default) if only generalized non-rejection rates should be returned.

nTests	number of tests to perform for each pair for variables.	
alpha	significance level of each test.	
pairup.i	subset of vertices to pair up with subset pairup.j	
pairup.j	subset of vertices to pair up with subset pairup.i	
long.dim.are.va	ariables	
	logical; if TRUE it is assumed that when the data is a data frame or a matrix, the longer dimension is the one defining the random variables; if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.	
verbose	show progress on the calculations.	
identicalQs	use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.	
exact.test	logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.	
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.	
clusterSize	size of the cluster of processors to employ if we wish to speed-up the calcula- tions by performing them in parallel. A value of 1 (default) implies a single- processor execution. The use of a cluster of processors requires having previ- ously loaded the packages snow and rlecuyer.	
estimateTime	logical; if TRUE then the time for carrying out the calculations with the given pa- rameters is estimated by calculating for a limited number of adjacencies, speci- fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de- fault) calculations are performed normally till they finish.	
nAdj2estimateTime		
	number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.	

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to $\min(p,n-3)$, where p is the number of variables and n the number of observations for the corresponding data set. The computational cost increases linearly within each q value and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011).

Value

A list containing the following two or more entries: a first one with name genNrr with a dspMatrix-class symmetric matrix of estimated generalized non-rejection rates with the diagonal set to NA values.

qpGenNrr

When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value; a second one with name qOrders with the q-orders employed in the calculation for each data set; if return.all=TRUE then there will be one additional entry for each data set containing the matrix of the non-rejection rates estimated from that data set with the corresponding q-order, using the indexing value of the data set as entry name.

Note, however, that when estimateTime=TRUE, then instead of the list with matrices of estimated (generalized) non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In *Proc.* 27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp. 689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate</pre>

set.seed(123)

```
A1 <- qpRndGraph(p=nVar, d=maxCon)
A2 <- qpRndGraph(p=nVar, d=maxCon)
Sigma1 <- qpG2Sigma(A1, rho=0.5)
Sigma2 <- qpG2Sigma(A2, rho=0.5)
X1 <- rmvnorm(nObs, sigma=as.matrix(Sigma1))
X2 <- rmvnorm(nObs, sigma=as.matrix(Sigma2))</pre>
```

distribution of generalized non-rejection rates for the common present edges summary(nrr.estimates\$genNrr[upper.tri(nrr.estimates\$genNrr) & A1 & A2])

distribution of generalized non-rejection rates for the present edges specific to A1
summary(nrr.estimates\$genNrr[upper.tri(nrr.estimates\$genNrr) & A1 & !A2])

distribution of generalized non-rejection rates for the present edges specific to A2 summary(nrr.estimates\$genNrr[upper.tri(nrr.estimates\$genNrr) & !A1 & A2])

distribution of generalized non-rejection rates for the common missing edges

summary(nrr.estimates\$genNrr[upper.tri(nrr.estimates\$genNrr) & !A1 & !A2])

compare with the average non-rejection rate on the pooled data set avgnrr.estimates <- qpAvgNrr(rbind(X1, X2), long.dim.are.variables=FALSE, verbose=FALSE)</pre>

distribution of average non-rejection rates for the common present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & A2])

distribution of average non-rejection rates for the present edges specific to A1
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & !A2])

distribution of average non-rejection rates for the present edges specific to A2 summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & A2])

distribution of average non-rejection rates for the common missing edges summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & !A2])

qpGetCliques Clique list

Description

Finds the set of (maximal) cliques of a given undirected graph.

Usage

qpGetCliques(g, clqspervtx=FALSE, verbose=TRUE)

Arguments

g	either a graphNEL object or an adjacency matrix of the given undirected graph.
clqspervtx	logical; if TRUE then the resulting list returned by the function includes addi- tionally p entries at the beginning (p=number of variables) each corresponding
	to a vertex in the graph and containing the indices of the cliques where that vertex belongs to; if FALSE these additional entries are not included (default).
verbose	show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979). For this reason, this is an extremely time and memory consuming computation for large dense graphs. The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003).

Value

A list of maximal cliques. When clqspervtx=TRUE the first p entries (p=number of variables) contain, each of them, the indices of the cliques where that particular vertex belongs to.

Author(s)

R. Castelo

qpGraph

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Garey, M.R. and Johnson D.S. *Computers and intractability: a guide to the theory of NP-completeness.* W.H. Freeman, San Francisco, 1979.

Niskanen, S. Ostergard, P. Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/~pat/ cliquer.html)

See Also

qpCliqueNumber qpIPF

Examples

```
require(graph)
set.seed(123)
nVar <- 50
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
clqs1 <- qpGetCliques(g1, verbose=FALSE)
length(clqs1)
summary(sapply(clqs1, length))
g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
length(clqs2)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
summary(sapply(clqs2, length))</pre>
```

qpGraph

The qp-graph

Description

Obtains a qp-graph from a matrix of non-rejection rates

Usage

Arguments

nrrMatrix	matrix of non-rejection rates.
threshold	threshold on the non-rejection rate above which pairs of variables are assumed to be disconnected in the resulting qp-graph.
topPairs	number of edges from the top of the ranking, defined by the non-rejection rates in nrrMatrix, to use to form the resulting qp-graph. This parameter is incompatible with a value different from NULL in threshold.
pairup.i	subset of vertices to pair up with subset pairup.j
pairup.j	subset of vertices to pair up with subset pairup.i
return.type	type of data structure on which the resulting undirected graph should be re- turned. Either a logical adjacency matrix with cells set to TRUE when the two indexing variables are connected in the qp-graph (default), or a list of edges in a matrix where each row corresponds to one edge and the two columns con- tain the two vertices defining each edge, or a graphNEL-class object, or a graphAM-class object.

