Package 'cn.mops'

September 24, 2012

Maintainer Guenter Klambauer <cn.mops@bioinf.jku.at>

Author Guenter Klambauer

License LGPL (>= 2.0)

Type Package

Title cn.mops - Mixture of Poissons for CNV detection in NGS data

Description cn.mops (Copy Number estimation by a Mixture Of PoissonS) is a data processing pipeline for copy number variations and aberrations (CNVs and CNAs) from next generation sequencing (NGS) data. The package supplies functions to convert BAM files into read count matrices or genomic ranges objects, which are the input objects for cn.mops. cn.mops models the depths of coverage across samples at each genomic position.

Therefore, it does not suffer from read count biases along chromosomes. Using a Bayesian approach, cn.mops decomposes read variations across samples into integer copy numbers and noise by its mixture components and Poisson distributions, respectively. cn.mops guarantees a low FDR because wrong detections are indicated by high noise and filtered out. cn.mops is very fast and written in C++.

biocViews HighThroughputSequencing, Sequencing, Bioinformatics, CopyNumberVariants

Version 1.2.6

Date 2012-04-17

URL http://www.bioinf.jku.at/software/cnmops/cnmops.html

Depends R (>= 2.14), BiocGenerics (>= 0.1.0), Biobase, IRanges, GenomicRanges (>= 1.7.8)

Imports methods, graphics, BiocGenerics, IRanges, Rsamtools,

Suggests snow, DNAcopy

LazyLoad yes

Collate

 $'All Classes.R'\ 'cn.mops.R'\ 'getRead Counts From BAM.R'' normalize Chromosomes.R'\ 'normalize Genome.R'\ 'plot-methods.R'' show-methods.R''$

methods.R' 'segment.R' 'zzz.R' 'AllGenerics.R' 'methodsAccess.R' 'getSegmentReadCountsFromBAM.R' 'haplocn.m' 'neadCountsFromBAM.R' 'neadCountsFromBAM.R' 'neadCountsFromBAM.R' 'neadCountsFromBAM.R' 'neadCountsFromBAM.R'

2 cn.mops

R topics documented:

CNVDetectionResult-class cnvr CNVRanges cnvs getReadCountsFromBAM getSegmentReadCountsFromBAM haplocn.mops	
CNVRanges	5 6 7 8 10 11
cnvs	6 7 8 10 11
getReadCountsFromBAM	6 7 8 10 11
getSegmentReadCountsFromBAM	7 8 10 10
	8 10 10
hanloen mons	10 10 11
napioen.mops	10 11
individualCall	11
iniCall	
integerCopyNumber	1.1
localAssessments	ιl
normalizeChromosomes	12
normalizedData	13
normalizeGenome	14
params	15
plot	15
posteriorProbs	16
segment	16
segmentation	17
segplot	18
show	19
X	19
XRanges	20
Index	21

cn.mops

Performs the cn.mops algorithm for copy number detection in NGS data.

Description

Performs the cn.mops algorithm for copy number detection in NGS data.

Usage

```
cn.mops(input,
    I = c(0.025, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4),
    classes = c("CN0", "CN1", "CN2", "CN3", "CN4", "CN5", "CN6", "CN7", "CN8"),
    priorImpact = 1, cyc = 20, parallel = 0,
    normType = "poisson", normQu = 0.25, norm = TRUE,
    upperThreshold = 0.5, lowerThreshold = -0.9,
    minWidth = 3, segAlgorithm = "fast", ...)
```

