
Package ‘htSeqTools’
September 24, 2012

Version 1.2.0

Date 2012-03-19

Title Quality Control, Visualization and Processing for High-Throughput Sequencing data

Author Evarist Planet, Camille Stephan-Otto, Oscar Reina, Oscar Flores, David Rossell

Maintainer Oscar Reina <oscar.reina@irbbarcelona.org>

Depends R (>= 2.12.2), methods, BiocGenerics (>= 0.1.0), Biobase,IRanges, meth-
ods, MASS, BSgenome, GenomicRanges

Enhances multicore

Description We provide efficient, easy-to-use tools for High-Throughput Sequencing (ChIP-
seq, RNAseq etc.). These include MDS plots (analogues to PCA), detecting inefficient immuno-
precipitation or over-amplification artifacts, tools to identify and test for genomic re-
gions with large accumulation of reads, and visualization of coverage profiles.

License GPL (>=2)

LazyLoad yes

Collate ClassDefinitions.R GenericDefs.R alignPeaks.R extendRanges.R
filterDuplReads.R mergeRegions.R stdPeakLocation.R
rowLogRegLRT.R enrichedRegions.R enrichedPeaks.R listOverlap.R
tabDuplReads.R cmdsFit-class.R cmds.R fdrEnrichedCounts.R
islandCounts.R countRepeats.R ssdCoverage.R giniCoverage.R
regionsCoverage.R gridCover-methods.R enrichedChrRegions.R
plotChrRegions.R coverageDiff.R plotMeanCoverage.R

biocViews HighThroughputSequencing,QualityControl

R topics documented:
alignPeaks . 2
cmds . 3
cmdsFit . 4
cmdsFit-class . 5
countHitsWindow . 6
coverageDiff . 7
enrichedChrRegions . 7

1

2 alignPeaks

enrichedPeaks . 9
enrichedRegions . 11
extendRanges . 13
fdrEnrichedCounts . 14
filterDuplReads . 15
giniCoverage . 17
gridCover-class . 19
htSample . 20
islandCounts . 20
listOverlap . 21
mergeRegions . 23
plot-methods . 24
plotChrRegions . 25
regionsCoverage . 25
rowLogRegLRT . 27
ssdCoverage . 27
stdPeakLocation . 29

Index 31

alignPeaks Align peaks in a ChIP-Seq experiment by removing the strand specific
bias.

Description

Align peaks in a ChIP-Seq experiment by removing the shift between reads aligned to the plus and
the minus strands.

Usage

alignPeaks(x, strand, npeaks = 1000, bandwidth = 150, mc.cores=1)

Arguments

x A RangedDataList, RangedData or an IRangesList object containing the aligned
reads in each chromosome.

strand Strand that each read was aligned to. If x is of class RangedDataList, strand
can be a character vector of length 1 indicating the name of the field in x indi-
cating the strand, i.e. x[[1]][[strand]] contains the strand information.

npeaks Number of peaks to be used to estimate the shift size.

bandwidth Only reads with distance less than bandwidth between them and their closest
gene are used to estimate the shift size.

mc.cores Number of cores to be used for parallel computing (passed on to mclapply).
Only used if x is of class RangedDataList.

cmds 3

Details

The procedure detects the npeaks highest peaks (using reads from both strands simultaneously).
Then it selects reads which are less than bandwidth base pairs away from any of the peaks. Then
it computes (a) the average distance between reads on the plus strand and the closest peak, (b)
the same distance for reads on the minus strand. The mean difference between (a) and (b) is the
estimated shift size. Reads on the plus strand are shifted to the right, whereas reads on the minus
strands are shifted to the left.

Value

A CompressedIRangesList object with all reads shifted so that the strand specific bias is no longer
present.

Methods

signature(x = "IRangesList", strand = "list") Each element in x corresponds to a chro-
mosome, and each range gives the start/end of a sequence. strand indicates the strand for the
ranges in x.

signature(x = "RangedData", strand = "character") x gives read start and end positions,
and strand gives the name of the variable in values(x) containing the strand information.

signature(x = "RangedDataList", strand = "character") The method for RangedData is
applied to each element in x separately, as each element may have a different strand-specific
bias.

Examples

#Generate 1000 reads containing strand-specific bias
st <- runif(1000,1,250)
strand <- rep(c(’+’,’-’),each=500)
st[strand==’-’] <- st[strand==’-’] + runif(500,50,100)
x <- RangedData(IRanges(st,st+38),strand=strand)
#Estimate and remove the bias
xalign <- alignPeaks(x, strand=’strand’, npeaks=1)

cmds Classical Multi-Dimensional Scaling

Description

cmds obtain the coordinates of the elements in x in a k dimensional space which best approximate
the distances between objects. For high-throughput sequencing data we define the distance between
two samples as 1 - correlation between their respective coverages. This provides PCA analog for
sequencing data.

Usage

cmds(x, k=2, logscale=TRUE, mc.cores=1, cor.method=’pearson’)

4 cmdsFit

Arguments

x A RangedDataList object, e.g. each element containing the output of a se-
quencing run.

k Dimensionality of the reconstructed space, typically set to 2 or 3.

logscale If set to TRUE correlations are computed for log(x+1).

mc.cores Number of cores. Setting mc.cores>1 allows running computations in parallel.
Setting mc.cores to too large a value may require a lot of memory.

cor.method A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman", can be ab-
breviated.

Value

The function returns a mdsFit object, with slots points containing the coordinates, d with the
distances between elements, dapprox with the distances between objects in the approximated space,
and R.square indicating the percentage of variability in d accounted for by dapprox.

Since the coverage distribution is typically highly asymetric, setting logscale=TRUE reduces the
influence of the highest coverage regions in the distance computation, as this is based on the Pearson
correlation coefficient.

Methods

signature(x = "RangedDataList") Use Classical Multi-Dimensional Scaling to plot each ele-
ment of the RangedDataList object in a k-dimensional space. The coverage is computed for
each element in x, and the pairwise correlations between elements is used to define distances.

Examples

data(htSample)
cmds1 <- cmds(htSample)

cmds1
plot(cmds1)

cmdsFit Classical Multi-Dimensional Scaling for a distance matrix

Description

cmdsFit obtains coordinates in a k dimensional space which best approximate the given distances
between objects.

Usage

cmdsFit(d, k=2, type=’classic’, add=FALSE, cor.method=’pearson’)

cmdsFit-class 5

Arguments

d Distances between objects

k Dimensionality of the reconstructed space, typically set to 2 or 3.

type Set to "classic" to perform classical MDS (uses function cmdscale from pack-
age stats). Set to "isoMDS" to use Kruskal’s non-metric MDS (uses function
isoMDS from package MASS).

add Logical indicating if an additive constant c* should be computed, and added to
the non-diagonal dissimilarities such that all n-1 eigenvalues are non-negative in
cmdscale

cor.method A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman", can be ab-
breviated.

Value

The function returns a cmdsFit object. See help("cmdsFit-class") for details.

Methods

signature(d = "matrix") Use Classical Multi-Dimensional Scaling to represent points in a k-
dimensional space.

Examples

Not run
#d <- matrix(c(0,5,10,5,0,15,10,15,0),byrow=TRUE,ncol=3)
#cmdsFit(d,add=TRUE)

cmdsFit-class Class "cmdsFit"

Description

Classical Multi-Dimensional Scaling Fit. Function cmds creates object of this class.

Objects from the Class

Objects can be created by calls of the form new("cmdsFit", ...).

Slots

points: Object of class "matrix" with (x,y) coordinates in the approximated space.

d: Object of class "matrix" with original distances between individuals.

dapprox: Object of class "matrix" with distances between individuals in the approximated space.

R.square: Percentage of variability in d explained by dapprox (object of class "numeric")

Methods

There are show and plot methods defined for this class.

6 countHitsWindow

Author(s)

David Rossell

See Also

cmdscale from package base.

Examples

showClass("cmdsFit")

countHitsWindow Compute number of hits in a moving window along the chromosome.

Description

Computes a smoothed number of hits along the chromosome by using moving windows of user
specified size.