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting qp-graph as either an adjacency matrix, a graphNEL object or a graphAM object, depending on the value of the return.type parameter. Note that when some gold-standard graph is available for comparison, a value for the parameter threshold can be found by calculating a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when we specify with topPairs=n that we want a qp-graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpAnyGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

require(mvtnorm)

nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate</pre>

set.seed(123)

qpGraphDensity

```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
## the higher the threshold
g <- qpGraph(nrr.estimates, threshold=0.9)
## the denser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)
## the sparser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)</pre>
```

qpGraphDensity Densities of resulting qp-graphs

Description

Calculates and plots the graph density as function of the non-rejection rate.

Usage

Arguments

nrrMatrix	matrix of non-rejection rates.	
threshold.lim	range of threshold values on the non-rejection rate.	
breaks	either a number of threshold bins or a vector of threshold breakpoints.	
plot	logical; if TRUE makes a plot of the result; if FALSE it does not.	
qpGraphDensityOutput		
	output from a previous call to qpGraphDensity. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.	
density.digits	number of digits in the reported graph densities.	
titlegd	main title to be shown in the plot.	

Details

The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area enclosed under the curve of graph densities.

Value

A list with the graph density as function of threshold and an estimate of the sparseness of the resulting qp-graphs across the thresholds.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpClique

Examples

```
require(mvtnorm)
```

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## the higher the q the sparser the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)</pre>
```

qpGraphDensity(nrr.estimates, plot=FALSE)\$sparseness

qpHist

Histograms of non-rejection rates

Description

Plots the distribution of non-rejection rates.

Usage

qpHist

Arguments

nrrMatrix	matrix of non-rejection rates.
A	adjacency matrix of an undirected graph whose present and missing edges will be employed to show separately the distribution of non-rejection rates.
titlehist	main title of the histogram(s).
freq	logical; if TRUE, the histograms show frequencies (counts) of occurrence of the different non-rejection rate values; if FALSE, then probability densities are plotted

Details

This function plots histograms using the R-function hist and therefore the way they are displayed follows that of this R-function.

Value

None

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraphDensity qpClique

Examples

require(mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)</pre>
```

qpHist(nrr.estimates, A)

qpHTF

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints from an input undirected graph.

Usage

qpHTF(S, g, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

Arguments

S	input matrix, in the context of this package, the sample covariance matrix.
g	input undirected graph.
tol	tolerance under which the iterative algorithm stops.
verbose	show progress on calculations.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

This is an alternative to the Iterative Proportional Fitting (IPF) algorithm (see, Whittaker, 1990, pp. 182-185 and qpIPF) which also adjusts the input matrix to the independence constraints in the input undirected graph. However, differently to the IPF, it works by going through each of the vertices fitting the marginal distribution over the corresponding vertex boundary. It stops when the adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or equal than a given tolerance value. This algorithm is described by Hastie, Tibshirani and Friedman (2009, pg. 634), hence we name it here HTF, and it has the advantage over the IPF that it does not require the list of maximal cliques of the graph which may be exponentially large. In contrast, it requires that the maximum boundary size of the graph is below the number of samples where the input sample covariance matrix S was estimated. For the purpose of exploring qp-graphs that meet such a requirement, one can use the function qpBoundary.

Value

The input matrix adjusted to the constraints imposed by the input undirected graph, i.e., a maximum likelihood estimate of the sample covariance matrix that includes the independence constraints encoded in the undirected graph.

Note

Thanks to Giovanni Marchetti for bringing us our attention to this algorithm and sharing an early version of its implementation on the R package ggm.

Author(s)

R. Castelo

qpImportNrr

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Hastie, T., Tibshirani, R. and Friedman, J.H. *The Elements of Statistical Learning*, Springer, 2009. Whittaker, J. *Graphical Models in Applied Multivariate Statistics*. Wiley, 1990.

See Also

qpBoundary qpIPF qpPAC

Examples

```
require(graph)
require(mvtnorm)
nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate
set.seed(123)
g <- randomEGraph(as.character(1:nVar), p=0.15)</pre>
Sigma <- qpG2Sigma(g, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
## MLE of the sample covariance matrix
S <- cov(X)
## more efficient MLE of the sample covariance matrix using HTF
S_htf <- qpHTF(S, g)</pre>
## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1
## entries in S and S_htf for present edges in g should coincide
max(abs(S_htf[A==1] - S[A==1]))
## entries in the inverse of S_htf for missing edges in g should be zero
max(solve(S_htf)[A==0])
```

qpImportNrr

```
Import non-rejection rates
```

Description

Imports non-rejection rates from an external flat file.