cn.mops 3

Arguments

guments	
input	Either an instance of "GRanges" or a raw data matrix, where columns are interpreted as samples and rows as genomic regions. An entry is the read count of a sample in the genomic region.
I	Vector positive real values that contain the expected fold change of the copy number classes. Length of this vector must be equal to the length of the "classes" parameter vector. For human copy number polymorphisms we suggest to use the default $I = c(0.05, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)$.
classes	Vector of characters of the same length as the parameter vector "I". One vector element must be named "CN2". The names reflect the labels of the copy number classes. Default = $c("CN0","CN1","CN2","CN3","CN4","CN5","CN6","CN7","CN8")$.
priorImpact	Positive real value that reflects how strong the prior assumption affects the result. The higher the value the more samples will be assumed to have copy number 2. Default = 1.
сус	Positive integer that sets the number of cycles for the algorithm. Usually after less than 15 cycles convergence is reached. Default = 20.
parallel	How many cores are used for the computation. If set to zero than no parallelization is applied. The package "snow" has to be installed for this option. Default = 0.
normType	Mode of the normalization technique. Possible values are "mean", "min", "median", "quant", "poisson" and "mode". Read counts will be scaled sample-wise. Default = "poisson".
normQu	Real value between 0 and 1. If the "normType" parameter is set to "quant" then this parameter sets the quantile that is used for the normalization. Default = 0.25.
norm	Logical that indicates whether normalization should be applied or not. Default = TRUE.
upperThreshold	Positive real value that sets the cut-off for copy number gains. All CNV calling values above this value will be called as "gain". The value should be set close to the log2 of the expected foldchange for copy number 3 or 4. Default = 0.5.
lowerThreshold	Negative real value that sets the cut-off for copy number losses. All CNV calling values below this value will be called as "loss". The value should be set close to the $log2$ of the expected foldchange for copy number 1 or 0. Default = -0.9 .
minWidth	Positive integer that is exactly the parameter "min.width" of the "segment" function of "DNAcopy". minWidth is the minimum number of segments a CNV should span. Default = 4.
segAlgorithm	Which segmentation algorithm should be used. If set to "DNAcopy" circular binary segmentation is performed. Any other value will initiate the use of our fast segmentation algorithm. Default = "fast".
	Additional parameters will be passed to the "DNAcopy" or the standard segmentation algorithm.

Value

An instance of "CNVDetectionResult".

Author(s)

 $Guenter\ Klambauer\, \verb|<klambauer@bioinf.jku.at>|$

Examples

```
data(cn.mops)
cn.mops(XRanges)
```

CNVDetectionResult-class

Class "CNVDetectionResult"

Description

S4 class for storing results of a CNV detection method.

Slots

The following slots are defined for CNVDetectionResult objects:

normalizedData The normalized data.

localAssessments The data to which the segmentation algorithm is applied. These can be z-Scores, ratios, log-ratios or I/NI calls.

individualCall The CNV call that the method provides for a specific sample

iniCall The CNV call that the method provides a specific segment.

posterior Probs The posterior probabilities for different copy numbers.

cnvs The detected CNVs.

cnvr The detected CNV regions.

segmentation The segmentation of the reference sequence (sample-wise).

integerCopyNumber The most probable integer copy number.

params The parameters with which the method was run.

Methods

```
cnvr signature(object = "CNVDetectionResult"): ...
cnvs signature(object = "CNVDetectionResult"): ...
individualCall signature(object = "CNVDetectionResult"): ...
iniCall signature(object = "CNVDetectionResult"): ...
integerCopyNumber signature(object = "CNVDetectionResult"): ...
localAssessments signature(object = "CNVDetectionResult"): ...
normalizedData signature(object = "CNVDetectionResult"): ...
params signature(object = "CNVDetectionResult"): ...
plot signature(x = "CNVDetectionResult"): ...
posteriorProbs signature(object = "CNVDetectionResult"): ...
segmentation signature(object = "CNVDetectionResult"): ...
segplot signature(object = "CNVDetectionResult"): ...
show signature(object = "CNVDetectionResult"): ...
```

cnvr 5

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
showClass("CNVDetectionResult")
```

cnvr

These generic function returns CNV regions of a CNV detection method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns CNV regions of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object

An instance of "CNVDetectionResult"

Value

cnvr returns a eturns a "GRanges" object containing the CNV regions.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
cnvr(r)</pre>
```

CNVRanges

Genomic locations and indices of the simulated CNVs.

Description

This data set gives the starts, ends, and the integer copy number of the simulated CNVs in the data set XRanges object.

Usage

CNVRanges

Format

A GRanges object with 20 rows and 40 value columns across 1 space.

Source

http://www.bioinf.jku.at/cnmops/cnmops.html.