Usage

countHitsWindow(x, chrLength, windowSize = 10^4 - 1)

Arguments

x Object containing hits (start, end and chromosome). Currently only RangedData
objects are accepted.

chrLength Named vector indicating the length of each chromosome in base pairs.

windowSize Size of the window used to smooth the hit count.

Methods

signature(x = "RangedData") x contains chromosome, start and end positions for each hit.

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
st[st>=10000] <- 10000
strand <- rep(c(’+’,’-’),each=500)
space <- rep(’chr1’,length(st))
x <- RangedData(IRanges(st,st+38),strand=strand,space=space)
countHitsWindow(x, chrLength=c(chr1=10000), windowSize=99)

coverageDiff 7

coverageDiff Compute the difference in coverage between two objects

Description

Computes coverage of sample1 minus coverage of sample2, taking into account that the chromo-
somes in sample1 and sample2 are not necessarily the same.

Usage

coverageDiff(sample1, sample2, chrLength)

Arguments

sample1 Object with reads from sample 1. Typically, a RangedData object.

sample2 Object with reads from sample 2. Typically, a RangedData object.

chrLength Named vector with chromosome lengths. This can be obtained from the Bio-
conductor annotation packages, e.g. BSgenome.Dmelanogaster.UCSC.dm3 for
drosophila melanogaster, etc.

Details

Computation is restricted to chromosomes in names(chrLength).

Value

SimpleRleList with differences in coverage.

Examples

sample1 <- RangedData(IRanges(1:10,11:20),space=’chr1’)
sample2 <- RangedData(IRanges(1:10,11:20),space=rep(c(’chr1’,’chr2’),each=5))
chrLength <- c(50,25); names(chrLength) <- c(’chr1’,’chr2’)
coverageDiff(sample1,sample2,chrLength)

enrichedChrRegions Find chromosomal regions with a high concentration of hits.

Description

This function looks for chromosomal regions where there is a large accumulation of hits, e.g. signif-
icant peaks in a chip-seq experiment or differentially expressed genes in an rna-seq or microarray
experiment. Regions are found by computing number of hits in a moving window and selecting
regions based on a FDR cutoff.

Usage

enrichedChrRegions(hits1, hits2, chrLength, windowSize=10^4-1, fdr=0.05, nSims=10, mc.cores=1)

8 enrichedChrRegions

Arguments

hits1 Object containing hits (start, end and chromosome). Currently only RangedData
objects are accepted.

hits2 Optionally, another object containing hits. If specified, regions will be defined
by comparing hits1 vs hits2.

chrLength Named vector indicating the length of each chromosome in base pairs

windowSize Size of the window used to smooth the hit count (see details)

fdr Desired FDR level (see details)

nSims Number of simulations to be used to estimate the FDR

mc.cores Number of processors to be used in parallel computations (passed on to mclap-
ply)

Details

A smoothed number of hits is computed by counting the number of hits in a moving window of size
windowSize. Notice that only the mid-point of each hit in hits1 (and hits2 if specified) is used.
That is, hits are not treated as intervals but as being located at a single base pair.

If hits2 is missing, regions with large smoothed number of hits are selected. To assess statistical
significance, we generate hits (also 1 base pair long) randomly distributed along the genome and
compute the smoothed number of hits. The number of simulated hits is set equal to nrow(hits1).
The process is repeated nSims times, resulting in several independent simulations. To estimate the
FDR, several thresholds to define enriched chromosomal regions are considered. For each threshold,
we count the number of regions above the threshold in the observed data and in the simulations. For
each threshold t, the FDR is estimated as the average number of regions with score >=t in the
simulations over the number of regions with score >=t in the observed data.

If hits2 is not missing, the difference in smoothed proportion of hits (i.e. the number of hits in the
window divided by the overall number of hits) between the two groups is used as a test statistic. To
assess statistical significance, we generate randomly scramble hits between sample 1 and sample
2 (maintaining the original number of hits in each sample), and we re-compute the test statistic.
The FDR for a given threshold t is estimated as the number of bases in the simulated data with test
statistic>t divided by number of bases in observed data with test statistic>t.

The lowest t with estimated FDR below fdr is used to define enriched chromosomal regions.

Value

Object of class RangedData containing regions with smoothed hit count above the specified FDR
level.

Methods

signature(hits1 = "RangedData", hits2 = "missing") Look for chromosome zones with a
large number of hits reported in hits1.

signature(hits1 = "RangedData", hits2 = "RangedData") Look for chromosomal zones with
a different density of hits in hits1 vs hits2.

Examples

set.seed(1)
st <- round(rnorm(100,500,100))
st[st>10000] <- 10000

enrichedPeaks 9

strand <- rep(c(’+’,’-’),each=50)
space <- rep(’chr1’,length(st))
hits1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
chrLength <- c(chr1=10000)
enrichedChrRegions(hits1,chrLength=chrLength, windowSize=99, nSims=1)

enrichedPeaks Find peaks in sequencing experiments.

Description

Find peaks in significantly enriched regions found via enrichedRegions.

Usage

enrichedPeaks(regions, sample1, sample2, minHeight=100, space, mc.cores=1)

Arguments

regions RangedDataList or RangedData indicating the regions in which we wish to find
peaks.

sample1 IRangesList or IRanges object containing start and end of sequences in sample
1.

sample2 Same for sample 2. May be left missing, in which case only sample1 is used to
find peaks.

minHeight If sample2 is missing, peaks are defined as regions where the coverage in sample1
is greater or equal than minHeight. If sample2 is specified, the difference of
coverage in sample1 minus sample2 must be greater or equal than minHeight.

space Character text giving the name of the space for the RangedData object. Only
used if sample1 and sample2 are of class RangedData, for RangedDataList
this is set up automatically.

mc.cores If mc.cores>1 computations for each element in the IRangesList objects are
performed in parallel (using the parallel function from package multicore).
Notice: this option launches as many parallel processes as there are elements in
x, which can place strong demands on the processor and memory.

Value

Object of class RangedData indicating peaks higher than minHeight. Only peaks overlapping with
regions are reported. The maximum of the coverage in each selected peak is reported in the column
height (coverage in sample1 - sample2 when sample2 is specified). The column region.pvalue
returns the p-value associated to the region that the peak belongs to (i.e. it is inherited from
regions). Therefore, notice that all peaks corresponding to a single region will present the same
region.pvalue.

10 enrichedPeaks

Methods

signature(regions = "RangedData", sample1 = "IRanges", sample2 = "IRanges") sample1
indicates the start/end of reads in sample 1, and similarly for sample2. Only the subset of
regions indicated by the argument space will be used.

signature(regions = "RangedData", sample1 = "IRanges", sample2 = "missing") sample1
indicates the start/end of reads in sample 1, and similarly for sample2. Only the subset of
regions indicated by the argument space will be used.

signature(regions = "RangedData", sample1 = "IRangesList", sample2 = "IRangesList")
regions contains the regions of interest, sample1 and sample2 the reads in sample 1 and
sample 2, respectively. names(sample1) and names(sample2) must correspond to the space
names used in regions.

signature(regions = "RangedData", sample1 = "IRangesList", sample2 = "missing")
regions contains the regions of interest, sample1 the reads in sample 1. names(sample1)
must correspond to the space names used in regions.

signature(regions = "RangedData", sample1 = "RangedData", sample2 = "missing") space(sample1)
indicates the chromosome, and start(sample1) and end(sample1) indicate the start/end of
the reads in sample 1.

signature(regions = "RangedData", sample1 = "RangedData", sample2 = "RangedData")
space(sample1) indicates the chromosome, and start(sample1) and end(sample1) indi-
cate the start/end of the reads in sample 1. Similarly for sample2.