Usage

qpImportNrr(filename, nTests)

Arguments

filename	name of the flat file with the data on the non-rejection rates.
nTests	number of tests performed in the estimation of these non-rejection rates.

Details

This function expects a flat file with three tab-separated columns corresponding to, respectively, 0-based index of one of the variables, 0-based index of the other variable, number of non-rejected tests for the pair of variables of that row in the text file. An example of a few lines of that file would be:

6	3	95
6	4	98
6	5	23
7	0	94
7	1	94

After reading the file the function builds a matrix of non-rejection rates by dividing the number of non-rejected tests by nTests. Note that if the flat file to be imported would eventually have directly the rates instead of the number of tests, these can be also imported by setting nTests=1.

This function is thought to be used to read files obtained from the standalone parallel version of qpNrr which can be downloaded from http://functionalgenomics.upf.edu/qp.

Value

A symmetric matrix of non-rejection rates with the diagonal set to the NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr

qpIPF

Iterative proportional fitting algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints from an input list of (maximal) cliques.

Usage

qpIPF(vv, clqlst, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

qpIPF

Arguments

vv	input matrix, in the context of this package, the sample covariance matrix.
clqlst	list of maximal cliques obtained from an undirected graph by using the function qpGetCliques.
tol	tolerance under which the iterative algorithm stops.
verbose	show progress on calculations.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

The Iterative proportional fitting algorithm (see, Whittaker, 1990, pp. 182-185) adjusts the input matrix to the independence constraints in the undirected graph from where the input list of cliques belongs to, by going through each of the cliques fitting the marginal distribution over the clique for the fixed conditional distribution of the clique. It stops when the adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or equal than a given tolerance value.

Value

The input matrix adjusted to the constraints imposed by the list of cliques, i.e., a maximum likelihood estimate of the sample covariance matrix that includes the independence constraints encoded in the undirected graph formed by the given list of cliques.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Whittaker, J. Graphical models in applied multivariate statistics. Wiley, 1990.

See Also

qpGetCliques qpPAC

Examples

```
require(graph)
require(mvtnorm)
nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate
set.seed(123)
g <- randomEGraph(as.character(1:nVar), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
```

qpK2ParCor

```
## MLE of the sample covariance matrix
S <- cov(X)
## more efficient MLE of the sample covariance matrix using IPF
clqs <- qpGetCliques(g, verbose=FALSE)
S_ipf <- qpIPF(S, clqs)
## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1
## entries in S and S_ipf for present edges in g should coincide
max(abs(S_ipf[A==1] - S[A==1]))
## entries in the inverse of S_ipf for missing edges in g should be zero
max(solve(S_ipf)[A==0])
```

qpK2ParCor Partial correlation coefficients

Description

Obtains partial correlation coefficients from a given concentration matrix.

Usage

qpK2ParCor(K)

Arguments

Κ

positive definite matrix, typically a concentration matrix.

Details

This function applies cov2cor to the given concentration matrix and then changes the sign of the off-diagonal entries in order to obtain a partial correlation matrix.

Value

A partial correlation matrix.

Author(s)

R. Castelo and A. Roverato

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

qpG2Sigma

38

qpNrr

Examples

```
require(graph)
n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
K <- solve(Sigma)
round(qpK2ParCor(K), digits=2)
as(g, "matrix")</pre>
```

qpNrr

```
Non-rejection rate estimation
```

Description

Estimates non-rejection rates for every pair of variables.

Usage

```
## S4 method for signature 'ExpressionSet'
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,
                                alpha=0.05, pairup.i=NULL, pairup.j=NULL,
                                verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
                                R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
                                nAdj2estimateTime=10)
## S4 method for signature 'data.frame'
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,
                             alpha=0.05, pairup.i=NULL, pairup.j=NULL,
                             long.dim.are.variables=TRUE, verbose=TRUE,
                             identicalQs=TRUE, exact.test=TRUE, R.code.only=FALSE,
                             clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
## S4 method for signature 'matrix'
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,
                         alpha=0.05, pairup.i=NULL, pairup.j=NULL,
                         long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE,
                         exact.test=TRUE, R.code.only=FALSE, clusterSize=1,
                         estimateTime=FALSE, nAdj2estimateTime=10)
```

Arguments

Х	data set from where to estimate the non-rejection rates. It can be an Expression- Set object, a data frame or a matrix.
q	partial-correlation order to be employed.
I	indexes or names of the variables in X that are discrete. See details below re- garding this argument.
restrict.Q	indexes or names of the variables in X that restrict the sample space of conditioning subsets Q.

fix.Q	indexes or names of the variables in X that should be fixed within every condi- tioning conditioning subsets Q.	
nTests	number of tests to perform for each pair for variables.	
alpha	significance level of each test.	
pairup.i	subset of vertices to pair up with subset pairup.j	
pairup.j	subset of vertices to pair up with subset pairup.i	
long.dim.are.va	riables	
	logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.	
verbose	show progress on the calculations.	
identicalQs	use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.	
exact.test	logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed. See details below regarding this argument.	
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.	
clusterSize	size of the cluster of processors to employ if we wish to speed-up the calcula- tions by performing them in parallel. A value of 1 (default) implies a single- processor execution. The use of a cluster of processors requires having previ- ously loaded the packages snow and rlecuyer.	
estimate⊤ime	logical; if TRUE then the time for carrying out the calculations with the given pa- rameters is estimated by calculating for a limited number of adjacencies, speci- fied by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE (de- fault) calculations are performed normally till they finish.	
nAdj2estimateTime		
	number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE). By default this has a default value of 10 adjacencies and larger values should provide more accurate estimates. This might be relevant when using a cluster facility.	