References

Klambauer et al., cn.mops, Unpublished method., 2011

cnvs

These generic function returns CNVs of a CNV detection method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns CNVs of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object

An instance of "CNVDetectionResult"

Value

cnvs returns a eturns a "GRanges" object containing the CNVs.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
cnvs(r)</pre>
```

getReadCountsFromBAM

Generates the read counts from BAM Files. These counts are necessary for CNV detection methods based on depth of coverage information. Note that the function is much faster, if the BAM files have an index file. The index file is assumed to be in the same folder and have an identical file name except that ".bai" is appended.

Description

Generates the read counts from BAM Files. These counts are necessary for CNV detection methods based on depth of coverage information. Note that the function is much faster, if the BAM files have an index file. The index file is assumed to be in the same folder and have an identical file name except that ".bai" is appended.

Usage

```
\label{eq:continuous} \mbox{getReadCountsFromBAM(BAMFiles, sampleNames, refSeqName,} \\ \mbox{WL, mode)}
```

Arguments

BAMFiles BAMFiles

sampleNames The corresponding sample names to the BAM Files.

ref SeqName Name of the reference sequence that should be analyzed. The name must appear

in the header of the BAM file. If it is not given the function will select the first

reference sequence that appears in the header of the BAM files.

WL Windowlength. Length of the initial segmentation of the genome in basepairs.

Should be chosen such that on the average 100 reads are contained in each seg-

ment. If not given, cn.mops will try to find an appropiate window length.

mode Possible values are "paired" and "unpaired", whether the mapping algorithm was

using a "paired" or "unpaired" strategy. Default = "unpaired".

Value

An instance of "GRanges", that contains the breakpoints of the initial segments and the raw read counts that were extracted from the BAM files. This object can be used as input for cn.mops and other CNV detection methods.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
BAMFiles <- list.files(system.file("extdata", package="cn.mops"),pattern=".bam$", full.names=TRUE) bamDataRanges <- getReadCountsFromBAM(BAMFiles, sampleNames=paste("Sample",1:3),WL=5000,mode="unpaired")
```

getSegmentReadCountsFromBAM

Generates the read counts from BAM Files for predefined segments. This is the appropriate choice for exome sequencing data, where the bait regions, target regions or exons are the predefined segments. These counts are necessary for CNV detection methods based on depth of coverage information. Note that the function is much faster, if the BAM files have an index file. The index file is assumed to be in the same folder and have an identical file name except that ".bai" is appended.

Description

Generates the read counts from BAM Files for predefined segments. This is the appropriate choice for exome sequencing data, where the bait regions, target regions or exons are the predefined segments. These counts are necessary for CNV detection methods based on depth of coverage information. Note that the function is much faster, if the BAM files have an index file. The index file is assumed to be in the same folder and have an identical file name except that ".bai" is appended.

Usage

```
getSegmentReadCountsFromBAM(BAMFiles, GR, sampleNames,
  mode)
```

8 haplocn.mops

Arguments

BAMFiles BAMFiles

sampleNames The corresponding sample names to the BAM Files.

GR A genomic ranges object that contains the genomic coordinates of the segments.

mode Possible values are "paired" and "unpaired", whether the mapping algorithm was

using a "paired" or "unpaired" strategy. Default = "unpaired".

Value

An instance of "GRanges", that contains the breakpoints of the initial segments and the raw read counts that were extracted from the BAM files. This object can be used as input for cn.mops and other CNV detection methods.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
BAMFiles <- list.files(system.file("extdata", package="cn.mops"),pattern=".bam$", full.names=TRUE) gr <- GRanges(c("20","20"),IRanges(c(60000,70000),c(70000,80000))) bamDataRanges <- getSegmentReadCountsFromBAM(BAMFiles,GR=gr,mode="unpaired")
```

haplocn.mops

Performs the cn.mops algorithm for copy number detection in NGS data adjusted to haploid genomes. It is assumed that the normal state is copy number 1. This is an experimental method at the moment.

Description

Performs the cn.mops algorithm for copy number detection in NGS data adjusted to haploid genomes. It is assumed that the normal state is copy number 1. This is an experimental method at the moment.

Usage