See Also

enrichedRegions

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
strand <- rep(c(’+’,’-’),each=500)
space <- rep(’chr1’,length(st))
sample1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
st <- round(runif(1000,1,1000))
sample2 <- RangedData(IRanges(st,st+38),strand=strand,space=space)

#Find enriched regions and call peaks
mappedreads <- c(sample1=nrow(sample1),sample2=nrow(sample2))
regions <- enrichedRegions(sample1,sample2,mappedreads=mappedreads,minReads=50)
peaks <- enrichedPeaks(regions,sample1=sample1,sample2=sample2,minHeight=50)
peaks <- peaks[width(peaks)>10,]
peaks

#Compute coverage in peaks
cover <- coverage(sample1)
coverinpeaks <- regionsCoverage(chr=space(peaks),start=start(peaks),end=end(peaks),cover=cover)

#Evaluate coverage in regular grid and plot
#Can be helpful fo clustering of peak profiles
coveringrid <- gridCoverage(coverinpeaks)
coveringrid
plot(coveringrid)

#Standardize peak profiles dividing by max coverage

enrichedRegions 11

stdcoveringrid <- stdGrid(coveringrid, colname=’maxCov’)
stdcoveringrid

enrichedRegions Find significantly enriched regions in sequencing experiments.

Description

Find regions with a significant accumulation of reads in a sequencing experiment.

Usage

enrichedRegions(sample1, sample2, regions, minReads=10, mappedreads,
pvalFilter=0.05, exact=FALSE, p.adjust.method=’none’, twoTailed=FALSE,
mc.cores=1)

Arguments

sample1 Either start and end of sequences in sample 1 (IRangesList, RangedData or
IRanges object), of RangedDataList with sequences for all samples (sample2
must be left missing in this case) .

sample2 Same for sample 2. Can be left missing.

regions If specified, the analysis is restricted to the regions indicated in regions. If not
specified, the regions are automatically defined using the argument minReads.

minReads This argument is only used when regions is not specified. The regions to be
tested for enrichment are those with coverage greater or equal than minReads. If
sample1 is a RangedDataList, the overall coverage adding all samples is used.
Otherwise, if twoTailed is FALSE, only the reads in sample 1 are counted. If
twoTailed is TRUE, the sum of reads in samples 1 and 2 are counted.

mappedreads Number of mapped reads for the sample. Has to be of class integer. Will be used
to compute RPKM.

pvalFilter Only regions with P-value below pvalFilter are reported as being enriched.

exact If set to TRUE, an exact test is used whenever some expected cell counts are 5 or
less (chi-square test based on permutations if sample1 is a RangedDataList ob-
ject, Fisher’s exact test otherwise), i.e. when the asymptotic chi-square/likelihood-
ratio test calculations break down. Ignored if sample2 is missing, as in this case
calculations are always exact.

p.adjust.method

P-value adjustment method, passed on to p.adjust.

twoTailed If set to FALSE, only regions with a higher concentration of reads in sample 1
than in sample 2 are reported. If set to TRUE, regions with higher concentration
of sample 2 reads are also reported. Ignored if sample2 is missing.

mc.cores If mc.cores is greater than 1, computations are performed in parallel for each
element in the IRangesList objects. Whenever possible the mclapply function
is used, therefore exactly mc.cores are used. For some signatures mclapply
cannot be used, in which case the parallel function from package multicore
is used. Note: the latter option launches as many parallel processes as there are
elements in x, which can place strong demands on the processor and memory.

12 enrichedRegions

Details

The calculations depend on whether sample2 is missing or not. Non-missing sample2 case. First,
regions with coverage above minReads are selected. Second, the number of reads falling in the
selected regions are computed for sample 1 and sample 2. Third, the counts are compared via
a chi-square test (with Yates continuity correction), which takes into account the total number of
sequences in each sample. Finally, statistically significant regions are selected and returned in
RangedData or RangedDataList objects.

Missing sample2. First, regions with coverage above minReads are selected. Second, the number
of reads in sample 1 falling in the selected regions is computed. Third, the proportion of reads in
each region is tested for enrichment via a one-tailed Binomial exact test.

Value

Object of class RangedData indicating the significantly enriched regions, the number of reads in
each sample for those regions, the fold changes (adjusted considering the overall number of se-
quences in each sample) and the chi-square test P-values.

Methods

signature(sample1 = "missing", sample2 = "missing", regions = "RangedData") ranges(regions)
indicates the chromosome, start and end of genomic regions, while values{regions} should
indicate the observed number of reads for each group in each region. enrichedRegions tests
the null hypothesis that the proportion of reads in the region is equal across all groups via a
likelihood-ratio test (or permutation-based chi-square for regions where the expected counts
are below 5 for some group).

signature(sample1 = "RangedDataList", sample2 = "missing", regions = "missing")
Each element in sample1 contains the read start/end of an individual sample. enrichedRegions
identifies regions with high concentration of reads (across all samples) and then compares the
counts across groups using a likelihood-ratio test (or permutation-based chi-square for regions
where the expected counts are below 5 for some group).

signature(sample1 = "RangedData", sample2 = "RangedData", regions = "missing") space(sample1)
indicates the chromosome, start(sample1) and end(sample1) the start/end position of the
reads. Similarly for sample2. enrichedRegions identifies regions with high concentration of
reads (across all samples) and then compares the counts across groups using a likelihood-ratio
test (or permutation-based chi-square for regions where the expected counts are below 5 for
some group).

signature(sample1 = "RangedData", sample2 = "missing", regions = "missing") space(sample1)
indicates the chromosome, start(sample1) and end(sample1) the start/end position of the
reads. enrichedRegions tests the null hypothesis that an unusually high proportion of reads
has been observed in the region using an exact binomial test.

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
strand <- rep(c(’+’,’-’),each=500)
space <- rep(’chr1’,length(st))
sample1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
st <- round(rnorm(1000,1000,100))
sample2 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
enrichedRegions(sample1,sample2,twoTailed=TRUE)

extendRanges 13

extendRanges Extend reads or sequences by a user-specified number of bases.

Description

This function allows to extend ranges up to a user-specified length, which can be helpful in ChIP-seq
analysis.

Usage

extendRanges(x, seqLen = 200, chrlength, mc.cores=1)

Arguments

x Object containing reads.

seqLen Desired sequence length after extension.

chrlength Integer vector indicating the length of each chromosome. names(chrlength)
must match those in x. This argument is used to ensure that no reads are ex-
tended beyond the maximum chromosome length.

mc.cores Number of cores to use in parallel computations (passed on to mclapply).

Value

A list of IRanges objects with extended sequence length.

Methods

signature(x = "RangedData") space(x) indicates the chromosome, start(x) and end(x) the
start/end positions of each read.

signature(x = "RangedDataList") Each element in x is assumed to correspond to a different
sample.

Author(s)

David Rossell

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
st[st>2000] <- 2000
strand <- rep(c(’+’,’-’),each=500)
space <- rep(’chr1’,length(st))
sample1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
extendRanges(sample1, seqLen=200, chrlength=c(chr1=2000))

14 fdrEnrichedCounts

fdrEnrichedCounts Posterior probability that a certain number of repeats are higher than
expected by chance.

Description

Given a vector of number of repeats (e.g. there are 100 sequences appearing once, 50 sequences
appearing twice etc.) the function computes the false discovery rate that each number of repeats is
unusually high.

Usage

fdrEnrichedCounts(counts,use=1:10,components=0,mc.cores=1)

Arguments

counts vector with observed frequencies. The vector must have names. tabDuplReads
function can be used for this purpose.

use number of repeats to be used when estimating the null distribution. The number
of repeats expected if no unusually high repeats are present. The first 10 are
used by default.

components number of negative binomials that will be used to fit the null distribution. The
default value is 1. This value has to be between 0 and 4. If 0 is given the optimal
number of negative biomials is chosen using the Bayesian information criterion
(BIC)

mc.cores number of cores to be used to compute calculations. This parameter will be
passed bt to mclappply

Details

The null distribution is a combination of n negative binomials where. n is assigned through the
components parameter. If components is equal to 0 the optimal number of negative binomials is
choosen using the Bayesian information criterion (BIC). The parameters of the null distribution are
estimated from the number of observations with as many repeats as told in the use parameter. If
use is 1:10 the null distribution will be estimated using repeats that appear 1 time, 2 times, ... or 10
times.