Details

Note that for pure continuous data the possible values of q should be in the range 1 to min(p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with q and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value. Full details on the calculation of the non-rejection rate can be found in Castelo and Roverato (2006).

When either discrete phenotypic variables in ExpressionSet objects, discrete phenotypic/genotype variables in smlSet objects, or I is set different to NULL with an input matrix or data.frame, then mixed graphical model theory is employed. More concretely, it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p plus the number of levels of the discrete variables involved in the marginal distributions employed by the algorithm. By default, with

qpNrr

exact.test=TRUE, an exact test for conditional independence is employed, otherwise an asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011).

Currently discrete variables are allowed to have missing values and in such circumstance only the complete observations in each conditional independence test involving (i, j, Q), with |Q|=q, are employed in the calculations. This makes each conditional independence test, and the non-rejection rate estimation thereof, only correct under the assumption that missing data is missing completely at random (MCAR); see Little and Rubin (1989).

Value

A dspMatrix-class symmetric matrix of estimated non-rejection rates with the diagonal set to NA values. If arguments pairup.i and pairup.j are employed, those cells outside the constrained pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for completion of the calculations is returned.

Author(s)

R. Castelo, A. Roverato and I. Tur

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Little, R.J.A. and Rubin, D.B. Statistical analysis with missing data. Wiley, 1989.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In *Proc.* 27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp. 689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

library(mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate</pre>
```

set.seed(123)

```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
```

nrr.estimates <- qpNrr(X, q=3, verbose=FALSE)</pre>

distribution of non-rejection rates for the present edges
summary(nrr.estimates[upper.tri(nrr.estimates) & A])

distribution of non-rejection rates for the missing edges

```
summary(nrr.estimates[upper.tri(nrr.estimates) & !A])
## using R code only this would take much more time
qpNrr(X, q=3, R.code.only=TRUE, estimateTime=TRUE)
## Not run:
library(snow)
library(rlecuyer)
## only for moderate and large numbers of variables the
## use of a cluster of processors speeds up the calculations
nVar <- 500
maxCon <- 3
A <- qpRndGraph(p=nVar, d=maxCon)</pre>
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE))</pre>
system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE, clusterSize=4))</pre>
## End(Not run)
```

qpPAC

Estimation of partial correlation coefficients

Description

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected graph G and their corresponding P-values for the hypothesis of zero partial correlations.

Usage

Arguments

Х	data set from where to estimate the partial correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.
g	either a graphNEL object or an adjacency matrix of the given undirected graph.
return.K	logical; if TRUE this function also returns the concentration matrix K; if FALSE it does not return it (default).

qpPAC

long.dim.are.variables		
	logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.	
tol	maximum tolerance in the application of the IPF algorithm.	
matrix.completion		
	algorithm to employ in the matrix completion operations employed to construct a positive definite matrix with the zero pattern specified in g	
verbose	show progress on the calculations.	
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.	

Details

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the existence of MLEs that the sample size n is larger than the clique number w(G) of the graph G.

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the qpIPF function and the P-values are calculated based on the estimation of the standard errors (see Roverato and Whittaker, 1996).

Value

A list with two matrices, one with the estimates of the PACs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Roverato, A. and Whittaker, J. Standard errors for the parameters of graphical Gaussian models. *Stat. Comput.*, 6:297-302, 1996.

See Also

qpGraph qpCliqueNumber qpClique qpGetCliques qpIPF

Examples

```
require(mvtnorm)
```

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
```

```
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
nrr.estimates <- qpNrr(X, verbose=FALSE)
g <- qpGraph(nrr.estimates, 0.5)
pac.estimates <- qpPAC(X, g=g, verbose=FALSE)
## distribution absolute values of the estimated
## partial correlation coefficients of the present edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A]))
## distribution absolute values of the estimated
## partial correlation coefficients of the missing edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A]))</pre>
```

```
qpPCC
```

Estimation of Pearson correlation coefficients

Description

Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all pairs of variables from an input data set.

Usage

```
## S4 method for signature 'ExpressionSet'
qpPCC(X)
## S4 method for signature 'data.frame'
qpPCC(X, long.dim.are.variables=TRUE)
## S4 method for signature 'matrix'
qpPCC(X, long.dim.are.variables=TRUE)
```

Arguments

```
Х
```

data set from where to estimate the Pearson correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.

long.dim.are.variables

logical; if TRUE it is assumed that when X is a data frame or a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.