```
haplocn.mops(input, I = c(0.025, 1, 2, 3, 4, 5, 6, 7, 8), classes = c("CN0", "CN1", "CN2", "CN3", "CN4", "CN5", "CN6", "CN7", "CN8"), priorImpact = 1, cyc = 20, parallel = 0, normType = "poisson", normQu = 0.25, norm = TRUE, upperThreshold = 0.5, lowerThreshold = -0.9, minWidth = 3, segAlgorithm = "fast", ...)
```

Arguments

input

Either an instance of "GRanges" or a raw data matrix, where columns are interpreted as samples and rows as genomic regions. An entry is the read count of a sample in the genomic region.

haplocn.mops 9

I	Vector positive real values that contain the expected fold change of the copy number classes. Length of this vector must be equal to the length of the "classes" parameter vector. For copy number polymorphisms in haploid organisms we suggest to use the default $I = c(0.025,1,2,3,4,5,6,7,8)$.
classes	Vector of characters of the same length as the parameter vector "I". One vector element must be named "CN1". The names reflect the labels of the copy number classes. Default = $c("CN0","CN1","CN2","CN3","CN4","CN5","CN6","CN7","CN8")$.
priorImpact	Positive real value that reflects how strong the prior assumption affects the result. The higher the value the more samples will be assumed to have copy number 1. Default = 1.
сус	Positive integer that sets the number of cycles for the algorithm. Usually after less than 15 cycles convergence is reached. Default = 20.
parallel	How many cores are used for the computation. If set to zero than no parallelization is applied. The package "snow" has to be installed for this option. Default = 0.
normType	Mode of the normalization technique. Possible values are "mean", "min", "median", "quant" "poisson" and "mode". Read counts will be scaled sample-wise. Default = "poisson".
normQu	Real value between 0 and 1. If the "normType" parameter is set to "quant" then this parameter sets the quantile that is used for the normalization. Default = 0.25.
norm	Logical that indicates whether normalization should be applied or not. Default = TRUE.
upperThreshold	Positive real value that sets the cut-off for copy number gains. All CNV calling values above this value will be called as "gain". The value should be set close to the log2 of the expected foldchange for copy number 3 or 4. Default = 0.5.
lowerThreshold	Negative real value that sets the cut-off for copy number losses. All CNV calling values below this value will be called as "loss". The value should be set close to the log2 of the expected foldchange for copy number 1 or 0. Default = -0.9.
minWidth	Positive integer that is exactly the parameter "min.width" of the "segment" function of "DNAcopy". minWidth is the minimum number of segments a CNV should span. Default = 4.
segAlgorithm	Which segmentation algorithm should be used. If set to "DNAcopy" circular binary segmentation is performed. Any other value will initiate the use of our fast segmentation algorithm. Default = "fast".
	Additional parameters will be passed to the "DNAcopy" or the standard segmentation algorithm.

Value

An instance of "CNVDetectionResult".

Author(s)

 $Guenter\ Klambauer\ \verb|<klambauer@bioinf.jku.at>|$

Examples

```
data(cn.mops)
haplocn.mops(XRanges[1:200, ])
```

iniCall

individualCall	These generic function returns the individual calls of a CNV detection
	method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns the individual calls of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object

An instance of "CNVDetectionResult"

Value

individualCalls returns a "GRanges" object containing the individual calls.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
individualCall(r)</pre>
```

iniCall

These generic function returns the informative/non-informative call of a CNV detection method stored in an instance of CNVDetectionResult-class. The I/NI call is a measure for a genomic segment across all samples, whether this segment is a CNV region (informative) or a normal genomic region (non-informative).

Description

These generic function returns the informative/non-informative call of a CNV detection method stored in an instance of CNVDetectionResult-class. The I/NI call is a measure for a genomic segment across all samples, whether this segment is a CNV region (informative) or a normal genomic region (non-informative).

Arguments

object

An instance of "CNVDetectionResult"

Value

iniCall returns a "GRanges" object containing the individual calls.

integerCopyNumber 11

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
iniCall(r)</pre>
```

integerCopyNumber

These generic function returns the integer copy numbers of a CNV detection method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns the integer copy numbers of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object

An instance of "CNVDetectionResult"

Value

integerCopyNumber returns a eturns a "GRanges" object containing the integer copy numbers.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
integerCopyNumber(r)</pre>
```

localAssessments

These generic function returns the local assessments, i.e. signed individual informative/non-informative calls, of a CNV detection method stored in an instance of CNVDetectionResult-class. For other CNV detection methods this can be (log-) ratios or z-scores.