False discovery rate for usually high number of repeats is done following an empirical Bayes scheme
similar to that in Efron et al. Let f0(x) be the null distribution, f(x) be the overall distribution and (1-
pi0) the proportion of unusually high repeats. We assume the two component mixture f(x)= pi0 f0(x)
+ (1-pi0)f1(x). Essentially, f(x) is estimated from the data (imposing that f(x) must be monotone de-
creasing after its mode using isoreg from packabe base, to improve the estimate in the tails). Cur-
rently pi0 is set to 1, i.e. its maximum possible value, which provides an upper bound for the FDR.
The estimated false discovery rate for enrichment is 1-pi0*(1-cumsum(f0(x)))/(1-cumsum(f(x))).
A monotone regression (isoreg) is applied to remove small random fluctuations in the estimated
FDR and to guarantee that it decreases with x.

filterDuplReads 15

Value

data.frame with the following columns:

pdfH0 vector with pdf under the null hypothesis of no enrichment

pdfOverall vector with pdf for mixture distribution

fdrEnriched vector with false discovery rate that each count is significantly enriched

References

Ji et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotech-
nology, 2008, 26, 1293-1300.

Efron et al. Empirical Bayes Analysis of a Microarray Experiment, Journal of the American Statis-
tical Association, 2001, 96, 1151-1160.

Examples

#Generate 1000 sequences repeated once, on the average
nrepeats <- c(rpois(10^4,1),rpois(10,10))
nrepeats <- nrepeats[nrepeats>0]
counts <- table(nrepeats)
barplot(counts) -> xaxis #observe bimodality around 10
fdrest <- fdrEnrichedCounts(counts,use=1:5,components=1)
cutoff <- xaxis[which(fdrest$fdrEnriched<0.95)[1]]
abline(v=cutoff,col=2)
text(cutoff,counts[1]/2,’cut-off’,col=2)
head(fdrest)

filterDuplReads Detect and filter duplicated reads/sequences.

Description

filterDuplReads filters highly repeated sequences, i.e. with the same chromosome, start and
end positions. As many such sequences are likely due to over-amplification artifacts, this can be
a useful pre-processing step for ultra high-throughput sequencing data. A false discovery rate is
computed for each number of repeats being unusually high. The reads with a higher false discovery
rate will be removed. For more information on the false discovery rate calculation please read the
fdrEnrichment manual.

tabDuplReads counts the number reads with no duplications, duplicated once, twice etc.

Usage

filterDuplReads(x, maxRepeats, fdrOverAmp=0.01, negBinomUse=.999,components=0, mc.cores=1)

tabDuplReads(x, minRepeats=1, mc.cores=1)

16 filterDuplReads

Arguments

x Object containing read locations. Currently methods for RangedData and RangedDataList.
Duplication is assessed based only on the space, start, end and x[[’strand’]],
i.e. even if they are different based on other variables stored in values(x), the
reads are considered duplicated and only the first appearance is returned.

maxRepeats Reads appearing maxRepeats or more times will be excluded. If not specified,
this is setup automatically based on fdrOverAmp.

fdrOverAmp Reads with false discovery rate of being over-amplified greater than fdrOverAmp
are excluded.

negBinomUse Number of counts that will be used to compute the null distribution. Using 1 -
1/1000 would mean that 99.9% of the reads will be used. The ones with higher
number of repetitions are the excluded ones.

components number of negative binomials that will be used to fit null distribution. The de-
fault value is 1. This value hase to be between 0 and 4. If 0 is given the optimal
number of negative biomials is choosen using the Bayesian information criterion
(BIC)

mc.cores Number of cores to be used in parallel computing (passed on to mclapply).

minRepeats The table is only produced for reads with at least minRepeats repeats.

Value

filterDuplReads returns x without highly repetitive sequencesas, determined by maxRepeats or
ppOverAmp.

tabDuplReads returns a table counting the number of sequences repeating 1 times, 2 times, 3 times
etc.

Methods

Methods for filterDuplReads and tabDuplReads

signature(x = "RangedData") Two reads are duplicated if they have the same space, start and
end position.

signature(x = "RangedDataList") The method is applied separately to each RangedData ele-
ment in the list.

Author(s)

Evarist Planet, David Rossell, Oscar Flores

See Also

fdrEnrichedCounts to compute the posterior probability that a certain number of repeats is due to
over-amplification.

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
strand <- rep(c(’+’,’-’),each=500)
space <- sample(c(’chr1’,’chr2’),size=length(st),replace=TRUE)
sample1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)

giniCoverage 17

#Add artificial repeats
st <- rep(400,20)
repeats <- RangedData(IRanges(st,st+38),strand=’+’,space=’chr1’)
sample1 <- rbind(sample1,repeats)

filterDuplReads(sample1)

giniCoverage Compute Gini coefficient.

Description

Calculate Gini coefficient of High-throughput Sequencing aligned reads. The index provides a mea-
sure of "inequality" in read coverage which can be used for quality control purposes (see details).

Usage

giniCoverage(sample, mc.cores = 1, mk.plot = FALSE, seqName = "missing", species="missing", chrLengths="missing", numSim="missing")

Arguments

sample A RangedData or RangedDataList object
seqName If sample is a RangedData, name of sequence to use in plots
mk.plot Logical. If TRUE, logarithm of coverage values’ histogram and Lorenz Curve

plot are plotted.
mc.cores If mc.cores is greater than 1, computations are performed in parallel for each

element in the IRangesList object.
chrLengths An integer array with lengths of chromosomes in sample for simluations of

uniformily distributed reads.
species A BSgenome species to obtain chromosome lengths for simluations of uniformily

distributed reads.
numSim Number of simulations to perform in order to find the expected Gini coefficient.

Details

The Gini coefficient provides a measure of "inequality" in read coverage. This can be used in any
sequencing experiment where the goal is to find peaks, i.e. unusual accumulation of reads in some
genomic regions. For instance, Chip-Seq etc. Typically these experiments will consist of samples
of interest (e.g. immuno-precipitated) and controls. The samples of interest should exhibit higher
peaks, whereas reads in the controls should show a more uniform distribution. Since the Gini
coefficient can be seen as a measure of departure from uniformity, the coefficient should present
smaller values in the control samples. Since the Gini coefficient depends on the number of reads
per sample, a correction is performed by substracting the Gini index from a sample with uniformily
distributed reads.

Value

If mk.plot==FALSE, the Gini index and adjusted Gini index for each element in the RangedDataList
or RangedData object.

If mk.plot==TRUE, a plot is produced showing the logarithm of coverage values’ histogram and
Lorenz Curve plot.

18 giniCoverage

Methods

signature(sample = "RangedData", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "character", chrLengths = "integer", numSim="missing")
Analize a single RangeData object with ’chrLengths’ used for simulations (’Species’ is ig-
nored).

signature(sample = "RangedData", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "character", chrLengths = "missing", numSim="missing")
Analize a single RangeData object with chromosome lengths for simulations taken from
BSgenome ’species’ (package must be installed).

signature(sample = "RangedData", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "missing", chrLengths = "integer", numSim="missing")
Analize a single RangeData object with ’chrLengths’ used as chromosome lengths in simula-
tions.

signature(sample = "RangedData", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "missing", chrLengths = "missing", numSim="missing")
Analize all RangeData objects from sample (RangedDataList) with hromosome lengths for
simulations taken as the largest end position of reads in each chromosome of all samples.

signature(sample = "RangedDataList", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "character", chrLengths = "integer", numSim="missing")
Analize all RangeData objects from sample (RangedDataList) with ’chrLengths’ used as chro-
mosome lengths in simulations (’Species’ is ignored).

signature(sample = "RangedDataList", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "character", chrLengths = "missing", numSim="missing")
Analize all RangeData objects from sample (RangedDataList) with chromosome lengths for
simulations taken from BSgenome ’species’ (package must be installed).

signature(sample = "RangedDataList", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "missing", chrLengths = "integer", numSim="missing")
Analize all RangeData objects from sample (RangedDataList) with ’chrLengths’ used as chro-
mosome lengths in simulations.

signature(sample = "RangedDataList", mc.cores = "ANY", mk.plot = "ANY", seqName = "ANY", species = "missing", chrLengths = "missing", numSim="missing")
Analize all RangeData objects from sample (RangedDataList) with chromosome lengths for
simulations taken as the largest end position of reads in each chromosome of sample.