Details

The calculations made by this function are the same as the ones made for a single pair of variables by the function cor.test but for all the pairs of variables in the data set.

Value

A list with two matrices, one with the estimates of the PCCs and the other with their P-values.

qpPlotNetwork

Author(s)

R. Castelo and A. Roverato

See Also

qpPAC

Examples

```
require(graph)
require(mvtnorm)
nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate
set.seed(123)
g <- randomEGraph(as.character(1:nVar), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
pcc.estimates <- qpPCC(X)
## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1
## Pearson correlation coefficients of the present edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A]))
## Pearson correlation coefficients of the missing edges</pre>
```

```
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !A]))
```

Plots a graph

qpPlotNetwork

Description

Plots a graph using the Rgraphviz library

Usage

Arguments

g	graph to plot provided as a graphNEL-class object.
vertexSubset	subset of vertices that define the induced subgraph to be plotted.
boundary	flag set to TRUE when we wish that the subset specified in vertexSubset also includes the vertices connected to them; FALSE otherwise.

minimumSizeConnComp		
	minimum size of the connected components to be plotted.	
pairup.i	subset of vertices to pair up with subset pairup.j.	
pairup.j	subset of vertices to pair up with subset pairup.i.	
annotation	name of an annotation package to transform gene identifiers into gene symbols when vertices correspond to genes.	

Details

This function acts as a wrapper for the functionality provided by the Rgraphviz package to plot graphs in R. It should be help to plot networks obtained with the qpgraph package methods.

Value

The plotted graph is invisibly returned as a graphNEL-class object.

Author(s)

R. Castelo

See Also

qpGraph qpAnyGraph

Examples

require(Rgraphviz)

```
rndassociations <- qpUnifRndAssociation(10)
g <- qpAnyGraph(abs(rndassociations), threshold=0.7, remove="below", return.type="graphNEL")
qpPlotNetwork(g)</pre>
```

qpPrecisionRecall Calculation of precision-recall curves

Description

Calculates the precision-recall curve (see Fawcett, 2006) for a given measure of association between all pairs of variables in a matrix.

Usage

Arguments

measurementsMatrix

	matrix containing the measure of association between all pairs of variables.
refGraph	a reference graph from which to calculate the precision-recall curve provided either as an adjacency matrix, a two-column matrix of edges, a graphNEL-class object or a graphAM-class object.
decreasing	logical; if TRUE then the measurements are ordered in decreasing order; if FALSE then in increasing order.
pairup.i	subset of vertices to pair up with subset pairup.j.
pairup.j	subset of vertices to pair up with subset pairup.i.
recallSteps	steps of the recall on which to calculate precision.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not be taken into account. That is an alternative way to restricting the variable pairs with the parameters pairup.i and pairup.j.

Value

A matrix where rows correspond to recall steps and columns correspond, respetively, to the actual recall, the precision, the number of true positives at that recall rate and the threshold score that yields that recall rate.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPRscoreThreshold qpGraph qpAvgNrr qpPCC

Examples

require(mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate</pre>
```

```
set.seed(123)
```

```
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))</pre>
```

```
## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)</pre>
```

qpPRscoreThreshold	Calculation of scores thresholds attaining nominal precision or recall
	levels

Description

Calculates the score threshold at a given precision or recall level from a given precision-recall curve.

Usage

```
qpPRscoreThreshold(preRecFun, level, recall.level=TRUE, max.score=9999999)
```

Arguments

preRecFun	precision-recall function (output from qpPrecisionRecall).
level	recall or precision level.
recall.level	logical; if TRUE then it is assumed that the value given in the level parameter corresponds to a desired level of recall; if FALSE then it is assumed a desired level of precision.
max.score	maximum score given by the method that produced the precision-recall function to an association.

Value

The score threshold at which a given level of precision or recall is attained by the given precisionrecall function. For levels that do not form part of the given function their score is calculated by linear interpolation and for this reason is important to carefully specify a proper value for the max.score parameter.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

```
48
```

qpRndGraph

See Also

qpPrecisionRecall qpGraph

Examples

require(mvtnorm)

qpRndGraph

Undirected random d-regular graphs

Description

Samples an undirected d-regular graph approximately uniformly at random.

Usage

qpRndGraph(p=6, d=2, R.code.only=FALSE)

Arguments

р	number of vertices.
d	degree of every vertex.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

This function implements the algorithm from Steger and Wormald (1999) for sampling undirected d-regular graphs from a probability distribution of all d-regular graphs on p vertices which is approximately uniform. More concretely, for all vertex degree values d that grow as a small power of p, all d-regular graphs on p vertices will have in the limit the same probability as p grows large. Steger and Wormald (1999, pg. 396) believe that for d » sqrt(p) the resulting probability distribution will no longer be approximately uniform.

This function is provided in order to generate a random undirected graph as input to the function qpG2Sigma which samples a random covariance matrix whose inverse (aka, precision matrix) has zeroes on those cells corresponding to the missing edges in the input graph. d-regular graphs are useful for working with synthetic graphical models for two reasons: one is that d-regular graph density is a linear function of d and the other is that the minimum connectivity degree of two disconnected vertices is an upper bound of their outer connectivity (see Castelo and Roverato, 2006, pg. 2646).

Value

The adjacency matrix of the resulting graph.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Steger, A. and Wormald, N.C. Generating random regular graphs quickly, *Combinatorics, Probab.* and Comput., 8:377-396.

See Also

qpG2Sigma

Examples

nVar <- 50 ## number of vertices maxCon <- 5 ## maximum connectivity per vertex</pre>