Description

These generic function returns the local assessments, i.e. signed individual informative/non-informative calls, of a CNV detection method stored in an instance of CNVDetectionResult-class. For other CNV detection methods this can be (log-) ratios or z-scores.

Arguments

object

An instance of "CNVDetectionResult"

12 normalizeChromosomes

Value

localAssessments returns a "GRanges" object containing the local assessments.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
localAssessments(r)</pre>
```

normalizeChromosomes

Normalize quantitative NGS data in order to make counts comparable over samples. Scales each samples' reads such that the coverage is even for all samples after normalization.

Description

Normalize quantitative NGS data in order to make counts comparable over samples. Scales each samples' reads such that the coverage is even for all samples after normalization.

Usage

```
normalizeChromosomes(X, chr, normType = "poisson",
  qu = 0.25, ploidy)
```

Arguments

Χ

Matrix of positive real values, where columns are interpreted as samples and rows as genomic regions. An entry is the read count of a sample in the genomic region.

chr

Character vector that has as many elements as "X" has rows. The vector assigns each genomic segment to a reference sequence (chromosome).

normType

Type of the normalization technique. Each samples' read counts are scaled such that the total number of reads is equal after normalization. By this parameter one can decide to which coverage (i.e. total reads) the read counts should be normalized. Possible choices are the minimal coverage ("min"), the mean or median coverage ("mean", "median") or any quantile ("quant"). If this parameter is set to the value "mode", the read counts are scaled such that each samples' most frequent value (the "mode") is equal after normalization. If the parameter is set to "poisson" the values are scaled such that the distribution is (rowwise) close to a Poisson distribution. Possible values are "mean", "min", "median", "quant", "poisson, and "mode". Default = "poisson".

qu

Real value between 0 and 1. Default = 0.25.

ploidy

An integer value for each sample or each column in the read count matrix. At least two samples must have a ploidy of 2. Default = "missing".

normalizedData 13

Value

A data matrix of normalized read counts with the same dimensions as the input matrix X.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
X.norm <- normalizeChromosomes(X)</pre>
```

 ${\tt normalizedData}$

These generic function returns the normalized data of a CNV detection method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns the normalized data of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object

An instance of "CNVDetectionResult".

Value

normalizedData returns a "GRanges" object containing the normalized data.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
normalizedData(r)</pre>
```

14 normalizeGenome

normalizeGenome	Normalize quantitative NGS data in order to make counts comparable	
	over samples. Scales each samples' reads such that the coverage is	
	even for all samples after normalization.	

Description

Normalize quantitative NGS data in order to make counts comparable over samples. Scales each samples' reads such that the coverage is even for all samples after normalization.

Usage

```
normalizeGenome(X, normType = "poisson", qu = 0.25,
    ploidy)
```

Arguments

Χ

Matrix of positive real values, where columns are interpreted as samples and rows as genomic regions. An entry is the read count of a sample in the genomic region.

normType

normType Type of the normalization technique. Each samples' read counts are scaled such that the total number of reads is equal after normlization. By this parameter one can decide to which coverage (i.e. total reads) the read counts should be normalized. Possible choices are the minimal coverage ("min"), the mean or median coverage ("mean", "median") or any quantile ("quant"). If this parameter is set to the value "mode", the read counts are scaled such that each samples' most frequent value (the "mode") is equal after normalization. If the parameter is set to "poisson" the values are scaled such that the distribution is

(rowwise) close to a Poisson distribution. Possible values are "mean", "min", "median", "quant", "poisson distribution.

and "mode". Default = "poisson".

qu Real value between 0 and 1. Default = 0.25.

ploidy An integer value for each sample or each column in the read count matrix. At

least two samples must have a ploidy of 2. Default = "missing".

Value

A data matrix of normalized read counts with the same dimensions as the input matrix X.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
X.norm <- normalizeGenome(X)</pre>
```

params 15

narame	These conomic function noturns the parameters of a CNV detection
params	These generic function returns the parameters of a CNV detection
	method stored in an instance of CNVDetectionResult-class.

Description

These generic function returns the parameters of a CNV detection method stored in an instance of CNVDetectionResult-class.