Author(s)

Camille Stephan-Otto

References

See the definition of the Gini coefficient and Lorenz curve at http://en.wikipedia.org/wiki/Gini_coefficient

See Also

ssdCoverage for another measure of inequality in coverage.

Examples

set.seed(1)
peak1 <- round(rnorm(500,100,10))
peak1 <- RangedData(IRanges(peak1,peak1+38),space=’chr1’)
peak2 <- round(rnorm(500,200,10))
peak2 <- RangedData(IRanges(peak2,peak2+38),space=’chr1’)
ip <- rbind(peak1,peak2)
bg <- runif(1000,1,300)
bg <- RangedData(IRanges(bg,bg+38),space=’chr1’)

rdl <- RangedDataList(ip,bg)
ssdCoverage(rdl)
giniCoverage(rdl)

gridCover-class 19

gridCover-class Class "gridCover"

Description

Objects of class gridCover store coverage information evaluated on a grid on pre-specified genomic
regions.

Objects from the Class

Objects of this class are returned by call to the function gridCoverage.

Slots

cover: Object of class "matrix" with one row for each genomic region of interest, and 500
columns. Columns 1-100 contain the coverage in the promoter region (as specified in argu-
ment promoterDistance to gridCoverage). Columns 101-500 contain the coverage between
start and end as indicated to promoterDistance.

viewsInfo: Object of class "DataFrame" with information relative to each region (strand, mean
and maximum coverage).

Methods

[signature(x = "gridCover", i = "ANY", j = "ANY"): Select a subset of peaks.

plot signature(x = "gridCover", y = "ANY"): Plot the coverage.

lines signature(x = "gridCover"): Add lines to an existing plot.

show signature(object = "gridCover"): Show method.

stdGrid signature(x = "gridCover"): Standardize the coverage by dividing by either the mean
or the maximum coverage in each region.

getViewsinfo signature(x = "gridCover"): Accessor for the viewsInfo slot.

getCover signature(x = "gridCover"): Accessor for the cover slot.

Author(s)

David Rossell

See Also

regionsCoverage to compute coverage on pre-specified regions, gridCoverage to compute cov-
erage on a grid.

Examples

##See help(gridCoverage)

20 islandCounts

htSample Example ChIP-sequencing data with 2 replicates per group obtained
in two different dates.

Description

This RangedDataList contains a subset of drosophila melanogaster ChIP-sequencing data obtained
with the Illumina sequencer. An immuno-precipitated and a control input sample were obtained at
two experimental dates (details not provided as this is still unpublished data). In order to save space
and let the examples run quicker, only reads mapping to the first 500kb of chr2L are included.

Usage

data(htSample)

Format

RangedDataList where each element contains reads from a different sample. names(htSample)
indicate the group and batch (experimental date) that each sample corresponds to.

Details

Data was pre-processed using the Illumina pipeline and mapped to the drosophila melanogaster
dm3 genome using Bowtie. Only uniquely mapping sequences with at most 2 mismatches in the
first 28 bases were kept. See the package vignette for some more details on this dataset.

Examples

data(htSample)
htSample

islandCounts Find genomic regions with high coverage and count number of reads
overlapping each region in each sample

Description

Finds genomics regions where the coverage is above a user-specified threshold and counts the num-
ber of ranges in each sample overlapping each region.

Usage

islandCounts(x, minReads=10, mc.cores=1)

Arguments

x RangedData or RangedDataList containing the reads. If a RangedDataList is
provided, the overall coverage across all its elements is used to find the regions
of interest, but individual counts are computed for each element in the list.

minReads Only regions with coverage above minReads are considered.
mc.cores If mc.cores>1 computations are performed in parallel, using function mclapply

from package multicore.

listOverlap 21

Details

The output of islandCounts can be the input data for a number of downstream analysis methods.
Although for a simple-minded analysis one could use enrichedRegions, one will usually want to
use more sofisticated analyses (e.g. from packages DEseq, BayesPeak, limma etc.)

Value

Object of class RangedData indicating the regions with coverage above minReads and the number
of reads overlapping each sample for those regions.

Methods

signature(x = "RangedData") x is assumed to contain the reads from a single sample. Genomic
regions with high coverage will be detected and the number of reads overlapping these regions
will be computed.

signature(x = "RangedDataList") x is assumed to contain the reads for several samples, one
sample in each element of the list. The overall coverage across all samples is computed by
adding the coverage in the individual samples, and the regions with overall coverage above
the user-specified threshold are selected. Then the number of reads overlapping each region is
computed.

Examples

set.seed(1)
st <- round(rnorm(1000,500,100))
strand <- rep(c(’+’,’-’),each=500)
space <- rep(’chr1’,length(st))
sample1 <- RangedData(IRanges(st,st+38),strand=strand,space=space)
st <- round(rnorm(1000,1000,100))
sample2 <- RangedData(IRanges(st,st+38),strand=strand,space=space)

regions <- islandCounts(RangedDataList(sample1,sample2),minReads=50)
regions

#Plot coverage
plot(coverage(sample1)[[1]],type=’l’,xlim=c(0,2000))
lines(coverage(sample2)[[1]],col=2)

listOverlap Assess the overlap between two or three lists.

Description

Assess the overlap between two or three lists, e.g. ChIP-Seq peaks vs. genes selected from a
microarray, or peaks obtained in different experiments.

Usage

listOverlap(list1, list2, list3, univ, ...)

22 listOverlap

Arguments

list1 Vector with elements in the first list. This can either be a character vector indicat-
ing the element names, or a named factor vector indicating some classification
for the elements in the first list.

list2 Vector with elements in the second list. This should be a character vector indi-
cating the element names.

list3 Vector with elements in the third list. This should be a character vector indicat-
ing the element names. The overlap assesment method used depends on whether
this argument is specified or not. See details.

univ character vector indicating the universe of all elements from which list1 and
list2 were obtained. The overlap assessment depends on whether this argu-
ment is specified or not. See details.

... Further arguments to be passed on to chisq.test in 2 list overlapping.

Details

For signature(list1=’character’, list2=’character’, list3=’missing’, univ=’character’) the overlap is
assessed with respect to the universe of all possible elements univ. That is, we count the number of
elements that are common to list1 and list2, those appearing only in either list1 or list2, and those
not appearing in either (but appearing in univ). A typical example: list1 contains names of genes
with a peak in ChIP-Seq experiment 1, list2 names of genes with a peak in ChIP-Seq experiment
2, and univ the names of all genes in the organism.

For signature(list1=’character’, list2=’character’, list=’character’, univ=’character’) the overlap is
assessed by fitting and anova comparison of linear models. This is done to test whether 3-way
overlap is significant with respect to the universe of all possible elements univ when compared to
a model considering just the combination of 2-way overlapping. A typical example: list1, list2
and list3 contain names of genes with peaks in three different ChIP-Seq experiments, and univ
the names of all genes in the organism.

For signature(list1=’factor’, list2=’character’, univ=’missing’) the distribution of list1 is com-
pared between elements appearing and not appearing in list2. A typical example: list1 indicates
the differential expression status for a number of genes, and list2 contains the names of the genes
which had a peak in a ChIP-Seq experiment.

Value

For comparison of 2 lists, an htest object from a chi-square test that evaluates if the two lists are
statistically independent from each other. This is a named list: the observed overlap is stored in
observed and the P-value in p.value.

For 3 list comparison, a list object containing the occurrence and frequency tables (xtab, ftable),
the fitted linear models (glm1, glm2), and the anova P-value (pvalue).

Methods

signature(list1 = "character", list2 = "character", list3 = "character", univ = "character")
Studies 3-way associations.

signature(list1 = "character", list2 = "character", list3 = "missing", univ = "character")
Studies bivariate associations.

signature(list1 = "factor", list2 = "character", list3 = "missing", univ = "missing")
Studies bivariate associations.

mergeRegions 23

Examples

#Overlap between diff expression and chip-seq peaks
deStatus <- factor(c(0,0,0,0,1,1,1))
names(deStatus) <- paste(’Gene’,1:7)
peaks <- c(’Gene 6’,’Gene 7’)
ans <- listOverlap(list1=deStatus,list2=peaks)
ans$observed
ans$p.value

#Overlap between peaks obtained from two different experiments
peaks2 <- c(’Gene 1’,’Gene 2’,’Gene 7’)
univ <- paste(’Gene’,1:7)
ans <- listOverlap(list1=peaks,list2=peaks2,univ=univ)
ans$observed
ans$p.value

mergeRegions Merge nearby chromosomal regions.