```
set.seed(123)
```

A <- qpRndGraph(p=nVar, d=maxCon)</pre>

summary(apply(A, 1, sum))

qpRndHMGM

Random homogeneous mixed graphical Markov model

Description

Builds a random homogeneous mixed graphical Markov model (experimental feature).

Usage

qpRndHMGM(nDiscrete=1, nContinuous=3, d=2, mixedIntStrength=5, rho=0.5, G=NULL)

50

qpRndWishart

Arguments

nDiscrete	number of discrete variables.	
nContinuous	number of continuous variables.	
d	degree of every vertex.	
mixedIntStrength		
	strength of the mixed interactions.	
rho	marginal correlation of the quadratic interactions.	
G	input graph, if we don't want the function to simulate one.	

Details

This function builds a random homogeneous mixed graphical model. It uses qpRndGraph to simulate a random d-regular graph and then builds a set of parameters that encode the conditional independencies encoded by the graph and the given number of discrete and continuous vertices. This is still an experimental feature and by now it generates only models where the discrete variables are marginally independent.

Value

A list with the graph and the parameters of the homogeneous mixed graphical model, ready to be used with the function qpSampleFromHMGM for sampling synthetic data using this model.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpRndGraph qpSampleFromHMGM

Examples

qpRndHMGM()

qpRndWishart Random Wishart distribution

Description

Random generation for the (n.var * n.var) Wishart distribution (see Press, 1972) with matrix parameter A=diag(delta)%*%P%*%diag(delta) and degrees of freedom df.

Usage

```
qpRndWishart(delta=1, P=0, df=NULL, n.var=NULL)
```

Arguments

delta	a numeric vector of n.var positive values. If a scalar is provided then this is extended to form a vector.
Ρ	a (n.var * n.var) positive definite matrix with unit diagonal. If a scalar is provided then this number is used as constant off-diagonal entry for P.
df	degrees of freedom.
n.var	dimension of the Wishart matrix. It is required only when both delata and P are scalar.

Details

The degrees of freedom are df > n.var-1 and the expected value of the distribution is equal to df * A. The random generator is based on the algorithm of Odell and Feiveson (1966).

Value

A list of two n.var * n.var matrices rW and meanW where rW is a random value from the Wishart and meanW is the expected value of the distribution.

Author(s)

A. Roverato

References

Odell, P.L. and Feiveson, A.G. A numerical procedure to generate a sample covariance matrix. J. Am. Statist. Assoc. 61, 199-203, 1966.

Press, S.J. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. New York: Holt, Rinehalt and Winston, 1972.

See Also

qpG2Sigma

Examples

Construct an adjacency matrix for a graph on 6 vertices

```
nVar <- 6
A <- matrix(0, nVar, nVar)
A[1,2] <- A[2,3] <- A[3,4] <- A[3,5] <- A[4,6] <- A[5,6] <- 1
A=A + t(A)
A
set.seed(123)
M <- qpRndWishart(delta=sqrt(1/nVar), P=0.5, n.var=nVar)
M
set.seed(123)
d=1:6
M <- qpRndWishart(delta=d, P=0.7, df=20)
M</pre>
```

qpSampleFromHMGM Sample from homogeneous mixed graphical Markov models

Description

Samples synthetic data from homogeneous mixed graphical Markov models (experimental feature).

Usage

qpSampleFromHMGM(n=10, hmgm=qpRndHMGM())

Arguments

n	number of observations to sample.
hmgm	homogeneous mixed graphical Markov model as generated by the function qpRndHMGM.

Details

This function samples synthetic data from a random homogeneous mixed graphical model build with the function qpRndHMGM. This is still an experimental feature.

Value

The sampled synthetic data.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpRndGraph qpSampleFromHMGM

Examples

qpSampleFromHMGM()

qpTopPairs

Description

Report a top number of pairs of variables according to either an association measure and/or occurring in a given reference graph.

Usage

Arguments

measurementsMatrix

	matrix containing the measure of association between all pairs of variables.
refGraph	a reference graph containing the pairs that should be reported and provided ei- ther as an adjacency matrix, a graphNEL-class object or a graphAM-class object.
n	number of pairs to report, 6 by default, use Inf for reporting all of them.
file	file name to dump the pairs information as tab-separated column text.
decreasing	logical; if TRUE then the measurements are employed to be ordered in decreas- ing order; if FALSE then in increasing order.
pairup.i	subset of vertices to pair up with subset pairup.j.
pairup.j	subset of vertices to pair up with subset pairup.i.
annotation	name of an annotation package to transform gene identifiers into gene symbols when variables correspond to genes.
fcOutput	output of qpFunctionalCoherence.
fcOutput.na.rm	flag set to TRUE when pairs with NA values from fcOutput should not be reported; FALSE (default) otherwise.
digits	number of decimal digits reported in the association measure and functional coherence values.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not be taken into account. That is an alternative way to restricting the variable pairs with the parameters pairup.i and pairup.j. The same holds for refGraph. One of these two, should be specified.

Value

The ranking of pairs is invisibly returned.

Author(s)

R. Castelo

qpUnifRndAssociation

See Also

qpGraph qpPrecisionRecall qpFunctionalCoherence

Examples

qpTopPairs(matrix(runif(100), nrow=10, dimnames=list(1:10,1:10)))

qpUnifRndAssociation Uniformly random association values

Description

Builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables that follow from the number of variables given as input argument.

Usage