Arguments

object An instance of "CNVDetectionResult"

Value

params returns a eturns a "GRanges" object containing the parameters.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
params(r)</pre>
```

plot

Plots a CNVDetectionResult

Description

Plots read counts, call values and CNV calls in an identified CNV region.

Usage

Arguments

X	An instance of "CNVDetectionResult"
which	The index of the CNV region to be plotted.
margin	Vector of two positive integers that states how many segments left and right of the CNV region should be included in the plot. Default = $c(10,10)$.
toFile	Logical value whether the output should be plotted to a file. Default = FALSE.

16 segment

Value

Generates a CNV calling plot.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

posteriorProbs

These generic function returns the posterior probabilities of a CNV detection method stored in an instance of CNVDetectionResult-class. The posterior probabilities are represented as a three dimensional array, where the three dimensions are segment, copy number and individual.

Description

These generic function returns the posterior probabilities of a CNV detection method stored in an instance of CNVDetectionResult-class. The posterior probabilities are represented as a three dimensional array, where the three dimensions are segment, copy number and individual.

Arguments

object

An instance of "CNVDetectionResult"

Value

 ${\tt posteriorProbs}\ returns\ a\ three\ dimensional\ array.$

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
posteriorProbs(r)</pre>
```

segment

Performs a fast segmentation algorithm based on the cyber t test and the t statistics.

Description

Performs a fast segmentation algorithm based on the cyber t test and the t statistics.

Usage

```
segment(x, alpha = 0.05, segMedianT = 0, minSeg = 3,
  eps = 0, delta = 20, maxInt = 40, squashing = 0,
  cyberWeight = 50, segPlot = TRUE, ...)
```

segmentation 17

Arguments

X	Values to be segmented.
alpha	Real value between 0 and 1 is interpreted as the percentage of total points that are considered as initial breakpoints. An integer greater than 1 is interpreted as number of initial breakpoints. Default = 0.05 .
segMedianT	Vector of length 2. Thresholds on the segment's median. Segments' medians above the first element are considered as gains and below the second value as losses.
minSeg	Minimum length of segments. Default $= 3$.
eps	Real value greater or equal zero. A breakpoint is only possible between to consecutive values of x that have a distance of at least "eps". Default = 0.
delta	Positive integer. A parameter to make the segmentation more efficient. If the statistics of a breakpoint lowers while extending the window, the algorithm extends the windows by "delta" more points until it stops. Default = 20.
maxInt	The maximum length of a segment left of the breakpoint and right of the breakpoint that is considered. Default = 40.
squashing	An experimental parameter that squashes the values "x" before segmentation. Should be left to zero, which means that squashing is not performed. Default = 0.
cyberWeight	The "nu" parameter of the cyber t-test. Default = 50.
segPlot	Logical indicating whether the result of the segmentation a algorithm should be plotted. Default = TRUE.
	additional parameters passed to the plotting function.

Value

A data frame containing the segments.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
x <- rnorm(n=500,sd=0.5)
x[150:200] <- rnorm(n=51,mean=3,sd=0.5)
segment(x)</pre>
```

segmentation	These generic function returns segmentation of a CNV detection	
	method stored in an instance of CNVDetectionResult-class.	

Description

These generic function returns segmentation of a CNV detection method stored in an instance of ${\tt CNVDetectionResult-class}$.

18 segplot

Arguments

object An instance of "CNVDetectionResult"

Value

segmentation returns a eturns a "GRanges" object containing the segmentation.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:100,1:5])
segmentation(r)</pre>
```

segplot

Plots the log normalized read counts and the detected segments for one sample on one reference sequence.

Description

Plots the log normalized read counts and the detected segments for one sample on one reference sequence.

Arguments

r An instance of "CNVDetectionResult"

seqname The name of the reference sequence or chromosome to be plotted.

sampleIdx The index of the sample as it appears in the read count matrix.

mainCN The name of the main copy number. That is "CN2" for diploid individuals. For

haplocn.mops this should be set to "CN1".

Value

Generates a segmentation plot.

Author(s)

Guenter Klambauer <klambauer@bioinf.jku.at>

Examples

```
data(cn.mops)
r <- cn.mops(X[1:200, ])
segplot(r,sampleIdx=1)</pre>
```

show 19

show

Displays the result object of a copy number detection method.

Description

Displays method for S4 class CNVDetectionResult

Usage

```
## S4 method for signature 'CNVDetectionResult'
show(object)
```

Arguments

object

An instance of a "CNVDetectionResult".