Description

Merges regions that are less than maxDist bases apart.

Usage

mergeRegions(intervals, chromosome, score, annot, aggregateFUN=’median’, maxDist=300)

Arguments

intervals Object indicating start and end of each region. It can either be a matrix,
data.frame, IRanges, RangedData or an RleViews object. If a matrix or
data.frame, it must have columns named start and end.

chromosome Chromosome that the region belongs to (optional). If supplied, must be of the
same length as start and end.

score Numerical score for each interval. Scores in merged intervals are aggregated us-
ing function aggregateFUN. If intervals is of class RangedData, this should
be a character vector of length 1 indicating the name of the variable in values(x)
containing the score.

annot Character indicating annotation information for each interval. Annotations in
merged intervals are pasted in a single string (annotations appearing in more
than one interval are only reported once in the merged interval).

aggregateFUN Function to aggregate score.

maxDist Regions less than maxDist apart are merged into a single region

Value

The result is returned in a data.frame indicating the start and end of each merged interval. If
the arguments were provided, the information in chromosome, score and annot is provided in
additional columns. If the input argument intervals was of class RangedData, the results are
returned in a RangedData object.

24 plot-methods

Methods

signature(intervals = "data.frame") intervals$start and intervals$end give the inter-
val start/end positions.

signature(intervals = "IRanges") start(intervals) and end(intervals) give the inter-
val start/end positions.

signature(intervals = "matrix") The columns start and end in intervals give the interval
start/end positions

signature(intervals = "RangedData") start(intervals) and end(intervals) give the in-
terval start/end positions.

signature(intervals = "RleViews") start(intervals) and end(intervals) give the inter-
val start/end positions.

Author(s)

David Rossell

Examples

st <- c(10,20,1000)
intervals <- RangedData(IRanges(st,st+10),space=’chr1’)

intervals
mergeRegions(intervals,maxDist=300)

plot-methods Methods for Function plot in Package ‘htSeqTools’

Description

Methods for function plot in Package ‘htSeqTools’

Methods

signature(x = "cmdsFit") Produces a Multi-Dimensional scaling plot. See cmds for details.

signature(x = "gridCover") Plots the average coverage for each point in the grid. See gridCover
for details.

Examples

Not run
#d <- matrix(c(0,5,10,5,0,15,10,15,0),byrow=TRUE,ncol=3)
#rownames(d) <- colnames(d) <- letters[1:3]
#fit1 <- cmdsFit(d,add=TRUE)
#plot(fit1)

plotChrRegions 25

plotChrRegions Plot chromosomal regions of interest

Description

Produces a plot with all chromosomes for a given organism, marking regions of interest in a user-
specified color.

Usage

plotChrRegions(regions, chrLength, markColor=’red’, ...)

Arguments

regions RangedData object with chromosome, start and end positions (chromosome
must be stored in space(regions).

chrLength Named integer vector with chromosome lengths in base pairs.
markColor Color to be used to mark the regions in the chromosome.
... Further parameters passed on to plot.

Value

This function produces a plot.

Examples

set.seed(1)
chr <- rep(c(’chr1’,’chr2’),each=10)
chrLength <- c(chr1=10000,chr2=5000)
st <- c(runif(10,1,10000),runif(10,1,5000))
regions <- RangedData(IRanges(st,st+50),space=chr)

plotChrRegions(regions,chrLength=chrLength)

regionsCoverage Compute coverage on user specified genomic regions.

Description

regionsCoverage computes coverage for user specified genomic regions.

gridCoverage evaluates the coverage on a regular grid with the same number of points for each
region (facilitating further plotting, clustering etc).

stdGrid standardized the coverage by diviging by the average or maximum coverage at each region.

Usage

regionsCoverage(chr, start, end, cover)

gridCoverage(cover)

stdGrid(cover, colname="maxCov")

26 regionsCoverage

Arguments

chr Vector with chromosome names.

start Vector with start position. start>end indicates that region is on the negative
strand.

end Vector with end position. start>end indicates that region is on the negative
strand.

cover For regionsCoverage, cover is an object of class RleList with the genome-
wide coverage (typically obtained by a previous call to coverage). For gridCoverage
this is the coverage evaluated at user-specified regions, as returned by regionsCoverage.
For stdGrid this is the coverage evaluated on a grid, as returned by gridCoverage.

colname Name of the column in cover@viewsInfo to be used for the standardizing. Cur-
rently only "meanCov" and "maxCov" are implemented.

Value

regionsCoverage returns a list with two components

views RleViewsList with coverage evaluated at specified regions. Orientation is al-
ways so that start<end, i.e. For most practical purposes, regions on the reverse
strand will need to be inverted.

viewsInfo SplitDataFrameList containing information about each peak (chromosome,
strand, mean and maximum coverage).

gridCoverage and stdGrid return an object of class gridCover. The slot cover is a matrix with
the coverage evaluated on a grid of 500 equi-spaced points, whereas the slot viewsInfo is the same
as that returned by regionsCoverage (see above). For regions between 100bp and 500bp long, a
linear interpolation is used to evaluate the coverage on the 500 points grid. For regions less than
100bp long, NAs are returned.

Methods

Methods for regionsCoverage:

signature(chr = "ANY", start = "ANY", end = "ANY", cover = "RleList") Evaluates the
coverage cover at the genomic positions specified by chr, start, end.

Methods for stdGrid:

signature(cover = "gridCover") Standardizes the coverage evaluated on a grid (typically, as
returned by gridCoverage) by dividing by the mean or maximum coverage.

See Also

gridCover-class

Examples

#See help(enrichedPeaks)

rowLogRegLRT 27

rowLogRegLRT Row-wise logistic regression

Description

Row-wise logistic regressions are applied to a matrix with counts. For each row, an overall test
comparing the column counts across columns is performed. Optionally, chi-square permutation
tests are used when the expected counts are below 5 for some column.

Usage

rowLogRegLRT(counts, exact = TRUE, p.adjust.method = "none")

Arguments

counts Matrix with counts

exact If set to TRUE, an exact test is used whenever some expected cell counts are 5
or less

p.adjust.method

p-value adjustment method, passed on to p.adjust

Details

For each column, the proportion of counts in each row (with respect to the overall counts in that
column) is computed. Then a statistical comparison of these proportions across groups is performed
via a likelihood-ratio test (if exact==TRUE a permutation based chi-square test is used whenever the
expected counts in some column is below 5).

Notice that data from column j can be viewed as a multinomial distribution with probabilities pj,
where pj is a vector of length nrow(x). rowLogRegLRT tests the null hypothesis p1[i]=...pc[i] for
i=1...nrow(x), where c is ncol(x). This actually ignores the multinomial sampling model and
focuses on its binomial margins, which is a reasonable approximation when the number nrow(x) is
large and substantially improves computation speed.

Examples

#The first two rows present different counts across columns
#The last two columns do not
x <- matrix(c(70,10,10,10,35,35,10,10),ncol=2)
x
rowLogRegLRT(x)

ssdCoverage Standardized SD of the genomic coverage

Description

Compute variability of the genomic coverage, measured as standardized SD per thousand sequences
(see details). For instance, this can measure how pronounced are the peaks in a ChIP-Seq experi-
ments, which can serve as a quality control to detect inefficient immuno-precipitation.

28 ssdCoverage

Usage

ssdCoverage(x, mc.cores=1)

Arguments

x Object with ranges indicating the start and end of each read. Currently, x can be
of class RangedDataList, RangedData and IRangesList.

mc.cores Set mc.cores to a value greater than 1 to perform computations in parallel, using
package mclapply.