```
qpUnifRndAssociation(n.var, var.names=1:n.var)
```

Arguments

n.var	number of variables.
var.names	names of the variables to use as row and column names in the resulting matrix.

Details

This function simply generates uniformly random association values with no independence pattern associated to them. For generating a random covariance matrix that reflects such a pattern use the function qpG2Sigma.

Value

A symmetric matrix of uniformly random association values between -1 and +1.

Author(s)

R. Castelo

See Also

qpG2Sigma

Examples

rndassociation <- qpUnifRndAssociation(100)
summary(rndassociation[upper.tri(rndassociation)])</pre>

```
qpUpdateCliquesRemoving
```

Update clique list when removing one edge

Description

Updates the set of (maximal) cliques of a given undirected graph when removing one edge.

Usage

qpUpdateCliquesRemoving(g, clqlst, v, w, verbose=TRUE)

Arguments

g	either a graphNEL object or an adjacency matrix of the given undirected graph.
clqlst	list of cliques of the graph encoded in g. this list should start on element n+1 (for n vertices) while between elements 1 to n there should be references to the cliques to which each of the 1 to n vertices belong to (i.e., the output of qpGetCliques) with parameter clqspervtx=TRUE.
v	vertex of the edge being removed.
W	vertex of the edge being removed.
verbose	show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979). For this reason, this is an extremely time and memory consuming computation for large dense graphs. If we spend the time to obtain one such list of cliques and we remove one edge of the graph with this function we may be able to update the set of maximal cliques instead of having to generate it again entirely with qpGetCliques but it requires that in the first call to qpGetCliques we set clqspervtx=TRUE. It calls a C implementation of the algorithm from Stix (2004).

Value

The updated list of maximal cliques after removing one edge from the input graph. Note that because the corresponding input clique list had to be generated with the argument clqspervtx=TRUE in the call to qpGetCliques, the resulting updated list of cliques also includes in its first p entries (p=number of variables) the indices of the cliques where that particular vertex belongs to. Notice also that although this strategy might be in general more efficient than generating again the entire list of cliques, when removing one edge from the graph, the clique enumeration problem remains NP-hard (see Garey and Johnson, 1979) and therefore depending on the input graph its computation may become unfeasible.

Author(s)

R. Castelo

References

Garey, M.R. and Johnson D.S. *Computers and intractability: a guide to the theory of NP-completeness.* W.H. Freeman, San Francisco, 1979.

Stix, V. Finding all maximal cliques in dynamic graphs *Comput. Optimization and Appl.*, 27:173-186, 2004.

See Also

qpCliqueNumber qpGetCliques qpIPF

Examples

require(graph)

```
set.seed(123)
nVar <- 1000
g1 <- randomEGraph(V=as.character(1:nVar), p=0.1)
g1
clqs1 <- qpGetCliques(g1, clqspervtx=TRUE, verbose=FALSE)</pre>
```

length(clqs1)