Value

Displays the result object of a CNV detection method.

Author(s)

Guenter Klambauer < klambauer@bioinf.jku.at>

Χ

A simulated data set for CNV detection from NGS data.

Description

This data set gives the read counts of 40 samples in 5000 genomic locations. The rows correspond to genomic segments of 25kbp length and the columns to samples. An entry is the number of reads that map to the specific segment of the sample. The rownames contain the information of the genomic location - they are in the format refseqname_startposition_endposition. The simulated data contains CNVs given in the CNVRanges object. It was generated using distributions of read counts as they appear in real sequencing experiments. CNVs were implanted under the assumption that the expected read count is linear dependent on the copy number (e.g. in a certain genomic we expect

 λ reads for copy number 2, then we expect $2\cdot \lambda$ reads for copy number 4).

Usage

Χ

Format

A data matrix of 5000 rows and 40 columns.

20 XRanges

Source

http://www.bioinf.jku.at/software/cnmops/cnmops.html.

References

Klambauer et al., cn.mops, Unpublished method., 2011

XRanges

A simulated data set for CNV detection from NGS data.

Description

This data set gives the read counts of 40 samples in 5000 genomic locations. The rows correspond to genomic segments of 25kbp length and the columns to samples. An entry is the number of reads that map to the specific segment of the sample. The "GRanges" object contains the name of the reference sequence, start and end position of the genomic segments. The simulated data contains CNVs given in the CNVRanges object. It was generated using distributions of read counts as they appear in real sequencing experiments. CNVs were implanted under the assumption that the expected read count is linear dependent on the copy number (e.g. in a certain genomic we expect

reads for copy number 2, then we expect $2 \cdot \lambda$ reads for copy number 4).

Usage

XRanges

Format

A GRanges object with 5000 rows and 40 value columns across 1 space.

Source

http://www.bioinf.jku.at/software/cnmops/cnmops.html.

References

Klambauer et al., cn.mops, Unpublished method., 2011

Index

*Topic classes	normalizedData, 13
CNVDetectionResult-class, 4	normalizedData,CNVDetectionResult-method
*Topic datasets	(CNVDetectionResult-class), 4
CNVRanges, 5	normalizeGenome, 14
X, 19	
XRanges, 20	params, 15
3 3 1	params, CNVDetectionResult-method
cn.mops, 2	(CNVDetectionResult-class), 4
CNVDetectionResult, 4, 19	plot, 15
CNVDetectionResult	plot,CNVDetectionResult,missing-method
(CNVDetectionResult-class), 4	(plot), 15
CnvDetectionResult	plot-methods (plot), 15
(CNVDetectionResult-class), 4	posteriorProbs, 16
cnvdetectionresult	posteriorProbs,CNVDetectionResult-method
(CNVDetectionResult-class), 4	(CNVDetectionResult-class), 4
CNVDetectionResult-class, 4, 5, 6, 10, 11,	(CNVDetectionNesdit Class), 4
	segment, 16
13, 15–17	segmentation, 17
cnvr, 5	segmentation, CNVDetectionResult-method
cnvr,CNVDetectionResult-method	(CNVDetectionResult-class), 4
(CNVDetectionResult-class), 4	segplot, 18
CNVRanges, 5, 19, 20	= :
cnvs, 6	segplot, CNVDetectionResult-method
cnvs,CNVDetectionResult-method	(CNVDetectionResult-class), 4
(CNVDetectionResult-class), 4	show, 19
	show, CNVDetectionResult-method (show),
getReadCountsFromBAM, 6	19
getSegmentReadCountsFromBAM, 7	show-methods (show), 19
h	V 10
haplocn.mops, 8	X, 19
individualCall, 10	XRanges, 5, 20
individualCall, CNVDetectionResult-method	
•	
(CNVDetectionResult-class), 4	
iniCall, 10	
iniCall, CNVDetectionResult-method	
(CNVDetectionResult-class), 4	
integerCopyNumber, 11	
$integer {\tt CopyNumber,CNVDetectionResult-method}$	
(CNVDetectionResult-class), 4	
localAssessments, 11	
localAssessments, CNVDetectionResult-method	
(CNVDetectionResult-class), 4	
(Chapetectioninesait Class), 4	
normalizeChromosomes, 12	