Details

ssdCoverage first computes the coverage for each sample and computes the standard deviation (SD)
of the coverage. However, SD is not an appropriate measure of coverage unevenness, as its ex-
pected value is proportional to sqrt(n), where n is the number of reads (this can be seen with simple
algebra).

ssdCoverage therefore reports 1000*SD/sqrt(n), which can be interpreted as the standardized SD
per thousand sequences.

Value

Numeric vector with coefficients of variation.

Methods

signature(x = "IRangesList") A single coefficient of variation is returned, as a weighted av-
erage of the coefficients of variation for each chromosome (weighted according to the chro-
mosome length).

signature(x = "RangedData") The method for IRangesList is used on ranges(x).

signature(x = "RangedDataList") A vector with coefficients of variation for each element in
x are returned, by repeatedly calling the method for RangedData objects. Use mc.cores to
speed up computations with mclapply, but be careful as this requires more memory.

Examples

set.seed(1)
#Simulate IP data
peak1 <- round(rnorm(500,100,10))
peak1 <- RangedData(IRanges(peak1,peak1+38),space=’chr1’)
peak2 <- round(rnorm(500,200,10))
peak2 <- RangedData(IRanges(peak2,peak2+38),space=’chr1’)
ip <- rbind(peak1,peak2)

#Generate uniform background
bg <- runif(1000,1,300)
bg <- RangedData(IRanges(bg,bg+38),space=’chr1’)

rdl <- RangedDataList(ip,bg)
ssdCoverage(rdl)
giniCoverage(rdl)

stdPeakLocation 29

stdPeakLocation Peak density with respect to closest gene.

Description

stdPeakLocation plots the density of peaks with respect to the genomic feature (e.g. gene) in
standardized gene coordinates so that genes with different lengths are comparable.

PeakLocation produces the same plot in non-standardized coordinates (i.e. distances are measured
in base pairs).

plotMeanCoverage plots the mean coverage in a series of selected genomic regions.

Usage

stdPeakLocation(x, peakDistance=1000, startpos=’start_position’, endpos=’end_position’,
strand=’strand’, distance, main=’’, xlab=’Distance relative to feature length’, xaxt=’n’,
xlim=c(-1,2), densityType="kernel", nbreaks=10, ...)

PeakLocation(x, peakDistance=1000, startpos=’start_position’, endpos=’end_position’,
strand=’strand’, distance, main=’’, xlab=’Distance (bp)’,
densityType="kernel", breaks, ...)

plotMeanCoverage(cover, x, upstreambp=1000, downstreambp=5000,
startpos=’start_position’, endpos=’end_position’, normalize=FALSE,
smooth=FALSE, span=0.05, main=’’, xlab=’(bp)’, ylab=’Average coverage’, ...)

Arguments

x A RangedData or data.frame indicating peak start and end in start and end,
and start and end of the closest genomic feature (e.g. gene) in startpos and
endpos.

cover An RleList object containing the coverage, as returned by the function coverage.

peakDistance Peaks more than peakDistance bases upstream or more than 3*peakDistance
downstream of the closest feature are discarded.

startpos Name of the variable storing the start position of the closest genomic feature.

endpos Name of the variable storing the end position of the closest genomic feature.

strand Name of the variable storing the strand for the closest genomic feature.

distance Name of the variable indicating the distance between the peak and the closest
genomic feature. If left missing the distance between the feature start and the
mid-point of the peak is computed.

main Graphical parameter passed on to plot.

xlab Graphical parameter passed on to plot.

ylab Graphical parameter passed on to plot.

xaxt Graphical parameter passed on to plot.

xlim In stdPeakLocation the x-axis limit is set to xlim*peakDistance.

densityType If we eant a density plot or a histogram. Has to be one of "kernel" (for the
density plot) or "hist" for the histogram.

30 stdPeakLocation

nbreaks Number of breaks to be used. It will not be used if densityType is different
from "hist".

breaks This parameter will be passed to the hist plotting function. It will not be used
if densityType is different from "hist".

upstreambp Number of bp upstream of the TSS where the coverage should be computed

downstreambp Number of bp downstream of the TSS where the coverage should be computed

normalize When set to TRUE the average coverage in each position is divided by the average
across all positions. This is useful when trying to super-impose data from several
experiments that had different read coverage.

smooth If set to TRUE, the average coverage is smooth by calling loess.

span Parameter controlling smoothing, passed on to loess. Larger values indicate
more smoothing.

... Further parameters passed on to plot.

Value

This function produces a density plot.

Methods

Methods for stdPeakLocation, PeakLocation

signature(x = "data.frame") The data frame should contain columns named start and end
indicating the peak location, txStart, txEnd indicating transcription start/end of the closest
gene and strand indicating the strand.

signature(x = "RangedData") start(x) and end(x) indicate the peak location. x should con-
tain variables x[[’txStart’]], x[[’txEnd’]] indicating the transcription start/end of the
closest gene and x[[’strand’]] indicating the strand.

Methods for plotMeanCoverage

signature(cover="RleList", x="RangedData") cover contains the coverage and x the ge-
nomic regions of interest.

Examples

#Generate synthetic peaks
set.seed(1)
st <- runif(100,1,1000)
en <- st+runif(length(st),25,100)
peaks <- RangedData(IRanges(st,en),space=’chr1’)

#Assign distance to closest gene
#(typically one would call annotatePeakInBatch
#from package ChIPpeakAnno to do this)
peaks[[’start_position’]] <- start(peaks) + runif(nrow(peaks),-500,1000)
peaks[[’end_position’]] <- peaks[[’start_position’]] + 500
peaks[[’distance’]] <- peaks[[’start_position’]] - start(peaks)
peaks[[’strand’]] <- sample(c(’+’,’-’),nrow(peaks),replace=TRUE)
PeakLocation(peaks,peakDistance=1000)

Index

∗Topic classes
cmdsFit-class, 5
gridCover-class, 19

∗Topic datasets
enrichedPeaks, 9
enrichedRegions, 11
htSample, 20
listOverlap, 21

∗Topic graphs
cmds, 3
cmdsFit, 4
plotChrRegions, 25
stdPeakLocation, 29

∗Topic htest
rowLogRegLRT, 27

∗Topic manip
alignPeaks, 2
extendRanges, 13
filterDuplReads, 15
islandCounts, 20
mergeRegions, 23
regionsCoverage, 25

∗Topic methods
plot-methods, 24

∗Topic stats
countHitsWindow, 6
coverageDiff, 7
enrichedChrRegions, 7

∗Topic univar
fdrEnrichedCounts, 14
giniCoverage, 17
ssdCoverage, 27

[,gridCover-method (gridCover-class), 19

alignPeaks, 2
alignPeaks,GRanges,character-method

(alignPeaks), 2
alignPeaks,GRangesList,ANY-method

(alignPeaks), 2
alignPeaks,GRangesList-method

(alignPeaks), 2
alignPeaks,IRangesList,list-method

(alignPeaks), 2

alignPeaks,RangedData,character-method
(alignPeaks), 2

alignPeaks,RangedDataList,character-method
(alignPeaks), 2

alignPeaks-methods (alignPeaks), 2

cmds, 3
cmds,GRangesList-method (cmds), 3
cmds,RangedDataList-method (cmds), 3
cmds-methods (cmds), 3
cmdsFit, 4
cmdsFit,matrix-method (cmdsFit), 4
cmdsFit-class, 5
cmdsFit-methods (cmdsFit), 4
countHitsWindow, 6
countHitsWindow,GRanges-method

(countHitsWindow), 6
countHitsWindow,RangedData-method

(countHitsWindow), 6
countHitsWindow-methods

(countHitsWindow), 6
coverageDiff, 7

enrichedChrRegions, 7
enrichedChrRegions,GRanges,GRanges-method

(enrichedChrRegions), 7
enrichedChrRegions,GRanges,missing-method

(enrichedChrRegions), 7
enrichedChrRegions,RangedData,missing-method

(enrichedChrRegions), 7
enrichedChrRegions,RangedData,RangedData-method

(enrichedChrRegions), 7
enrichedChrRegions-methods

(enrichedChrRegions), 7
enrichedPeaks, 9
enrichedPeaks,GRanges,GRanges,GRanges-method