```
g2 <- removeEdge(from="1", to=edges(g1)[["1"]][1], g1)
g2</pre>
```

```
system.time(clqs2a <- qpGetCliques(g2, verbose=FALSE))</pre>
```

system.time(clqs2b <- qpUpdateCliquesRemoving(g1, clqs1, "1", edges(g1)[["1"]][1], verbose=FALSE))</pre>

length(clqs2a)

length(clqs2b)-nVar

Index

*Topic **datasets** EcoliOxygen, 4 *Topic graphs qpgraph-package, 2 *Topic models qpAnyGraph, 5 qpAvgNrr, 7 qpBoundary, 10 qpCItest, 11 qpClique, 14 qpCliqueNumber, 16 qpCov, 17 qpEdgeNrr, 19 qpFunctionalCoherence, 21 qpG2Sigma, 23 qpGenNrr, 25 qpGetCliques, 28 qpGraph, 29 qpgraph-package, 2 qpGraphDensity, 31 apHist, 32 qpHTF, 34 qpImportNrr, 35 qpIPF, 36 qpK2ParCor, 38 qpNrr, 39 qpPAC, 42qpPCC, 44 qpPlotNetwork, 45 qpPrecisionRecall, 46 qpPRscoreThreshold, 48 qpRndGraph, 49 qpRndHMGM, 50 qpRndWishart, 51 qpSampleFromHMGM, 53 qpTopPairs, 54 qpUnifRndAssociation, 55 gpUpdateCliquesRemoving, 56 *Topic **multivariate** qpAnyGraph, 5 qpAvgNrr, 7 qpBoundary, 10 qpCItest, 11

qpClique, 14 qpCliqueNumber, 16 qpCov, 17 qpEdgeNrr, 19 qpFunctionalCoherence, 21 qpG2Sigma, 23 qpGenNrr, 25 qpGetCliques, 28 qpGraph, 29 qpgraph-package, 2 qpGraphDensity, 31 qpHist, 32 qpHTF, 34 qpImportNrr, 35 qpIPF, 36 qpK2ParCor, 38 qpNrr, 39 qpPAC, 42 qpPCC, 44 qpPlotNetwork, 45 qpPrecisionRecall, 46 qpPRscoreThreshold, 48 qpRndGraph, 49 apRndHMGM, 50 qpRndWishart, 51 qpSampleFromHMGM, 53 qpTopPairs, 54 qpUnifRndAssociation, 55 qpUpdateCliquesRemoving, 56 *Topic package qpgraph-package, 2 cor.test,44 cov, <u>18</u> cov2cor, 38 EcoliOxygen, 4 filtered.regulon6.1 (EcoliOxygen), 4 gds680.eset (EcoliOxygen), 4 hist, 33 qpAnyGraph, 3, 5, 30, 46

INDEX

qpAvgNrr, 3, 6, 7, 20, 22, 27, 30, 32, 33, 41, 47 qpAvgNrr, data.frame-method (qpAvgNrr), 7 qpAvgNrr, ExpressionSet-method (qpAvgNrr), 7 qpAvgNrr,matrix-method(qpAvgNrr),7 qpBoundary, 10, 10, 34, 35 qpCItest, 3, 11 qpCItest,data.frame-method(qpCItest), 11 gpCItest,ExpressionSet-method (qpCItest), 11 qpCItest, matrix-method (qpCItest), 11 qpCItest,smlSet-method(qpCItest), 11 qpClique, 3, 6, 9, 14, 14, 17, 20, 27, 30, 32, 33, 41, 43 qpCliqueNumber, 3, 14, 15, 16, 29, 43, 57 qpCov, 3, 17 qpEdgeNrr, 3, 6, 9, 13, 19, 27, 30, 32, 33, 41 qpEdgeNrr,data.frame-method (qpEdgeNrr), 19 qpEdgeNrr,ExpressionSet-method (qpEdgeNrr), 19 qpEdgeNrr, matrix-method (qpEdgeNrr), 19 qpEdgeNrr, smlSet-method (qpEdgeNrr), 19 qpFunctionalCoherence, 3, 21, 54, 55 qpFunctionalCoherence,list-method (qpFunctionalCoherence), 21 qpFunctionalCoherence,lsCMatrix-method (qpFunctionalCoherence), 21 qpFunctionalCoherence,lspMatrix-method (qpFunctionalCoherence), 21 qpFunctionalCoherence,lsyMatrix-method (qpFunctionalCoherence), 21 qpFunctionalCoherence,matrix-method (qpFunctionalCoherence), 21 qpG2Sigma, 3, 23, 38, 50, 52, 55 qpGenNrr, 3, 25 qpGenNrr,data.frame-method (qpGenNrr), 25 qpGenNrr, ExpressionSet-method (qpGenNrr), 25 qpGenNrr,list-method (qpGenNrr), 25 qpGenNrr, matrix-method (qpGenNrr), 25 qpGetCliques, 3, 24, 28, 37, 43, 56, 57 qpGraph, 3, 6, 22, 29, 43, 46, 47, 49, 55 qpgraph (qpgraph-package), 2 qpgraph-package, 2 qpGraphDensity, 3, 6, 9, 11, 15, 20, 27, 30, 31, 31, 33, 41 qpHist, 3, 9, 20, 27, 32, 41 qpHTF, 11, 34 qpImportNrr, 3, 35

qpIPF, 3, 24, 29, 34, 35, 36, 43, 57 qpK2ParCor, 3, 38 qpNrr, 3, 6, 9, 13, 20, 27, 30, 32, 33, 36, 39 qpNrr, data.frame-method (qpNrr), 39 qpNrr, ExpressionSet-method (qpNrr), 39 qpNrr, matrix-method (qpNrr), 39 qpPAC, 3, 35, 37, 42, 45 qpPAC, data.frame-method (qpPAC), 42 qpPAC,ExpressionSet-method(qpPAC),42 qpPAC, matrix-method (qpPAC), 42 qpPCC, 3, 18, 44, 47 qpPCC, data.frame-method (qpPCC), 44 qpPCC,ExpressionSet-method(qpPCC),44 gpPCC,matrix-method(gpPCC),44 qpPlotNetwork, 4, 45 qpPrecisionRecall, 3, 6, 30, 46, 48, 49, 55 gpPRscoreThreshold, 3, 6, 30, 47, 48 qpRndGraph, 3, 24, 49, 51, 53 qpRndHMGM, 50, 53 qpRndWishart, 3, 24, 51 qpSampleFromHMGM, 51, 53, 53 qpTopPairs, 3, 54 qpUnifRndAssociation, 3, 55qpUpdateCliquesRemoving, 56

rmvnorm, 24