(enrichedPeaks), 9
enrichedPeaks,GRanges,GRanges,missing-method

(enrichedPeaks), 9
enrichedPeaks,GRanges,missing,missing-method

(enrichedPeaks), 9
enrichedPeaks,RangedData,IRanges,IRanges-method

(enrichedPeaks), 9

31

32 INDEX

enrichedPeaks,RangedData,IRanges,missing-method
(enrichedPeaks), 9

enrichedPeaks,RangedData,IRangesList,IRangesList-method
(enrichedPeaks), 9

enrichedPeaks,RangedData,IRangesList,missing-method
(enrichedPeaks), 9

enrichedPeaks,RangedData,RangedData,missing-method
(enrichedPeaks), 9

enrichedPeaks,RangedData,RangedData,RangedData-method
(enrichedPeaks), 9

enrichedPeaks-methods (enrichedPeaks), 9
enrichedRegions, 11
enrichedRegions,GRanges,GRanges,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,GRanges,missing,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,GRangesList,missing,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,missing,missing,GRanges,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,missing,missing,RangedData,ANY,missing-method

(enrichedRegions), 11
enrichedRegions,missing,missing,RangedData,ANY,numeric-method

(enrichedRegions), 11
enrichedRegions,RangedData,missing,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,RangedData,RangedData,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions,RangedDataList,missing,missing,ANY,ANY-method

(enrichedRegions), 11
enrichedRegions-methods

(enrichedRegions), 11
extendRanges, 13
extendRanges,GRanges-method

(extendRanges), 13
extendRanges,GRangesList-method

(extendRanges), 13
extendRanges,RangedData-method

(extendRanges), 13
extendRanges,RangedDataList-method

(extendRanges), 13
extendRanges-methods (extendRanges), 13

fdrEnrichedCounts, 14
filterDuplReads, 15
filterDuplReads,GRanges-method

(filterDuplReads), 15
filterDuplReads,GRangesList-method

(filterDuplReads), 15
filterDuplReads,RangedData-method

(filterDuplReads), 15
filterDuplReads,RangedDataList-method

(filterDuplReads), 15

filterDuplReads-methods
(filterDuplReads), 15

getCover (gridCover-class), 19
getCover,gridCover-method

(gridCover-class), 19
getViewsInfo (gridCover-class), 19
getViewsInfo,gridCover-method

(gridCover-class), 19
giniCoverage, 17
giniCoverage,GRanges,ANY,ANY,ANY,character,integer-method

(giniCoverage), 17
giniCoverage,GRanges,ANY,ANY,ANY,character,missing-method

(giniCoverage), 17
giniCoverage,GRanges,ANY,ANY,ANY,missing,integer-method

(giniCoverage), 17
giniCoverage,GRanges,ANY,ANY,ANY,missing,missing-method

(giniCoverage), 17
giniCoverage,GRangesList,ANY,ANY,ANY,character,integer-method

(giniCoverage), 17
giniCoverage,GRangesList,ANY,ANY,ANY,character,missing-method

(giniCoverage), 17
giniCoverage,GRangesList,ANY,ANY,ANY,missing,integer-method

(giniCoverage), 17
giniCoverage,GRangesList,ANY,ANY,ANY,missing,missing-method

(giniCoverage), 17
giniCoverage,RangedData,ANY,ANY,ANY,character,integer-method

(giniCoverage), 17
giniCoverage,RangedData,ANY,ANY,ANY,character,missing-method

(giniCoverage), 17
giniCoverage,RangedData,ANY,ANY,ANY,missing,integer-method

(giniCoverage), 17
giniCoverage,RangedData,ANY,ANY,ANY,missing,missing-method

(giniCoverage), 17
giniCoverage,RangedDataList,ANY,ANY,ANY,character,integer-method

(giniCoverage), 17
giniCoverage,RangedDataList,ANY,ANY,ANY,character,missing-method

(giniCoverage), 17
giniCoverage,RangedDataList,ANY,ANY,ANY,missing,integer-method

(giniCoverage), 17
giniCoverage,RangedDataList,ANY,ANY,ANY,missing,missing-method

(giniCoverage), 17
giniCoverage-methods (giniCoverage), 17
gridCover-class, 19
gridCoverage, 19
gridCoverage (regionsCoverage), 25

htSample, 20

islandCounts, 20
islandCounts,GRanges-method

(islandCounts), 20

INDEX 33

islandCounts,GRangesList-method
(islandCounts), 20

islandCounts,RangedData-method
(islandCounts), 20

islandCounts,RangedDataList-method
(islandCounts), 20

islandCounts-methods (islandCounts), 20

lines,gridCover-method
(gridCover-class), 19

listOverlap, 21
listOverlap,character,character,character,character-method

(listOverlap), 21
listOverlap,character,character,missing,character-method

(listOverlap), 21
listOverlap,factor,character,missing,missing-method

(listOverlap), 21
listOverlap-methods (listOverlap), 21

mergeRegions, 23
mergeRegions,data.frame-method

(mergeRegions), 23
mergeRegions,GRanges-method

(mergeRegions), 23
mergeRegions,IRanges-method

(mergeRegions), 23
mergeRegions,matrix-method

(mergeRegions), 23
mergeRegions,RangedData-method

(mergeRegions), 23
mergeRegions,RleViews-method

(mergeRegions), 23
mergeRegions-methods (mergeRegions), 23

PeakLocation (stdPeakLocation), 29
PeakLocation,data.frame-method

(stdPeakLocation), 29
PeakLocation,GRanges-method

(stdPeakLocation), 29
PeakLocation,RangedData-method

(stdPeakLocation), 29
PeakLocation-methods (stdPeakLocation),

29
plot,cmdsFit,ANY-method (plot-methods),

24
plot,cmdsFit-method (plot-methods), 24
plot,gridCover,ANY-method

(gridCover-class), 19
plot,gridCover-method (plot-methods), 24
plot-methods, 24
plotChrRegions, 25
plotMeanCoverage (stdPeakLocation), 29

plotMeanCoverage,RleList,RangedData-method
(stdPeakLocation), 29

plotMeanCoverage-methods
(stdPeakLocation), 29

regionsCoverage, 19, 25
regionsCoverage,ANY,ANY,ANY,RleList-method

(regionsCoverage), 25
regionsCoverage-methods

(regionsCoverage), 25
rowLogRegLRT, 27

show,gridCover-method
(gridCover-class), 19

ssdCoverage, 18, 27
ssdCoverage,GRanges-method

(ssdCoverage), 27
ssdCoverage,GRangesList-method

(ssdCoverage), 27
ssdCoverage,IRangesList-method

(ssdCoverage), 27
ssdCoverage,RangedData-method

(ssdCoverage), 27
ssdCoverage,RangedDataList-method

(ssdCoverage), 27
ssdCoverage-methods (ssdCoverage), 27
stdGrid (regionsCoverage), 25
stdGrid,gridCover-method

(regionsCoverage), 25
stdGrid-methods (regionsCoverage), 25
stdPeakLocation, 29
stdPeakLocation,data.frame-method

(stdPeakLocation), 29
stdPeakLocation,GRanges-method

(stdPeakLocation), 29
stdPeakLocation,RangedData-method

(stdPeakLocation), 29
stdPeakLocation-methods

(stdPeakLocation), 29

tabDuplReads (filterDuplReads), 15
tabDuplReads,GRanges-method

(filterDuplReads), 15
tabDuplReads,GRangesList-method

(filterDuplReads), 15
tabDuplReads,RangedData-method

(filterDuplReads), 15
tabDuplReads,RangedDataList-method

(filterDuplReads), 15
tabDuplReads-methods (filterDuplReads),

15

	alignPeaks
	cmds
	cmdsFit
	cmdsFit-class
	countHitsWindow
	coverageDiff
	enrichedChrRegions
	enrichedPeaks
	enrichedRegions
	extendRanges
	fdrEnrichedCounts
	filterDuplReads
	giniCoverage
	gridCover-class
	htSample
	islandCounts
	listOverlap
	mergeRegions
	plot-methods
	plotChrRegions
	regionsCoverage
	rowLogRegLRT
	ssdCoverage
	stdPeakLocation
	Index

